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Supplementary Note 1 - Graph neural networks

Given a graph G = (V,E), GNN aims to learn the representation of each node
v ∈ V according to the adjacency information derived by E. GNN implements
the message passage mechanism, which iteratively updates the node repre-
sentation by aggregating neighbor features. The message passage mechanism
consists of two main steps: AGGREGATE and COMBINE. AGGREGATE
intends to aggregate the information from neighbors of nodes; COMBINE
is to update node features by integrating the aggregated neighbor informa-
tion. L−layer GNN can aggregate L−hop neighbors. The lth GNN layer is
formalized as:

hl
v = COMBINEl

(
hl−1
v ,AGGREGATEl

({
hl−1
u : u ∈ N (v)

}))
(1)

where N (v) is the neighbor node set of v, hl
v is the hidden feature of node v

after l-layer aggregation, and h0
v is the input feature of node v. Additionally,

the READOUT operation is conducted to get the entire graph representation,
which pools the aggregated node representation.

hG = READOUT
({

hL
v | v ∈ V

})
(2)

For instance, sum, max, mean and attention functions are general READOUT
operations.

Supplementary Note 2 - Self-supervised learning

Self-supervised learning (SSL) conducts pre-training on a large-scale unlabeled
dataset, then the pre-trained model is transferred to downstream tasks to
perform fine-tuning with a small number of groundtruth. Benefiting from the
advantages of processing large-scale unlabeled data, SSL has been widely used
in computer vision (CV) and Natural Language Processing (NLP). Besides,
the past few years have witnessed the success of SSL in graph learning. Graph
SSL can be classified into three main categories according to self-supervised
signals: contrast, generative, and predictive[1, 2].

• Contrast graph SSL constructs different views by graph data augment and
takes the commonality and difference information between inter-data pairs
as supervision signals. Namely, aligning the representations of positive view
pairs and differentiating the representations of negative view pairs. The
construction of views is the key point of contrast graph SSL.

• Generative graph SSL generally takes the graph structure itself as the
supervision signal, with the purpose of reconstructing topology structure or
masked attributes. Graph auto-encoder and graph auto-regression are two
fundamental approaches to generating graph structure.

• Predictive graph SSL creates some pseudo-labels with simple statistical anal-
ysis or expert knowledge. Then prediction tasks are designed based on these



generated pseudo-labels. Self-supervised molecular graph learning constructs
labels in the light of unique chemical structures, such as motifs.

Supplementary Note 3 - Detailed description of baselines

• GraphSAGE[3] introduces an inductive method to aggregate neighbor infor-
mation, the trained mapping of nodes to embedding can handle unseen
nodes. During pre-training, neighbor pairs and non-neighbor pairs are sam-
pled as positive and negative samples, and SSL is conducted in light of edge
prediction.

• GPT GNN[4] employs a probabilistic generative model to generate graph
structure and attributes. Specifically, some edges and node features are
masked, attribute generation predicts masked node attributes through
observed data; edge generation reconstructs unobserved edges.

• AttributeMask[5] randomly masks some edge attributes and leverages GNN
to generate the masked attributes.

• ContextPred[5] constructs the context subgraph, which is encoded as a
vector by context GNN. Meanwhile, the main GNN aggregates the neighbor-
hood information to obtain the embedding of the center node. The objective
of context prediction is to make the embedding obtained by aggregation
neighbors more similar to that of the same node encoded on the context
graph.

• InfoGraph[6] contrasts graph-level representation obtained by READOUT
function and all patch-level representations, in which a node and the graph
it belongs to is a positive sample pair, and negative samples are formed by
it and the other graphs in the identical batch.

• MoCL[7] combines two different contrast strategies. The local-level strat-
egy contrasts representations encoded by the two graph augmentations; the
global-level strategy contrasts mutual information between similar graph
pairs.

• GraphLoG[8] preserves local similarity through the alignment of similar sub-
graphs and introduces hierarchical prototypes to achieve global semantic
structure.

• GraphCL[9] obtains two L-hop subgraphs with random perturbations for
a node and conducts self-supervised learning by maximizing the similarity
between the two subgraphs.

• JOAO[10] design a framework to automatically select data augmentation
methods on the basis of GraphCL. The general idea is to train iteratively
the probability matrix of multiple data augmentation methods through
adversarial training, and correspondingly replace the projection head in
GraphCL.

• MolCLR[11] three methods of molecular augmentations, including atom
masking, bond deletion, and subgraph removal, and contrasts different
augmentation methods.

• G Motif[12] proposes a dynamic messaging passing network based on
Transformer and considers motif prediction task as the self-supervised signal.



• MGSSL[13] improves the rules of motif construction, uses GNN backbone
to encode molecular graph representation, and predicts the motifs based on
a given order (depth-first search or breadth-first search) on the graph.

Supplementary Method

For multi-level pretext tasks, learnable Multi-layer Perceptrons (MLP) ϕlink,
ϕatom type, ϕbond type, ϕatom num, and ϕbond num are used to decode the pre-
dicted values ŷij , ŷv,k, ŷe,k, ŷa, and ŷb. Formally, we give the the input, output
and the detailed layers of all MLPs as follows.

concat[hi,hj ] → ϕlink{Linear(2d, d) → Relu → Linear(d, 1)} → ŷij

hv → ϕatom type {Linear(d, d) → Relu → Linear(d,Natom type)} → ŷv,k

concat[hi,hj ] → ϕbond type {Linear(2d, d) → Relu → Linear(d,Nbond type)} → ŷe,k

Hg → ϕatom num {Linear(d, d/4) → Softplus → Linear(d/4, 1)} → ŷa

Hg → ϕbond num {Linear(d, d/4) → Softplus → Linear(d/4, 1)} → ŷb
(3)

where concat is the concatenation operation, Natom type = 118 and
Nbond type = 4 are the number of atom types and bond types.



Supplementary Table 1 Input feature type and range of nodes and edges. The atomic
indices of graph-level and motif-level nodes are 119 and 120 respectively. Their degrees are
set to 0. For both types of nodes, node-motif and motif-graph edges are augmented. Their
features of Bond is in ring are None.

Feature category Feature type Range

Node feature
Atom type [1,118]+[119,120]

Atomic degree [0,10]

Edge feature
Bond type {single,double,triple,aromatic}+{node-motif, motif-graph}

Bond is in ring {False, True}+{None}

Supplementary Table 2 Detailed summary of all downstream and pre-training datasets
used in HiMol.

Datasets Molecules Tasks Task Type Metrics Avg nodes Avg degree

BACE 1,522 1 classification ROC-AUC 34.1 2.2
BBBP 2,053 1 classification ROC-AUC 24.1 2.1
Tox21 8,014 12 classification ROC-AUC 18.6 2.0
ToxCast 8,615 617 classification ROC-AUC 18.8 2.0
SIDER 1,427 27 classification ROC-AUC 33.6 2.0
ClinTox 1,491 2 classification ROC-AUC 26.2 2.1

ESOL 1,128 1 regression RMSE 13.3 2.1
FreeSolv 643 1 regression RMSE 8.7 1.8
Lipophilicity 4,200 1 regression RMSE 27.0 2.2
QM7 7,165 1 regression MAE 6.8 1.9
QM8 21,786 12 regression MAE 7.8 2.1
QM9 133,885 12 regression MAE 8.8 2.1

ZINC15 249,456 - - - 23.2 2.1



Supplementary Table 3 Comparison of self-supervised pattern between our HiMol and
baselines.

Baselines Generative Contrast Predictive

GraphSAGE[3] ✓ - -
GPT GNN[4] ✓ - -
AttributeMask[5] ✓ - -
ContextPred[5] - ✓ -
InfoGraph[6] - ✓ -
MoCL[7] - ✓ -
GraphLoG[8] - ✓ -
GraphCL[9] - ✓ -
JOAO[10] - ✓ -
MolCLR[11] - ✓ -
G Motif[12] - - ✓
MGSSL[13] - - ✓
HiMol ✓ - ✓

Supplementary Table 4 Summary of hyperparameter on all downstream datasets
during fine-tuning of HiMol. lr feat and lr pred denote the learning rate of GNN backbone
and MLP for prediction, respectively.

Datasets batch size epoch lr feat lr pred dropout dimension

BACE 32 100 1e-3 1e-3 0.5 512
BBBP 32 100 5e-4 1e-3 0.5 512
Tox21 32 100 5e-4 1e-3 0.7 512
ToxCast 32 100 1e-3 1e-3 0.7 512
SIDER 32 100 5e-4 1e-3 0.5 512
ClinTox 32 100 1e-3 1e-3 0.5 512
ESOL 32 100 1e-3 1e-3 0.5 512
FreeSolv 32 100 1e-3 1e-3 0.5 512
Lipophilicity 32 100 5e-4 5e-4 0.5 512
QM7 32 100 1e-3 1e-3 0.5 512
QM8 32 100 1e-3 1e-3 0.5 512
QM9 32 100 1e-3 1e-3 0.5 512
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Supplementary Figure 1 Visualization of molecular representations obtained by our
HiMol on the downstream test set.(a) For BBBP, blue color represents penetration and
red color represents non-penetration. (b) For ESOL, color represents the measured water
solubility of compound. (c) For QM7, color represents electronic property of molecule. (d)
For QM8, color represents the transition energy modeled by CC2 method.
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Supplementary Figure 2 Visualization of molecular representations without pre-training
on the downstream test set. (a) For BACE(Class), color represents binary labels of binding
results for BACE-1 inhibitors. (b) For Lipophilicity(exp), color represents octanol/water
distribution coefficient. (c) For QM9(homo), color represents highest occupied molecular
orbital energy (homo) of molecules. (d) For QM9(lumo), color represents lowest unoccupied
molecular orbital energy (lumo) of molecules.



Query
C[C@@H]1Cc2ccccc2N1S(=O)(=O)CCNC
(=O)[C@H]1CC(=O)N(c2cccc(F)c2)C1

Top@1
Cc1cc(C(=O)NC[C@@](C)(O)c2cnn(C)c2)

c(C)n1Cc1cccs1

Top@2
Cc1ccc(n2nc3c(c2NC(=O)c2ccc(Cl)

cc2)C[S@@](=O)C3)cc1

Top@3
COc1ccc(C)cc1N1C[C@H](C(=O)N(

C)c2ncccc2OC)CC1=O

(a) ZINC13968356

Query
Cc1ccc(N2C(=O)C3=C4C[C@H](C(C)C)OC

[C@@H]4SC3=NC2=S)cc1

Top@1
C[C@H](CO)[C@H](C)Nc1nc(-
c2cnccn2)nc2sc3c(c12)CCCC3

Top@2
O=C(NCc1cccc(F)c1)N1CCC[C@H]

1c1cccc2c1OCCO2

Top@3
COc1ccc(n2c(C)nc3nc([NH+]4CCC

C4)nc([O-])c3c2=S)cc1

(b) ZINC38926049

Query
CCCc1cc(NC(=O)N(C)[C@H]2CCN(c3cccc

c3F)C2=O)n(C)n1

Top@1
Cc1cccc(c2nn(c3ccc(F)cc3)cc2[C@H]2N

C(=O)[C@@H]3COCCN32)c1

Top@2
C[C@@H](Sc1ccccn1)C(=O)N/

N=C1\C(=O)Nc2ccccc21

Top@3
CCOc1cc([C@H]2C(C(C)=O)=C(C)N
c3nnnn32)cc(Br)c1OCc1cccc(C)c1

(c) ZINC91091439

Top@1
Cc1nn(C)c(N[C@H](C)c2ccc(C#N)cc2)c1[

N+](=O)[O-]

Top@2
CCCCn1c(N)c(N(Cc2ccccc2)C(=O)c
2ccc(Cl)c(Cl)c2)c(=O)[nH]c1=O

Top@3
COc1cc(Cl)ccc1C(=O)Nc1nc2c(s1)C

N(C)CC2

Query
COc1ccc([C@@H]2c3c(c4ccc(Cl)cc4)n[n

H]c3C(=O)N2C2CCCC2)cc1OC

(d) ZINC40342449

Supplementary Figure 3 Visualization of the top-three molecules ranked by molecular
representation similarity for the four query molecules. SMILES for all molecules are given.
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