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Abstract
In this paper, we investigate the existence and uniqueness of fractional differential
equations (FDEs) by using the fixed-point theory (FPT). We discuss also the
Ulam–Hyers–Rassias (UHR) stability of some generalized FDEs according to some
classical mathematical techniques and the FPT. Finally, two illustrative examples are
presented to show the validity of our results.
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1 Introduction
Fractional calculus (FC) has proved to be an efficient tool in the modeling and analysis of
many diseases like, e.g., H1N1, COVID-19, and Ebola. This is due to the fact that fractional
derivatives can describe the memory and heredity of many processes. Analytical solutions
are mainly not reachable for such models (see [1–6]).

Ulam–Hyers stability (UHS) (also known as Ulam stability) for different kind of equa-
tions (see [7–10]) plays an essential role as it introduces analytical approximate solutions
for many problems where the exact solutions are not reachable. It should be noted that
stability is an important issue. This is because if a system is stable in the UHS or UHR
sense, then essential properties hold around the exact solution. This can be seen in biol-
ogy, optimization, and economics (e.g., in particular when an exact solution is quite diffi-
cult to obtain). UHS appeared after Ulam’s famous talk at a conference in 1940 (see [7]).
Currently, it has become a research trend (see [11]) in many directions.

During the last sixty years, the stability subject has flourished (see [12–21]). In particular,
the stability of differential equations (DEs) has attracted the interest of many mathemati-
cians. In 1993, Obloza seems to be the first person who investigated the Ulam stability of
DEs (see [22]). In [16], the authors employed the FPT to study the stability of some DEs
with delay.
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Many authors have studied the UHS for several types of FDEs (see [23–29]). In this sense,
our paper presents the existence, uniqueness, and the UHR for a new class of FDEs and
generalizes the work in [23].

The article is organized as following. Section 2 recalls some preliminaries, Sect. 3
presents the UHR stability. In Sect. 4, we present a couple of examples to illustrate our
results, and Sect. 5 concludes our work.

2 Preliminaries
Here, we recall some basic notions and some useful results. Throughout the article, we
denote real numbers by R, and the complex numbers by C. We also used the Mittag–
Leffler function and generalized metric (see [3, 24, 30]). The theorem of Diaz and Margolis
see [31] is the main tool in our analysis.

The objective of the current work is to investigate the stability of the solution of the
following generalized FDE

dx(�) = f1(�, x) d� +
n∑

i=2

fi(�, x)(d�)θi , � ∈ [a, a + b], θi ∈ [0, 1], (2.1)

with x(a) = x0, where a ∈R, b > 0 and x0 ∈R.

Definition 1 The function x : [a, a + b] → R is named a mild solution of (2.1) if it is a
solution of

x(�) = x0 +
∫ �

a
f1

(
ζ , x(ζ )

)
dζ +

n∑

i=2

θi

∫ �

a
(� – ζ )θi–1fi

(
ζ , x(ζ )

)
dζ ,

� ∈ [a, a + b]. (2.2)

Definition 2 Equation (2.2) is UHR stable, if there is a constant C > 0 such that for each
function y satisfying

∣∣∣∣∣y(�) – y(a) –
∫ �

a
f1

(
ζ , y(ζ )

)
dζ –

n∑

i=2

θi

∫ �

a
(� – ζ )θi–1fi

(
ζ , y(ζ )

)
dζ

∣∣∣∣∣ ≤ εψ(�), (2.3)

∀ � ∈ [a, a + b], there is a solution y∗(�) of (2.2):

∣∣y(�) – y∗(�)
∣∣ ≤ Cεψ(�), ∀� ∈ [a, a + b].

Definition 3 ([3]) The Mittag–Leffler function is defined by

Eκ (y) =
+∞∑

m=0

ym

�(mκ + 1)
,

where κ > 0, y ∈C.

3 Stability results
Define E := C([a, a + b],R). We start with the UHR stability of (2.2).
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Theorem 1 Let Lfi > 0, i ∈ {1, 2, . . . , n} be constants. Assume that fi : [a, a + b] × R → R,
satisfies

∣∣fi(�,σ1) – fi(�,σ2)
∣∣ ≤ Lfi |σ1 – σ2|, ∀� ∈ [a, a + b],σ1,σ2 ∈R, i ∈ {1, 2, . . . , n}. (3.1)

If a continuous function y : [a, a + b] →R satisfies

∣∣∣∣∣y(�) – y(a) –
∫ �

a
f1

(
η, y(η)

)
dη –

n∑

i=2

θi

∫ �

a
(� – η)θi–1fi

(
η, y(η)

)
dη

∣∣∣∣∣ ≤ εψ(�),

∀� ∈ [a, a + b], (3.2)

where ψ : [a, a + b] → R+ is a nondecreasing continuous function, then a unique solution
y∗ of (2.2) exists such that

∣∣y(�) – y∗(�)
∣∣ ≤ e(Lf1 +δ)T ∏n

i=2 Eθi ((Lfi + δ)Tθi )
1 – c

εψ(�), ∀� ∈ [a, a + b],

where c = ( Lf1
Lf1 +δ

+
∑n

i=2
Lfi

Lfi +δ
�(θi +1)) < 1, δ > 0, and �(·) is the well-known Gamma function.

Proof First, we define the following metric on E

d(x1, x2) := inf

{
c ≥ 0 :

|x1(�) – x2(�)|
ϕ(�)

≤ cψ(�),∀� ∈ [a, a + b]
}

, (3.3)

where ϕ(�) := e(Lf1 +δ)(�–a) × ∏n
i=2 Eθi ((Lfi + δ)(� – a)θi ). The space (E, d) is a complete gen-

eralized metric space.
Let us consider the operator A : E → E:

(Au)(�) := y(a) +
∫ �

a
f1

(
ζ , u(ζ )

)
dζ +

n∑

i=2

θi

∫ �

a
(� – ζ )θi–1fi

(
ζ , u(ζ )

)
dζ ,

∀t ∈ [a, a + b].

Since Au ∈ E, for every u ∈ E and

|(Au0)(�) – u0(�)|
ϕ(�)

< +∞, ∀u0 ∈ E,� ∈ [a, a + b],

it is clear that d(Au0, u0) < ∞. Moreover, since d(u0, u) < ∞, ∀u ∈ E, then {u ∈ E : d(u0, u) <
∞} = E.

In addition, for any x1, x2 ∈ E we obtain

∣∣(Ax1)(�) – (Ax2)(�)
∣∣

≤
∣∣∣∣
∫ �

a

[
f1

(
ζ , x1(ζ )

)
– f1(ζ , x2(ζ )

]
dζ

∣∣∣∣

+

∣∣∣∣∣

n∑

i=2

θi

∫ �

a
(� – ζ )θi–1[fi

(
ζ , x1(ζ )

)
– fi(ζ , x2(ζ )

]
dζ

∣∣∣∣∣. (3.4)
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Then, we derive that

∣∣(Ax1)(�) – (Ax2)(�)
∣∣

≤
∫ �

a

∣∣f1
(
ζ , x1(ζ )

)
– f1

(
ζ , x2(ζ )

)∣∣dζ

+
n∑

i=2

θi

∫ �

a
(� – ζ )θi–1∣∣fi

(
ζ , x1(ζ )

)
– fi

(
ζ , x2(ζ )

)∣∣dζ

≤ Lf1

∫ �

a

∣∣x1(ζ ) – x2(ζ )
∣∣dζ +

n∑

i=2

θiLfi

∫ �

a
(� – ζ )θi–1∣∣x1(ζ ) – x2(ζ )

∣∣dζ

≤ Lf1

∫ �

a

|x1(ζ ) – x2(ζ )|e(Lf1 +δ)(ζ–a) ∏n
i=2 Eθi ((Lfi + δ)(ζ – a)θi ) dζ

e(Lf1 +δ)(ζ–a) ∏n
i=2 Eθi ((Lfi + δ)(ζ – a)θi )

+
n∑

i=2

θiLfi

∫ �

a

(� – ζ )θi–1|x1(ζ ) – x2(ζ )|e(Lf1 +δ)(ζ–a) ∏n
i=2 Eθi ((Lfi + δ)(ζ – a)θi )

e(Lf1 +δ)(ζ–a) ∏n
i=2 Eθi ((Lfi + δ)(ζ – a)θi )

dζ

≤ d(x1, x2)

[
Lf1

∫ �

a
ψ(ζ )e(Lf1 +δ)(ζ–a) dζ

n∏

i=2

Eθi

(
(Lfi + δ)(� – a)θi

)

+ e(Lf1 +δ)(�–a)
n∑

i=2

θiLfi

∫ �

a
ψ(ζ )(� – ζ )θi–1

n∏

i=2

Eθi

(
(Lfi + δ)(ζ – a)θi

)
dζ

]
, (3.5)

which can easily be rewritten as

∣∣(Ax1)(�) – (Ax2)(�)
∣∣ ≤ d(x1, x2)

[
Lf1ψ(�)ϕ(�)

Lf1 + δ
+

∑n
i=2 θiLfi�(θi)

Lfi + δ
ψ(�)ϕ(�)

]

≤
(

Lf1
Lf1 + δ

+
n∑

i=2

Lfi�(θi + 1)
Lfi + δ

)
d(x1, x2)ϕ(�)ψ(�). (3.6)

Therefore,

d(Ax1,Ax2) ≤ cd(x1, x2),

which proves that A is strictly contractive. From (3.6) it follows that

d(y,Ay) ≤ ε.

Now, as a consequence of the Diaz and Margolis Theorem (see [31]), there exists a so-
lution y∗:

d
(
y∗, y

) ≤ 1
1 – c

ε

and then

∣∣y∗(�) – y(�)
∣∣ ≤ ε

1 – c
ϕ(�)ψ(�),
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for all t ∈ [a, a + b], which implies that

∣∣y∗(�) – y(�)
∣∣ ≤ e(Lf1 +δ)(�–a) ∏n

i=2 Eθi ((Lfi + δ)(� – a)θi )
1 – c

εψ(�),

for all � ∈ [a, a + b]. �

Remark 1 It should be noted that when f1 = 0, fi = 0, i ≥ 3 we easily obtain the results in
[23] and when fi = 0, i ≥ 2 we obtain the results in [32].

The next theorem is a direct consequence of Theorem 1 (Ulam stability of (2.2)).

Theorem 2 Let Lfi > 0, i ∈ {1, 2, . . . , n} be constants. Assume that fi : [a, a + b] × R → R,
satisfies

∣∣fi(�,σ1) – fi(�,σ2)
∣∣ ≤ Lfi |σ1 – σ2|, ∀� ∈ [a, a + b],σ1,σ2 ∈R, i ∈ {1, 2, . . . , n}. (3.7)

If a continuous function y : [a, a + b] →R satisfies
∣∣∣∣∣y(�) – y(a) –

∫ �

a
f1

(
ζ , y(ζ )

)
dζ –

n∑

i=2

θi

∫ �

a
(� – ζ )θi–1fi

(
ζ , y(ζ )

)
dζ

∣∣∣∣∣ ≤ ε,

∀� ∈ [a, a + b], (3.8)

then a unique solution y∗ of (2.2) exists satisfying

∣∣y(�) – y∗(�)
∣∣ ≤ e(Lf1 +δ)T ∏n

i=2 Eθi ((Lfi + δ)Tθi )
1 – c

ε, ∀� ∈ [a, a + b],

where c = ( Lf1
Lf1 +δ

+
∑n

i=2
Lfi

Lfi +δ
�(θi +1)) < 1, δ > 0, and �(·) is the well-known Gamma function.

4 Examples
A couple of examples are used to show the validity of Theorem 1 and Theorem 2.

Example 1 Let (2.1) for θ = 0.5, a = 0, b = 2, f1(α,β) = α2 sin(β), f2(α,β) = α cos(β) and
fi = 0, i ∈ {3, 4, . . . , n}.

We have

∣∣α2 sin(β1) – α2 sin(β2)
∣∣ ≤ 4|β1 – β2|, ∀α ∈ [0, 2],β1,β2 ∈R,

and

∣∣α cos(β1) – α cos(β2)
∣∣ ≤ 2|β1 – β2|, ∀α ∈ [0, 2],β1,β2 ∈R.

Then, Lf1 = 4 and Lf2 = 2.
Suppose that y satisfies

∣∣∣∣y(�) – y(0) –
∫ �

0
s2 sin

(
y(s)

)
ds – 0.5

∫ �

0
(� – s)–0.5s cos

(
y(s)

)
ds

∣∣∣∣ ≤ �, (4.1)

for all � ∈ [0, 2].
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Here, ε = 1 and ψ(�) = �. In view of Theorem 1 there is a continuous function y∗,

y∗(�) = y(0) +
∫ �

0
s2 sin

(
y∗(s)

)
ds + 0.5

∫ �

0
(� – s)–0.5s cos

(
y∗(s)

)
ds,

such that

∣∣y(�) – y∗(�)
∣∣ ≤ e16

E0.5(6
√

2)
1 – ( 1

2 + 1
3�(1.5))

�, ∀� ∈ [0, 2].

Example 2 Let equation (2.1) for θ = 0.6, a = 0, b = 5, f1(α,β) = α cos(β), f2(α,β) = sin(β)
and fi = 0, i ∈ {3, 4, . . . , n}.

We have

∣∣α cos(β1) – α cos(β2)
∣∣ ≤ 5|β1 – β2|, ∀α ∈ [0, 5],β1,β2 ∈R,

and

∣∣sin(β1) – sin(β2)
∣∣ ≤ |β1 – β2|, ∀α ∈ [0, 5],β1,β2 ∈R.

Then, Lf1 = 5 and Lf2 = 1.
Suppose that y satisfies

∣∣∣∣y(�) – y(0) –
∫ �

0
s cos

(
y(s)

)
ds – 0.6

∫ �

0
(� – s)–0.4 sin

(
y(s)

)
ds

∣∣∣∣ ≤ 0.1, (4.2)

for all � ∈ [0, 5].
Here, ε = 0.1. Employing Theorem 2 there is a continuous function y∗,

y∗(�) = y(0) +
∫ �

0
s cos

(
y∗(s)

)
ds + 0.6

∫ �

0
(� – s)–0.4 sin

(
y∗(s)

)
ds,

such that

∣∣y(�) – y∗(�)
∣∣ ≤ e50

E0.6(6 × 50.6)
1 – ( 1

2 + 1
6�(1.6))

0.1, ∀� ∈ [0, 5].

5 Conclusion
In this paper, we utilized some results of Banach FPT to study the existence, uniqueness,
and the UHR stability of some generalized FDEs. Finally, we have presented two examples
to illustrate our results. In future work, we intend to extend our results to the stochastic
case.
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