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Abstract 

Background  Understanding the microbiome is crucial as it contributes to the metabolic health of the host and, 
upon dysbiosis, may influence disease development. With the recent surge in high-throughput sequencing technol-
ogy, the availability of microbial genomic data has increased dramatically. Amplicon sequence-based analyses majorly 
profile microbial abundance and determine taxonomic markers. Furthermore, the availability of genome sequences 
for various microbial organisms has prompted the integration of genome-scale metabolic modelling that provides 
insights into the metabolic interactions influencing host health. However, the analysis from a single study may not be 
consistent, necessitating a meta-analysis.

Results  We conducted a meta-analysis and integrated with constraint-based metabolic modelling approach, focus-
ing on the microbiome of pacific white shrimp Penaeus vannamei, an extensively cultured marine candidate species. 
Meta-analysis revealed that Acinetobacter and Alteromonas are significant indicators of "health" and "disease" specific 
taxonomic biomarkers, respectively. Further, we enumerated metabolic interactions among the taxonomic biomark-
ers by applying a constraint-based approach to the community metabolic models (4416 pairs). Under different 
nutrient environments, a constraint-based flux simulation identified five beneficial species: Acinetobacter spWCHA55, 
Acinetobacter tandoii SE63, Bifidobacterium pseudolongum 49 D6, Brevundimonas pondensis LVF1, and Lutibacter pro-
fundi LP1 mediating parasitic interactions majorly under sucrose environment in the pairwise community. The study 
also reports the healthy biomarkers that can co-exist and have functionally dependent relationships to maintain a 
healthy state in the host.

Conclusions  Toward this, we collected and re-analysed the amplicon sequence data of P. vannamei (encompassing 
117 healthy and 142 disease datasets). By capturing the taxonomic biomarkers and modelling the metabolic interac-
tion between them, our study provides a valuable resource, a first-of-its-kind analysis in aquaculture scenario toward a 
sustainable shrimp farming.

Keywords  Penaeus vannamei, Meta-analysis, 16S amplicon sequence analysis, Metagenomics, Genome-scale 
metabolic modelling, Flux balance analysis, Flux variability analysis, Microbial biomarker

*Correspondence:
Vinaya Kumar Katneni
Vinaya.Katneni@icar.gov.in
Full list of author information is available at the end of the article

Introduction
With the advent of high-throughput sequencing, metage-
nome datasets have become increasingly accessible. 
The culture-independent metagenomic approach has 
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facilitated extensive analysis of microbiome data for pre-
ventive and diagnostic purposes. Even in the aquaculture 
sector, microbial consortiums are crucial for improving 
sustainability and productivity of aquatic organisms [5, 
43]. Several factors threaten the sustainability and yield of 
aquaculture species, one of which relates to the infection 
caused by pathogenic microorganisms [29]. Therefore, 
understanding the essential and significant microbial con-
sortia would simplify the prediction of disease incidences. 
In aquatic animals, amplicon sequence based approach 
has been used to identify microbiomes, their composi-
tion, and functions [4, 30, 33, 54].

The current study focuses on Penaeus vannamei, one 
of the world’s most widely cultured and traded marine 
candidate species. P. vannamei farming has increased 
rapidly to meet the growing edible high-quality pro-
tein demand. Despite this, P. vannamei farming is con-
stantly hampered by abiotic and biotic factors [58]. One 
of the challenges faced by P. vannamei farming relates 
to emerging diseases caused by bacteria, viruses, and 
fungi affecting the sustainability of shrimp [1, 31, 32]. 
Antibiotics are used to prevent the growth of microbial 
infections, but the spread of microbial antibiotic resist-
ance poses a hazard to human health [5]. Alternatively, 
microbes also promote the host’s growth by acting as a 
probiotic to circumvent antimicrobials [50]. Thus, study-
ing the potential, resident, and beneficial microbes is 
crucial for improving host health. To date, several ampli-
con sequence-based studies on P. vannamei have charac-
terized the microbial communities in different habitats 
[6], developmental stages [6], disease conditions [59], 
and diet [47].

It is important to note that the conclusions drawn 
from a single study may not accurately reflect the micro-
bial communities within the host [15]. Therefore, we 
performed a meta-analysis to gain a more robust and 
consistent understanding of health vs. disease states in 
P. vannamei. Previous microbiome-based meta-anal-
yses targeted different ontogenic stages of the healthy 
and disease shrimp predicting taxonomic markers [56]. 
Another study revealed the role of different biologi-
cal factors like environment and different life stages in 
shaping the microbiota [9]. Furthermore, these studies 
might not encapsulate the interrelationships between 
microbes for maintaining a stable microbial commu-
nity. Therefore, it is necessary to profile and explore 
the microbial interactions that can mediate beneficial 
host functions. Constraint-based metabolic modelling 
with genome-scale metabolic models (GSM) has been 
a widely used approach to study microbial interactions 
between species in a community [13, 28, 49]. Moreover, 
reconstructing genome-scale metabolic networks from 

amplicon sequence data has also been employed to infer 
resource competition and metabolic cooperation poten-
tial in microbial consortia [36, 60]. Hence, employing, 
flux balance analysis on the genome-scale metabolic 
models allow assessment of nutritional requirements, 
interactions, and metabolic exchanges in a microbial 
consortia under diverse nutrient environments [3, 60]. 
Moreover, a microbial community’s ability to coexist 
in different habitats depends on the cross-feeding of 
metabolites [57].  Natural metabolic products such as 
short-chain fatty acids have been used to control patho-
genic bacterial growth [39, 48]. Likewise, using short-
chain fatty acids in aquaculture also provides a growth 
advantage to Penaeus vannamei by suppressing the 
growth of pathogenic species [21].

Most microbiome-based studies have identified bio-
markers associated with healthy and disease shrimp; 
however, this study is the first to integrate 16S amplicon 
sequence data and genome-scale metabolic modelling in 
aquaculture scenario to capture the metabolic interac-
tion between the taxonomic biomarker species. The goal 
is to identify the most efficient taxonomic biomarkers 
that, in turn, should also limit the growth of pathogenic 
biomarker species. In summary, applying multi-pronged 
approach, we systematically characterized the natural 
indigenous species eventually coexist in the host or need 
to be artificially introduced to the host towards a sustain-
able health management.

Methods
Public data collection
The amplicon sequence data used for this meta-analysis 
were retrieved from the NCBI SRA database (Down-
loaded as on September, 2021). The studies collected 
were related to P. vannamei species associated with a 
disease, considering only the host tissue or intestine sam-
ples. Initially, the search yielded 13 studies with 838 data-
sets [Additional file 1: Table S1]. However, several studies 
were not considered due to lack of habitat information. 
The disease dataset included in this meta-analysis are 
infected with White feces disease events (WFD), White 
Spot Syndrome Virus (WSSV) and Acute Hepatopan-
creatic Necrotic Disease (AHPND). The available studies 
differed in the sub-regions of the 16S rRNA gene, such as 
V3-V4, V4, V1-V2, V2 mix, and V3 mix sequenced with 
different sequencing platforms. Due to the limited num-
ber of studies with proper metadata, a uniform sequenc-
ing technology or a common hypervariable region could 
not be implemented. Finally, six studies totaling 259 data-
sets were considered [Additional file 1: Table S2].
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Microbiome analysis
Initially, each study was processed separately, with sin-
gle-end and paired-end sequences analyzed using the 
Quantitative Insights Into Microbial Ecology (QIIME2) 
pipeline [17]. The read quality assessment was conducted 
with the DADA2 plugin to weed out low-quality forward 
and reverse reads that did not meet the quality threshold 
of 20. For DADA2, the trimming and truncation param-
eters unique to each study were provided. The datasets 
were removed when the read quality dropped below 
the threshold. The filtered reads from each study were 
aligned and classified using the SILVA database [55]. 
Finally, Amplicon Sequence Variants (ASV), a higher 
resolution version of the Operational Taxonomic Unit 
(OTU) was generated. Next, we combined the dataset 
wherein individual studies were merged. We filtered out 
datasets that fall below 2000 reads from the combined 
dataset and removed low abundance features (removed 
features that appeared in less than ten datasets). In the 
end, 241 datasets from five studies were analysed. Next, 
the representative sequences obtained from the com-
bined pre-processed data were assigned taxonomy using 
the pre-trained classifier SILVA (Silva release 138; 99% 
OTUs full-length sequences). Also, taxon archaea and 
eukaryota were not included as part of our analysis. In 
addition, chloroplast, mitochondria, and unassigned 
genus were removed from the feature table.

Alpha‑ and beta‑diversity
The within-dataset difference was measured using alpha 
diversity in individual and combined dataset. For indi-
vidual studies and combined dataset Shannon, Chao1, 
Observed Features, and Simpson were estimated to 
determine the community richness and evenness 
between the datasets. With the help of the vegan package 
in R (ggplot), beta-diversity was quantified using Bray–
Curtis dissimilarity and visualized through nonmetric 
multidimensional scaling (NMDS). The beta-diversity 
was also measured with unweighted unifrac distance 
metrics. The statistical difference between the healthy 
and disease states was computed with the Kruskal–Wal-
lis for alpha diversity metrics and Permutational Multi-
variate Analysis of Variance (PERMANOVA) for both the 
beta-diversity metrics. A p-value less than 0.05 was con-
sidered as significant.

Identification of biomarker
A taxonomic biomarker that can differentiate between 
a healthy and a disease state was found using the lin-
ear discriminant analysis Effect Size (LEfSe) method 
[46]. ASV tables derived from combined datasets 
were filtered for unassigned/uncultured genera before 

subjecting to LEfSe analysis. An effect size (LDA score) 
of > 2.0 with statistically significant p-value (< 0.05) was 
used for biomarker identification. A taxon was more 
accurately distinguished between its respective healthy 
and disease states when it has a large effect size and is 
statistically significant in a set of datasets.

Computing co‑occurrence
The relative abundance data corresponding to healthy 
and disease biomarker identified with LEfSe were sub-
jected to Higher-Order Co-occurrence (HiOrCo) pat-
terns in microbial samples for computing the highly 
co-occurring species [36]. The algorithm begins by 
considering the pairs of species that co-occur in sam-
ples and proceeds to a group of larger sizes and gener-
ate to a default of 100 communities in each size. The 
algorithm evaluates such that the species co-occur in 
at least twice in 10 datasets and should pass the FDR-
correction test.

Mapping ASV to prokaryotic database with complete 
genome
The 16 s rRNA sequences corresponding to the healthy/
disease biomarkers were retrieved from the combined 
dataset. All the retrieved sequences were mapped to the 
complete bacterial genomes downloaded from NCBI 
RefSeq (23,764 complete genomes as on November 
11, 2021). We carried out standalone BLASTP with an 
e-value cut off 10–6 and with a percent identity and query 
coverage of 97%. Species with hits matching the above 
criteria were selected for the downstream analysis such 
as for building metabolic models.

Reconstruction of genome‑scale metabolic model
The protein sequence that mapped to their closed ref-
erence genome were retrieved based on percent iden-
tity and query coverage [Additional file  1: Table  S3]. A 
genome scale metabolic model was built separately for 
each of the species using CarveMe v1.2.2 [35]. Using top-
down approach CarveMe constructs organism specific 
models after removal of reactions and metabolites that 
are absent in the target organism. A total of 123 individual 
models were reconstructed gap-filled, grown in M9 mini-
mal media with glucose as the carbon source, assigned 
with biomass components specific to Gram-positive and 
Gram-negative bacteria [Additional file 1: Table S4]. The 
individual species assigned as disease biomarker were 
then merged pairwise with all possible pairs with the spe-
cies assigned as healthy biomarker resulting in 4416 pairs.
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Simulation of GSM using flux balance and flux variability 
analysis
CobraPy [16], a constraint-based modelling package in 
python with cplex solver for solving the optimization 
problems was used for performing simulations. The 
in silico growth prediction of individual and pairwise 
models were performed with highly reliable flux bal-
ance analysis (FBA). FBA is a constraint-based model-
ling method that estimates the fluxes of reactions in a 
metabolic network to capture the metabolic capabili-
ties of an organism [40]. FBA solves linear system of 
equations derived from the stoichiometric matrix Sm×r , 
expressed mathematically as follows:

where m is the number of metabolites and r is the num-
ber of reactions, v represents the flux through all reac-
tions, Lj and Uj are the lower and upper bound flux of 
each reaction j. For the in silico growth prediction, 17 dif-
ferent carbon sources [Additional file  1: Table  S5] were 
used and allowed the uptake of single carbon source at a 
time with maximization of biomass as the objective func-
tion. The in silico growth simulation on different nutri-
ent environments were performed by setting the lower 
bound of each of the carbon sources to -10 mmol/gDw/h 
and setting the lower bound of other carbon sources to 0. 
The lower bounds of amino acid exchange reactions and 
other essential components was set as -1 mmol/gDW/h 
[Additional file 1: Table S4]. The in silico growth rate of 
single and paired species are compared and observed for 
a 10 percent increase or decrease in growth of healthy/
disease species in the presence of another [24].

Flux variability analysis (FVA) was used to predict 
the acetate production/consumption in the community 
under diverse nutrient environments. FVA computes 
the maximum and minimum flux range through each 
reaction with biomass reaction constrained to the max-
imum growth rate achieved [38].

where v represents the maximum and minimum flux 
through each reaction j. Since acetate is considered as 
an indicator which suppresses the growth of pathogenic 
species, we conducted FVA on acetate reaction. In a pair-
wise community, acetate was considered secreted by an 
organism, if the flux of acetate exchange reaction was 

Objective :

Max νbio
s.t S.ν = 0

Lj < νj < Uj

Maximize,Minimize vj
S.t. S.v = 0

vmin
j ≤ v ≥ vmax

j

positive, and consumed by the organism, if the flux of 
acetate exchange reaction was negative.

Results
The six studies included data spanning 259 datasets 
(117 Healthy & 142 Disease). The inclusion criteria 
for this meta-analysis were amplicon sequence-based 
studies on P. vannamei in healthy and disease states. 
For identifying a potential taxonomic biomarker, a sin-
gle study may not be sufficient; hence we performed 
a meta-analysis that could serve as a representative 
and biologically meaningful biomarker. Additionally, 
we conducted constraint-based metabolic modelling 
approach to capture the metabolic capabilities of tax-
onomic biomarkers under different nutritional envi-
ronments and inferred the interspecies interactions. 
Figure  1 depicts the workflow that outlines the key 
steps followed in this study.

Fig. 1  Outline of the study integrating meta-analysis and 
genome-scale metabolic modelling for identifying potential 
microbial species
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Diversity analysis for individual datasets
The data from each study were systematically processed 
and reanalyzed using the QIIME2 pipeline. Diversity 
measures, such as alpha and beta indices, were calculated 
based on taxonomic profiles obtained from each study. 
Based on the Shannon index [Additional file 2: Figure S1], 
healthy microbial datasets exhibited significantly higher 
richness and evenness (Kruskal–Wallis test, p < 0.05, four 
out of six studies) than disease microbial datasets [Addi-
tional file 1: Table S6]. Similarly, the beta diversity index 
unweighted unifrac distance tested with PERMANOVA 
revealed a significant difference (p < 0.05, four out of six 
studies) between the healthy and disease datasets [Addi-
tional file  1: Table  S6]. We also assessed beta diversity 
metrics based on Bray–Curtis distance and visualized 
with NMDS plot [Additional file  2: Figure S2]. Briefly, 
four out of six studies demonstrated typical patterns of 
richness and diversity among the healthy and disease 
dataset. The phylum-level taxonomic profile exhibited a 
high abundance of Proteobacteria in five studies, while 
Firmicutes was abundant in one study.

Diversity analysis for combined datasets
The datasets from six individual studies were combined 
and datasets with reads count below 2000 was removed, 
resulting in 241 datasets (one study was excluded due to 
low read counts). We computed alpha and beta diver-
sity measures to investigate similarities within and 

between datasets. The alpha diversity metrics such as 
Shannon, Simpson, Chao1, ACE, and observed features 
computed for the combined dataset were presented in 
Additional file 1: Table S7. Shannon and Simpson index 
values revealed no significant difference (Kruskal–Wal-
lis test, p > 0.05) between the healthy and disease states. 
With beta diversity metrics namely unweighted unifrac 
distance and Bray–Curtis distance, consistent results 
were observed, revealing a significant difference (PER-
MANOVA test, p < 0.05) between healthy and disease 
states. The Bray–Curtis distance which considered both 
species presence/absence and abundance was visualized 
through an NMDS plot [Additional file 2: Figure S3].

Microbial abundance at phylum and genus level in healthy 
and disease states
We examined the top five dominant phylum and gen-
era by computing the mean relative abundance across 
healthy and disease datasets. A phylum or genera with 
a mean abundance of ≥ 0.01 was considered abundant. 
At the phylum level, Proteobacteria (62% in healthy vs. 
72% in disease state) and Firmicutes (30% in healthy vs. 
20% in disease state) are the major representatives fol-
lowed by Bacteroidota, Actinobacteriota, and Cyanobac-
teria [Additional file 2: Figure S4] in both the states based 
on the mean relative abundance. Four genera namely, 
Vibrio, Candidatus Bacilloplasma, Photobacterium, and 
Shewanella dominated both healthy and disease states in 

Fig. 2  Boxplot depicting the mean relative abundance of top 10 genus-level taxa in healthy and disease states
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descending order of magnitude. However, the mean rela-
tive abundance of these genera was marginally different 
in both states, as shown in Fig. 2. Interestingly, the genus 
Alteromonas appeared only in the disease state, and the 
genus Acinetobacter, on the other hand, was more abun-
dant in the healthy state. The disease state, however, 
showed a lower abundance of Acinetobacter.

Identifying the core microbiome
We then analyzed the core microbiome (refers to a taxon 
that must appear across dataset) to identify the key gen-
era associated with healthy and disease states. The genus 
Vibrio of Proteobacteria phylum was universally preva-
lent across healthy and disease state. However, owing to 
heterogeneous nature of the dataset, our study consid-
ered the microbes that are present in at least 50% of the 
dataset while looking across the healthy and disease state. 
Among the phyla, Firmicutes, Proteobacteria, Actinobac-
teriota, Bacteroidota, Cyanobacteria, and Planctomy-
cetota were highly abundant in both the states, making 
them core phyla in P. vannamei regardless of the health 
state of the host. The core microbiome analysis at the 
genus level identified 24 and 19 genera at a prevalence of 
50% in the healthy and disease state, respectively. Among 
these genera, 17 were common in both the states and 
comprise the core genera associated with P. vannamei 
irrespective of the health state of the host. Out of the 43 
core genera present in both states, seven (Gemmobacter, 
Chryseomicrobium, Stenotrophomonas, LD29, Sva0081_
sediment_group, PLTA13, SZB30) and two (PeM15, Pseu-
doalteromonas) genera were prevalent exclusively in the 
healthy and disease state, respectively [Additional file 2: 
Figure S5]. Interestingly, the genus Acinetobacter was 
present at a sample prevalence of 80% in healthy state, 
while 65% in disease state.

Microbial biomarker detection in healthy and disease 
states
LEfSe analysis was carried out on the combined data-
set to estimate whether there was a significant differ-
ence in the relative abundance between the healthy/
disease state. LEfSe identified 32 beneficial and 73 dis-
ease genera [Additional file  1: Table  S8] as prospective 
biomarkers with an effect size greater than two and a 
p-value < 0.05 [Additional file  2: Figure S6]. The top five 
healthy biomarker belonged to the phylum Firmicutes, 
and Proteobacterium, including genus, Candidatus 
Bacilloplasma, Acinetobacter, Exiguobacterium, Lac-
tobacillus, and Shimia. On the other hand, the top five 
disease biomarker belonged to phylum Proteobacteria 
including genera Alteromonas, Photobacterium, Pseu-
doalteromonas, Halomonas, and Marinomonas. The 
mean relative abundance corresponding to the dominant 

taxonomic biomarkers in the healthy and disease state is 
depicted in Fig. 3. Further, it was interesting to note that 
most of the disease biomarkers identified belonged to the 
phylum Proteobacteria.

Microbial biomarker co‑occurrence
The significantly co-occurring microbial biomarkers 
essential in maintaining host health were determined 
using HiOrCo. The HiOrCo algorithm computed the 
co-occurring communities found together in at least ten 
datasets more often than expected by chance in healthy 
[Additional file  1: Table  S9a] and disease state [Addi-
tional file 1: Table S9b]. Overall, the healthy biomarkers 
were co-occurring to a consortia size of 15 (genera up to 
15). The genera, namely PLTA13 (identified as Thiohalo-
bacter thiocyanaticus strain Hrh1 based on BLAST simi-
larity analysis—92%), Chryseomicrobium, Lactobacillus, 
Bifidobacterium, Phormidesmis, Rubrobacter, Lutibacter, 
Exiguobacterium, Legionella, and Acinetobacter were 
co-occurring in a consortium of maximum size and can 
be considered as the representative consortium indica-
tive of health. Whereas, the disease-specific biomarkers 
co-occur in up to 26 genera. The genera, namely Marino-
monas, Pseudoalteromonas Candidatus, Aestuariibacter, 
Alcanivorax, Seonamhaeicola, PeM15 (identified as Geo-
dermatophilus ruber strain DSM 45317 based on BLAST 
similarity analysis—94%), and CL500-3 (identified as 
Mucisphaera calidilacus strain Pan265 based on BLAST 
similarity analysis -88%) were some dominant co-occur-
ring disease biomarker communities, which should be 
steered effectively to control the pathogenic state of the 
host.

Pairwise interactions between the taxonomic biomarkers
The 16 s rRNA sequences corresponding to the healthy/
disease biomarkers identified with LeFSe were mapped 
to their closest reference genomes (prokaryotic database 
of bacterial species with a complete genome availability 
was created). Mapping with BLASTP based on percent 
identity and query coverage (97% similarity) retrieved 64 
healthy (corresponding to 26 different genera) and 69 dis-
ease species (corresponding to 19 different genera).

A genome-scale metabolic model was built with 
CarveMe for the retrieved species and subjected to in 
silico phenotypic growth predictions on the single and 
pairwise (4416 pairs) species in a minimal media sup-
plemented with 17 different carbon sources. Each of the 
paired models was analysed for an increase in growth rate 
for the healthy species (10% increase in in silico growth 
compared to the single) with a concomitant growth limit 
for the disease species (10% decrease in silico growth rate 
compared to single) in each of the environments.
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The healthy 69 species exhibited simulated growth 
capability in all the nutrient environments used in this 
study. On the other hand, the disease species exhibited 
less growth preference in sucrose, mannitol, and fructose 
environment. Further, out of the 4416 paired communi-
ties generated, only 794 pairs showed significant growth 
change and growth limitation on the healthy and dis-
ease species, respectively, in at least one of the nutrient 
environments. A total of 47 healthy species comprising 
12 different genera form part of this 794 pairwise com-
munities that limited the disease counterpart. These 47 
healthy species limited the growth of 63 out of the 64 dis-
ease species except the strain Synechococcus CBW 1004. 
These growth limitations were majorly (711 paired com-
munities) observed under sucrose environment, followed 
by trehalose (103 pairwise communities) and maltose 
(75 pairwise communities). Moreover, 29 out of the 794 
pairwise microbial biomarker communities limited the 
growth of disease species in at least five of the nutrient 
environments [Fig.  4]. The five healthy species, namely 

Acinetobacter sp WCHA55, Acinetobacter tandoii SE63, 
Bifidobacterium pseudolongum 49 D 6, Brevundimonas 
pondensis LVF1, and Lutibacter profundi LP1 form part 
of 29 communities which limited the growth of 22 dis-
ease species in at least five of the nutrient environments. 
Among the five strains, Lutibacter profundi LP1 limited 
the growth of maximum number of disease species (20 
different species). Altogether, these results short-listed 
four genera indigenous in P. vannamei, limiting the 
growth of disease species that naturally resides on the 
host.

Cross‑feeding of acetate in the pairwise communities
Flux variability analysis performed on the pairwise com-
munities indicated that the production/consumption of 
acetate depends on the species with which it was paired 
and the nutrient environments.

The single and paired healthy species, namely, Aci-
netobacter sp WCHA55, Acinetobacter tandoii SE63, 
Brevundimonas pondensis LVF1, and Lutibacter profundi 

Fig. 3  Plot depicting the mean relative abundance of dominant biomarker at genus level in healthy and disease state. Size of the circle represent 
the mean relative abundance
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LP1 produced acetate under all nutrient environments. 
In the case of disease species, Marinobacter salarius 
HL27082 lost the ability to produce acetate upon paired 
with Acinetobacter tandoii SE63 and with Acinetobacter 
sp WCHA55 under all environments. While upon pair-
ing with Lutibacter profundi LP1, Marinobacter salaries 
HL2708_2 could produce acetate in all the nutrient envi-
ronments. Among the nutrient environments, glucose, 
fructose, and mannitol were associated with the produc-
tion of acetate (as the acetate exchange reaction carry a 
positive flux) by the healthy species (Fig. 5). On the other 
hand, the disease species were consumers of acetate (as 
the acetate exchange reaction carry a negative flux) under 
these environments. Conversely, disease species pro-
duced acetate under maltotriose, amylose, and starch 
environments (as the acetate exchange reaction carry a 
positive flux).

Discussion
Naturally existing microbial communities perform sev-
eral vital tasks, such as degradation of organic matter, 
recycling the nutrients, and controlling the development 
of microbial infections [5]. Hence, a fundamental under-
standing of the health and disease-associated microbial 
communities for maintaining host health is required. 
Numerous 16S amplicon sequence-based studies have 
attempted to unravel the role of microbes, but findings 
drawn from one study may not decipher the full spec-
trum of microbes responsible for health/disease states. 
Hence, analyzing multiple studies in a meta-analysis has 
the potential to make inferences about common features 

associated with host health across different habitats. 
Although, several works were reported on human health 
perspective, very few studies are conducted on aquatic 
species, but did not extend to understand the meta-
bolic interactions among them [9, 56]). Identifying taxo-
nomic biomarkers in aquaculture is not new,however, 
most research focuses on single-study-based taxonomic 
biomarkers [27, 44], implying the need for a much 
comprehensive study. In this context, we performed a 
meta-analysis to identify the core taxonomic biomark-
ers that drive differences in the health/disease states in 
P. vannamei and determine the inter-species interactions 
exhibited by the microbial biomarkers under different 
nutrient environments. As an augmentation to the sus-
tainable disease management, this study aims to identify 
beneficial indigenous species in P. vannamei essential 
for maintaining a good healthy state and controlling the 
growth of pathogenic species.

The study identified Acinetobacter as one of the preva-
lent and dominant genera in the healthy state. Acineto-
bacter was previously detected and reported in healthy 
shrimp to aid in suppressing harmful bacteria [18]. Fur-
thermore, the leading genera revealed in this study’s 
healthy state, namely Acinetobacter and Candidatus 
Bacilloplasma, were reported to act as a central hub 
connecting the significant bacterial population in the 
network of healthy shrimp hepatopancreas [51]. Fur-
ther, Exiguobacterium genera in the healthy state have 
improved growth and survival in P. vannamei and pro-
vided probiotic advantages [7, 11]. Lactobacillus mem-
bers identified in this study are known probiotics and 

Fig. 4  Heatmap depicting the growth suppression of disease species in a pairwise community. The dark blue represents the environment in which 
healthy species growth rate is 10% increase and growth rate of disease species is 10% decreased in pairwise community model
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have been extensively studied for their abilities to main-
tain animal health [50]. Shimia sp., another genus iden-
tified in healthy state in this study, has been reported to 
produce beneficial metabolites and degrade toxins [14]. 
Despite the fact that Vibrio was found in both states sup-
porting previous studies [12, 22], it is considered floras 
opportunistic bacteria and cause disease when animal is 
under stress. Overall, the healthy genera captured in our 
study are comparable with earlier studies, confirming the 
correctness of our approach.

We also found several notable biomarkers in the dis-
ease state, including Alteromonas, Photobacterium, 
Marinomonas and Pseudoalteromonas which have previ-
ously been reported to cause WFD [1, 2, 26, 59]. Interest-
ingly, these WFD related biomarkers are also associated 
with AHPND [8], a disease included in this study. In sum, 
the disease taxonomic biomarkers identified in this study 

correlate with previous studies, indicating their potential 
value in diagnosing disease onset.

Identifying the core microbes in the healthy and dis-
ease state reveals the essential microbes for multiple 
facets of microbiome-associated host functions. Several 
meta-analysis studies identified the core microbiome 
based on species presence in at least 10% of the samples 
[41]; however, we used a sample prevalence of 50% in our 
study. Chryseomicrobium and Stenotrophomonas, the 
healthy core genera identified in this study, are known 
for generating bioactive (anti-microbial and anti-enzyme) 
chemicals and, further, the glucosidase inhibitors pro-
duced by these genera give an additional advantage to 
survive in a competitive environment [42]. Gemmobac-
ter, another core microbe identified in this study, was also 
reported to be present in the healthy conditions, though 
the functional status of this organism is not discussed 

Fig. 5  Pie chart depicting the production (denoted in blue) and consumption (denoted in red) of acetate under different nutrient environments in 
the shortlisted microbial communities. (Name corresponding to the pairwise microbial communities are provided in Additional file 1: Table S10)
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[27]. Overall, the core genera catalogued in this study are 
associated with specific functional roles contributing to 
the growth of P. vannamei.

Microbes naturally coexist as a community rather than 
as individuals [10]. Hence, dysbiosis in the healthy con-
sortia can favor the growth of opportunistic pathogens. 
Despite this, we lack a comprehensive understanding 
of the microbial communities that coexist and cooper-
ate to help prevent bacterial infections. In our study, we 
cataloged the healthy and disease taxonomic biomarker, 
which frequently co-occurs and is critical for developing 
shrimp’s particular facets. The knowledge of co-existing 
healthy genera catalogued in this study [Additional file 1: 
Table S9a] might be potentially applied for the manage-
ment of aquaculture environment towards sustainable 
disease control.

Despite the advantages of amplicon-based sequencing, 
which includes microbial profiling and biomarker deter-
mination, it does not highlight the metabolic interactions 
[20]. With the vast number of genome sequences avail-
able, a whole genome-based approach was imperative to 
explore the metabolic interactions between healthy and 
disease states. This enabled the possibility of integrating 
genome-based metabolic modelling with an amplicon 
sequencing approach. Such genome-based approach pro-
vide insights into the taxonomic and functional interac-
tions among the microbial communities [45, 53]. Hence, 
we further extended and enhanced our understanding of 
the identified taxonomic biomarkers by simulating the 
growth of biomarker species in diverse nutrient environ-
ments. Simulation through FBA allows the identification 
of healthy taxonomic biomarkers, which limit the growth 
of disease biomarkers. The constraint-based approach 
revealed five species: Acinetobacter sp WCHA55, Acine-
tobacter tandoii SE63, Bifidobacterium pseudolongum 49 
D 6, Brevundimonas pondensis LVF1, and Lutibacter pro-
fundi LP1 limited the growth of the pathogen in a higher 
number of environments. The healthy biomarker spe-
cies shortlisted with the metabolic modelling approach 
help steer the proliferation of pathogenic microorgan-
isms and thereby control disease progression. The spe-
cies from the genus Acinetobacter have been previously 
reported as a potential probiotic and believed to be safe 
for human health and could help replace antibiotics by 
controlling the pathogenic microorganisms and improve 
water quality in aquaculture ponds [18]. Similarly, the 
genera Bifidobacteria is another widely used probiotic in 
humans [23] and have also been reported to be present 
in healthy shrimp. Another shortlisted species, Brevundi-
monas pondensis, appears in various habitats, including 
aquatic environments [19], and has also been reported 
to be used for water pollutant treatment [34]. It should 

be interesting to observe the role of Lutibacter profundi 
LP1, which limited the growth of several disease-specific 
taxonomic markers used in our study. Belonging to the 
family Flavobacteriaceae, the members of this family are 
widely used in food and dairy products and are also asso-
ciated with the degradation of organic matter in marine, 
seawater, and freshwater [52]. In summary, genome-scale 
simulation identified potential and novel candidate spe-
cies that can be utilized as supplements in P. vannamei 
farming.

Analyzing the flux variability of pairwise communities 
revealed the role of Acinetobacter sp. in acetate produc-
tion. The ability of Acinetobacter to produce acetate in 
all pairwise communities might explain its potential role 
as a health indicator. It is well established that organic 
acids are used in food preservation, as feed additives, 
and to control pathogens [39]. Although many beneficial 
or probiotic species are used in aquaculture, the lack of 
consistency and performance under different conditions 
is a major concern. Since microbial species interactions 
vary in different nutrient environments, it is crucial to 
capture the favorable environment that controls disease 
species’ growth. As a result, our findings add value by 
demonstrating that sucrose facilitates parasitic interac-
tions (i.e., limits disease growth), which is consistent with 
previous research that highlighted the role of sucrose and 
beneficial species in improved water quality, P. vannamei 
growth, and microbial composition.

Conclusion
For the first time, 16S amplicon sequence data and 
genome-based metabolic modelling were combined for 
aquaculture application to find native biomarkers that 
may be best utilized to build probiotic formulations 
that leverage beneficial microorganisms for P. vannamei 
farming while limiting pathogen growth. Amplicon 
sequence-based analysis combined with metabolic mod-
eling provided insights regarding metabolic interactions 
and the impact of nutrient environments, and finally, 
shortlist potential beneficial species to expedite experi-
ments. We have employed this combination strategy for 
probiotic application in aquaculture, which was applied 
previously to human gut microbiota [25, 37, 60]. The key 
genera identified in this study could be used to prepare a 
formulation to replenish the healthy microbial consortia. 
In order to foster healthy shrimp farming, these essential 
genera can reduce the severity of disease conditions by 
removing opportunistic pathogenic bacteria and enhanc-
ing residential beneficial associations. Moreover, even 
though shotgun metagenomics can give a better taxo-
nomic resolution and functional profile, we restricted our 
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analysis to the amplicon dataset due to the limited avail-
ability of shotgun data with P. vannamei. Nevertheless, 
we can further enhance our understanding with curated 
genome scale metabolic models, followed by an experi-
mental validation for the direct application of beneficial 
microbes in aquaculture farming.
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