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The present paper reviews recent DL approaches focused on cardiac SPECT imaging.
Extensive research identified fifty-five related studies, which are discussed. The review
distinguishes between major application domains, including cardiovascular disease
diagnosis, SPECT attenuation correction, image denoising, full-count image estima-
tion, and image reconstruction. In addition, major findings and dominant techniques
employed for the mentioned task are revealed. Current limitations of DL approaches
and future research directions are discussed.
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Introduction

Nuclear Medicine is a modern medicine speciality characterized by the use of small
amounts of radioactive substances or radiodiagnostic reagents for diagnostic and
therapeutic purposes [1]. The most common nuclear medicine application is the
scintigraphy diagnostic test. Several imaging modalities belong to the scope of medi-
cal imaging in nuclear medicine, such as positron emission tomography (PET) and
single-photon emission computerized tomography (SPECT). Radioisotope imaging
of myocardial perfusion is a set of imaging techniques for assessing perfusion and
myocardial function, both at rest and during physical or pharmacological exercise, to
diagnose and manage patients with known or potential coronary heart disease. It is
achieved by administering a radioactive marker (radioisotope), usually intravenously,
and using a special camera system (y-camera), usually SPECT, or PET, which detects
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the emission photons [1]. Images of myocardial perfusion are taken at rest and after
fatigue/loading, which using specific software, are reconstructed into given images.

Recent advances in artificial intelligence (AI) enable high-level image processing
and have gained research attention [2]. The exponential growth of data that has taken
place in recent decades and the rapid development of the computing power of mod-
ern computer systems have been the determining factors for developing new methods
and techniques in image processing and analysis. From the traditional and well-estab-
lished AI methods, such as artificial neural networks (ANNs) [3] and support vector
machines (SVMs) [4], to the more sophisticated and deep networks, such as convolu-
tional neural networks (CNNs) [5] and generative adversarial networks (GANs) [6],
several applications concern the field of nuclear medicine, especially in myocardial
perfusion imaging (MPI).

Cardiovascular diseases are the leading cause of death in the EU, accounting for 45%
of these deaths in females and 39% in males [7]. They cover many medical problems
affecting the circulatory system (the heart and blood vessels). Some of the most com-
mon diseases that affect the circulatory system include ischaemic heart disease (heart
attacks) and cerebrovascular diseases (strokes) [7]. Heart attacks and strokes are usu-
ally acute events mainly caused by a blockage that prevents blood from flowing to the
heart or brain. The most common reason for this is a build-up of fatty deposits on the
inner walls of the blood vessels that supply the heart or brain. Strokes can be caused
by bleeding from a blood vessel in the brain or by blood clots.

A literature review has assigned the detection and classification of various diseases
among the top applications of Al in MPI imaging. SPECT image denoising, artefact
removal, and low-count SPECT reconstruction are important application domains.
In the present review paper, we focus on advanced deep learning (DL) [8] methods in
cardiac imaging and, more specifically, the myocardial perfusion imaging delivered by
the SPECT scanners. Thorough research identified fifty-five studies dealing with this
topic. Among the purposes of the paper is to provide a review for readers new to the
field of Al

The reviewed papers fall under two major categories: Cardiovascular disease diag-
nosis via image and clinical data classification methods and image quality improve-
ment. For cardiovascular disease diagnosis, studies employing explainability methods
are highlighted and analytically discussed. Per-patient and per-vessel outcomes are
also assessed quantitatively and qualitatively. Image quality improvement includes
several domains of SPECT imaging. The main objective of image quality improve-
ment is to generate an improved SPECT image or complete scan liberated from arte-
facts, noise, and attenuation. In addition, estimating the full-count SPECT scan from
its low-count counterpart is a notable image improvement that does not intend to
remove the noise solely but also to estimate the radiation outcome of a hypothetical
full-dose input. Studies relating to the above domains are discussed based on their
objectives and results. The review study classifies the research papers according to
their DL methods, their validation procedure in terms of data size and evaluation
method, and their quantitative results. In the Discussion section, the study pre-
sents the most significant results and highlights major limitations that need future

examination.
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The present paper is organized into the following sections: "Machine learning in a
nutshell: definitions and terminology" section presents a brief description of the domi-
nant machine learning (ML) and DL methods found in the literature. In "Materials and
methods" section, the review methodology, inclusion and exclusion criteria, as well as
the literature sources are described. The major findings of the studies that this review
covers are extensively presented in "Results” section. Finally, discussion and concluding

remarks are provided in "Concluding remarks" section.

Machine learning in a nutshell: definitions and terminology

To aid readers’ comprehension and for completeness, this section rapidly summarizes
the pertinent terminology and definitions for the ML and DL algorithms utilized in the
research included in this review. ML is a subfield of artificial intelligence that focuses on
creating algorithms that automatically learn to generate correct predictions via experi-
ence (data) rather than hard-coded instructions.

Supervised ML systems work in two phases: learning (training) and testing. A fea-
ture extraction/selection step (sometimes referred to as feature engineering) is applied
first in a standard ML pipeline to extract or identify the most useful features [9]. The
retrieved characteristics are then fitted to an ML model, and the best model parameters
are determined. During the testing step, the trained model is supplied with previously
unseen samples (either as pictures or features derived from images) for classification.
Unlike traditional programming, where rules are manually created, supervised ML algo-
rithms build rules from data.

DL [8] is a subsection of ML that shifts the focus from visual handcrafted feature
extraction to the underlying learning mechanism. CNNs are a family of DL techniques
often employed in computer vision and pattern recognition applications. They are actu-
ally a type of neural network constructed of four types of layers: (1) input layer, (2) con-
volution layer, (3) pooling layer, and (4) fully connected layer. The convolution layers
use filters that execute convolution operations on the input as it is scanned in terms of
dimensions. Pooling is a downsampling procedure generally used in conjunction with
a convolution layer. Fully connected layers operate with flattened inputs that connect
all neurons in the following layer. They are often seen towards the end of CNN designs
to maximize class scores. Handcrafted CNNs are usually lightweight, problem-specific
designed networks that are trained from scratch using the training data of the domain
they are designed to operate in.

Transfer learning is a technique in which a network trained on a large dataset is partly
reused to address a new problem. The key idea behind transfer learning is that generic
characteristics learned on a large dataset may be applied to various domain problems
with fewer data. Among the most widely used networks are pre-trained networks, such
as DenseNet [10], AlexNet [11], and VGG [12]. Because the pre-trained network is an
arbitrary feature extractor, the input image is passed through many layers before arriving
at a pre-specified layer, the outputs of which are the final extracted features.

Numerous CNN-based algorithms have been recently developed, enabling us to attain
incredible accuracy on various problems, even outperforming human performance. 3D
CNNs [13] are essentially the three-dimensional extension of two-dimensional CNNs.
They accept as input a three-dimensional volume or a series of two-dimensional frames
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(e.g., slices in an MRI scan). Then, kernels traverse three dimensions of data, yielding
three-dimensional activation maps. In general, they build sophisticated representations
of volumetric data. Graph CNNs (GCNN) are a class of neural networks that function
natively on graph-structured data [14]. GCNNs may generate more informative predic-
tions about entities in these interactions by extracting and exploiting information from
the underlying graph, as opposed to models that analyze individual entities in isolation.
GANs [6] are a powerful type of neural network that is used for unsupervised learn-
ing. It consists primarily of a system of two competing neural network models that can
assess, capture, and replicate the variances within a dataset. Finally, U-NET [15] is one
of the most frequently utilized techniques in semantic segmentation nowadays. U-NET
is an encoder-decoder network architecture that has the form of a U and is composed of
four encoder blocks and four decoder blocks that are linked together by a bridge. Fol-
lowing the aforementioned CNN-based model’s cutting-edge potential, many variants
have been proposed based on variations in convolution and pooling operations, skip
connections, and the arrangement of the components in each layer to address the chal-
lenges associated with various applications.

Materials and methods

To conduct the systematic literature review, a three-step process of plan, conduct, and
report has been observed. In the planning phase, research questions were defined, and
the review protocol was established, specifying the publication sources, search terms,
and selection criteria. In the second step, the literature was collected following the
review protocol. The selected literature was analyzed, extracting and synthesizing the
required data to answer the questions. Finally, the review results were documented,
addressing the research questions and the objectives of the systematic literature review.

Research questions

The main objective of this review was to determine how DL has been applied for CAD
in nuclear medicine using SPECT scans. Furthermore, to look into the applications and
how the CAD methods have been implemented using the deep networks. Thus, provid-
ing the knowledge of the current practices to build upon that for further improvement
in the area. Therefore, the following three research questions (RQs) have been framed:

(1) What AI/DL learning algorithms have been applied?
(2) What kind of architecture of the deep network has been employed?
(3) What was the nature of the network training and testing data?

A focused approach has been followed while scanning the literature. Each article has
been reviewed to answer the above questions. The gathered data has been reported in a
comprehensive way to have a complete picture.

Review protocol

Search sources and terms

Three popular scientific databases, Pubmed, Scopus, and Google Scholar, were selected
to extract the data. The investigated topic combines three main search terms: ‘Deep
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Learning, ‘SPECT MPI, and ‘Cardiovascular. Each of the terms can be searched by mul-
tiple alternative words. The most relevant and commonly used applicable terms were
selected and combined by the ‘OR’ operator. For example, to represent ‘deep learning,
three search terms were identified: * deep learning) ‘deep network; and ‘deep architec-
ture’ The other term for ‘SPECT MPI’ and ‘nuclear medicine’ was represented by their
only main term. Individual search strings were concatenated by the AND’ operator to
form a search query. The wild card ‘+” has been added to include all verb forms of the key
terms. Full-text search has been employed to capture the maximum relevant literature.
Complete search queries for each of the databases are shown in Fig. 1.

Search String in PubMed: ((deep learning) OR (explainable) OR (convolutional neu-
ral network) OR (artificial neural network) OR (machine learning) OR (artificial intelli-
gence) OR (generative adversarial networks)) AND ((spect) or (nuclear medicine)) AND
((coronary artery disease) OR (myocardial) OR (heart) OR (cardiac)).

Search string in Scopus: (TITLE-ABS-KEY (("deep learning ") OR ("explainable”) OR
("convolutional neural network") OR ("artificial neural network") OR ("machine learn-
ing") OR ("artificial intelligence") OR ("generative adversarial networks")) AND TITLE-
ABS-KEY (("SPECT") OR ("nuclear medicine")) AND TITLE-ABS-KEY (("coronary
artery disease") OR ("myocardial”) OR ("cardiovascular") OR ("cardiac") OR ("heart"))).

Inclusion and exclusion

This study is limited to DL applications for cardiovascular diagnosis in nuclear medicine.
All primary studies published in English employing a DL algorithm for cardiovascular
classification, identification, attenuation correction, or any other CAD diagnosis task
were included. No limits on the subject areas and time frame were imposed for a broad
search spectrum. However, since DL is an emerging field, the literature returned in
response to the search queries spanned over recent years, starting from 2017 onwards.
The time period of the selected articles extends over 4 years, from 2017 to June 2022.
The chosen literature included journal articles, conference proceedings, and book sec-
tions on the explored topic.

«+ Articles published after 2017.

+ CAD detection was conducted via Al algorithms, with traditional ML and DL
approaches included.

+ Articles utilizing SPECT dataset for CAD detection.

@ PubMed i Scopus . Google Scholar

((deep learning) OR (explainable) OR (convolutional
neural network) OR (artificial neural network) OR
(machine learning) OR (artificial intelligence) OR

(generative adversarial networks)) AND ((spect) or
(nuclear medicine)) AND ((coronary artery disease)
OR (myocardial) OR (heart) OR (cardiac))

- =

Fig. 1 Utilized keywords in scientific search databases
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«+ Original research articles (Journals, conferences).
« Papers not investigating PET or PET/CT cases for CAD.

This literature review includes studies on cardiovascular diagnosis represented by
SPECT MPI images in nuclear medicine. The publications on other forms of images like
PET or CT images or any other format were not included. The exclusion criteria are the
following:

+ Articles not related to AI/ML/CAD.

«+ Articles published before 2017.

+ Non-original research articles (reviews, editorials, meta-analysis).
+ DPapers describing framework, platforms, software.

+ Papers investigating PET or PET/CT cases for CAD.

Literature collection

The literature search was performed by supplying the search strings for each database,
as shown in Fig. 1. Many publications were returned in response to these search que-
ries. The search results from each database were assessed according to the predefined
inclusion/exclusion criteria. In the initial screening, the review articles and non-English
publications were excluded. Each article was evaluated based on its title, abstract and a
quick review of the text to decide its selection or rejection. This filtration reduced the
number of articles to 114. After removing the duplicate articles, 71 publications were
included in the full-text assessment, and finally, 55 studies were selected to be part of
this literature review. Preferred Reporting Items have shown the data selection process
for the Systematic Review and Meta-analysis (PRISMA) framework [16]. The complete
process is visualized in Fig. 2.

Types of outcomes measures
Multiple evaluation criteria and metrics have been reported. The model’s accuracy and
the Area Under Curve (AUC) score obtained from the Receiver Operating Characteristic
(ROC) curve are the most considered for evaluating the classification performance of
the developed DL algorithms. The sensitivity score (sensitivity=TP/(TP 4+ FN) and the
specificity score (TN/(TN+ FP)) of the developed models are also reported, where TP,
EN, FP and TN denote true positives, false negatives, false positives and true negatives,
respectively.

For the evaluation of the image quality improvement, several criteria are considered
and discussed as follows:

«+ DPeak signal-to-noise ratio (PSNR) expresses the ratio between the maximum possible
value and the power of distorted noise. It is used to measure the quality of a gener-
ated or compressed image.

« Structural similarity index measure (SSIM) measures the similarity between two

images.
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articles(n=50)
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. Google Scholar

ning (n=1700)

s, which develop AI-ML-CAD
and published after 2(
(n=700)

Records excluded (n=416)
Articles not related to AVML/CAD
Articles published before 2017

Select articles,
articles(n=284)

Records excluded (n=114)
Non-original research articles
(Reviews, editorials, meta-analysis)
Papers describing framework,
platforms, software

Records excluded (n=129)
+  Papers investigating PET or PET/CT
cases for CAD

g
Remove similar works with PubMed (n=24)
)

Remove similar works with PubMed and
Scopus (n=35)

Selected articles (n=55)

Articles (n=37) .

——)

PubMed + Scopus+ Google Scholar articles
(n=37+ 12 +6)

Fig. 2 Literature search and qualification process

+ Mean error (ME): it expresses the pixel-to-pixel or voxel-to-voxel difference between
a reference image and a DL-generated one

+ Root-mean-squared error (RSME): it expresses the pixel-to-pixel or voxel-to-voxel
square difference between a reference image and a DL-generated one

« Normalized mean error (nME): it expresses the pixel-to-pixel or voxel-to-voxel nor-
malized difference between a reference image and a DL-generated one

+ Normalized root-mean-squared error (nRSME): it expresses the pixel-to-pixel or
voxel-to-voxel normalized square difference between a reference image and a DL-
generated one

« Absolute relative error (ARE) [17]: it expresses the pixel-to-pixel or voxel-to-voxel
absolute normalized difference between a reference image and a DL-generated one

+ Noise level measured as the normalized standard deviation (NSD): It measures the
normalized standard deviation of the grey values of the image

Results
The research study identified 55 related publications that qualify for reporting. As illus-
trated in Fig. 3, there has been an increasing number of publications over the last 5 years.
Starting from one publication in 2017, this number reached 17 in 2021.

Five major application domains were identified during each qualified study’s analy-
sis: diagnosis/classification, denoising, full-count SPECT estimation, SPECT attenua-
tion correction (AC), and reconstruction. The latter four domains belong to a broader

Page 7 of 43
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‘Number of publications per Year
Fig. 3 Publications per year

L] Other imaging

improvements, 2
sl Reconstruction, 4

LIFast-Scan, 1

L} Attenuation-
Correction, 13

L] Classification, 24

glpenoising. ¢}

LlLow-dose, 5

Fig. 4 Domains of application

spectrum: image quality improvement. The distribution of publications among these
domains is presented in Fig. 4.

The study reviewed publications presented in scientific journals and conferences.
Out of the 55 reviewed publications, 45 are published in peer-reviewed journals, as
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45

JOURNALS CONFERENCES
Fig. 5 Number of publications in scientific journals and conferences

Journal of Nuclear Imaging  |E— |
PCI 2021: 25th Pan-Hellenic C on i 1
Journal of Science & Technology |EE— |
2020 IEEE 17th International  — |
2019 IEEE Nuclear Science Symposium and Medical Imaging Conference |E—————|
2020 4th i Ci on Recent Ad: in Signal P i 1

Journal of C i Design and i il 1
2018 IEEE Nuclear Science Sym. | ES————— )

2019 IEEE 16th Internationc  — |

2019 IEEE International Confe  mm—— |

2020 25th International Confe | — |
Applied Sciences |

PLoS One | |

SciRep |EE— ]

Proc SPIE Int Soc Opt Eng  — |

Journal of Nuclear icine and

lar Imaging 1
Phys Med  jmmmm— |
Front Cardiovasc Med | umm—— |
Ann Nucl Med |— )
EJNMMI Phys | |
Eur Heart J Cardiovasc Imaging | |
IEEE Trans Med Imaging e |
Hell J Nucl Med e |
Med Phys | 3
J Nucl Med 5
JACC: Cardi Imaging 4
Computers in Biology and Medicine | —
Eur J Nucl Med Mol Imaging 8
J Nucl Cardiol 6

Fig. 6 Overview of the publishing journals and conferences

illustrated in Fig. 5. An analytical overview of the journals and conferences that par-
ticipate in publishing is presented in Fig. 6.

Diagnosis/classification

Cardiovascular disease diagnosis was the most popular domain of DL application in
SPECT studies. It refers to CAD diagnosis, myocardial defect identification, and abnor-
mality detection in Polar Maps or SPECT scans. CNNs are the dominant DL strategy
for this type of classification. Several research studies deploy state-of-the-art pre-trained
CNN s that have already succeeded in relevant applications. In contrast, many studies
develop their own CNN architectures intending to propose task-specific models that
seek and extract medical image features. ML methods have also been evaluated in recent

Page 9 of 43



Page 10 of 43

(2023) 10:6

Apostolopoulos et al. EINMMI Physics

(@d12) >NV 6¢£0

Jo DNV snsisA (1)
//°0 40 DNV :|9SSoA-1od
(@d12) 8,040

JNv snsisA (1) 180

(sabewi 091 L
‘sdnoib ) AD INO

3SI [9ssan-1ad

Apnis Ja1usdninuw

e :95e3s|p Ala1ie A1euolod
9AI12N115qO JO uondIpaid

10} buibew uoisnyiad |eip
-1e20AW | H3dS Aduapyje
-ybiy auidns-ybudn jo

4O DNV usned-iad - -J9JUdD-2UQ-9ABI pue yD-oN\dVD VOl (payei-puey) NND 123dS siskjleue buluies; dsag 6107 Induelag uelns
0/°0 :Audypads S}JOMIaU [RINSU
/70 :AUAIISUSS sabew| (5329[gns 9p6) |euonnjoAuod-ydelb
€8°0:(quaw -gns ou| sabew 195e18P 21U Y} yum buibew uoisnpiad
-bas-Ag-1uawbas) a3 bunuswbas 10} AD4¥ pue uon lewl (payen oe|pJed wioly sdew
punes uswaIby eIA A1D24IpU|  -BZI[eDO| JOJINO-P|OH  -IOUQE PUB [BUWION  Japeas uewny  -puey) SNND ydeln sdeyy Jejod Jejod jo uonesyisse|d 610 121ds eleyieN
Bujuies| suyoew
Buisn erep buibew
6192 510108} uolsnyiad [eIp1edoAw
:s9bewl winu e10]) SU pUB ‘X3S pue [eD1UID PAUIGUIOD
80 DNV AD401 payhens ASUIDVIN VOl 1500g1607 ‘abe +153dS jJo anjeadpsoubold 8107 Jnduelag uelng
(1Q) 69°0 01 (QdL)
£9°0 Wouy panosduwil Apnis Jaausoninu
AUAIISUDS [95S9A-19d e 1 D34S uoisnyad (eip
(1Q) 280 01 (QdL) -1eDOAW 5B} UWIOJ) 3583SIP
6/°0 WO} panoidwi |9ssan-1ad 9AI3ONISQO JO uondIpaid
Auaisuss Jusned-1od - (8€9'L) AD40L pue dv2-ON\dVD VDI (payesd-puey) NND 123dS loj buiuies|dsag  810¢ Jnouelsg uelng
Apnis
191U |NW asaueder e
(L1001 :sobew uoisnyad [eip
065/ = < SISOUDIS sabewl :s9beW| WNU [e103) -1eD0AW Jo uopelzuenb
104 7/°0-85°0 DNV -gns ou| sebewi| (421u2dn|NW 1 195 [BDI1S13E1S Y3 pasedwlod
060G = < SISOUD1S oY1 bunuawbas 1531 ay) 1591 ¢ ‘Bul SIOMISU [BINBU [BDYI1IR
10} 76'0-68°0 DNV eIA A3DaJipul  -Ules} [00L N0 P[OH  [eWJOUQe JO [eWION  J9peas Uewnp NNV 1D3dS  ue jo Adeindde onsoubelq /107 eulifeeN 1yd1uay
(sabew jo ‘wnu wyiiobje
s} nsay Ayjiqeurejdxy |e103) uonepijep awodnQ DUIYRY Bulusea nduj Sl Jedp Joyineisiy ‘ON

$23S1I210RIRYD UleW J13Y) Y1M BUO|e S3IpNIs Uoedyisse|d/sisoubelip paynuapl Jo isi] | ajqeL



Page 11 of 43

(2023) 10:6

Apostolopoulos et al. EINMMI Physics

99040
AdeInddy :SisAleuy
SAl_IIUEND-IWSS

suadxa

QU1 UM Sy nsal Jejiwls
'€2°040 Ady1dads
'S£°0 40 AuAnisuas

uopejuswbne elep pue
Bujulea| dosp buikojdwa
sdew Jejod Buibew uols
-njiad |eIpied0Aw Jo uon

"7/°0 J0 A>eIN22Y 113 = (s129lgns 912) ADH01 AvD-ON\AVYD VoI (91-99A) NND sdeyy Jejod  -ezu21deleyd dewoINy  0Z0¢ sojnodojoisody
Apnis
J21U2dNNW :elaued
UaWOM Ul (S9°0)AdL-S SpPLIN|[91-DUiZ-WNjWped
pue (£0)dd1-n palewl||0>-3joy-a||eled
‘(L£0)SSS‘(L£0)1a (0911 :sobewt Aouspyje-ybiy e yum
usw winu [e10]) (|e101 Ul USWIOM pue uswl ul
ul (€£°0) Adl-S pue SI191U3D ) UollepljeA Buibew uoisnyiad |eipied
(££°0) Qd1-N ‘(S£0) SSS |BUJRIX3 INO -0Aw Joy Bbujulea| dosp

'(280) 1 :AuAIsuSS WVD-peID  -I91Us3-3U0-9Aes] AvD-ON\AVYD VoI NND sdeyy Jejod Jo A>eindde disoubelq  0Z0T R0 BN

(761 :sobewWl WNU

980 :A1dypads |e10]) (9%/ 1) 3591 pue puibewl uols

0’1 :AIARISUSS (9, 1) UOnEpPIjRA -nyad [eIp1ed0AW | H3dS eAexlag

€60 :A2eINddY - '(0599) BulUlel]  |PUWIIOUQE JO [EUWION IO UBeWwNH (61-99A) NND 1D3dS 104 S|9pOW UonedyIsseD  0Z0T ue|dey| uedas
elep uopedyiuenb pue
|ed1uld Bulpnpul sajge
-leA Indul Jualaylp uo
SHIOMISU [BIN3U [BIDYILIE
(€6 :sobew s10308) sl buisn buibew uoisnpiad
wnu |e103) Uoliepl|ea oelpied+sdew  [eIpIeDOAW Joj Adeindde

£580 :A2eINddY 10} 595D 7| AvD-ON\QVD YOI NNV 1e|j0d onsoubelp paroiduwl - 610¢ luewiyey

(sabew jo ‘wnu wyiiobje
s)nsay Anjiqeurejdx3 |e101) Uonepijep awodnQ DUIYRY Bujuiea nduj S|L Jedp Joyineisiy ‘ON

(penunuod) L ajqeL



Page 12 of 43

(2023) 10:6

Apostolopoulos et al. EINMMI Physics

(€1t :sobew

1ieay Jo sabew | D34S
Buisn aseasip A1arle
A1euoiod bujsoubelp 1oy

€780 :uUoisdald winu [e101) AD4S AVD-ON\JVD  Iopess uewiny 91-99A 103dS  pouyew bulues| despy 0707 Bunip
Apnis
IAYISNOD 24p Jo sishjeue
Alo3elo|dxa ue :uopezle|
-NJSBA3I pUB 35835IP
Aia1ie A1euolod aAn
-2N11500 JO uondIpaid sy
AWISASS  1OJ S9|gRLIeA [BDIUID pUR
61/ :Sabewl eulbue pue ‘sbe Buibew Jo 3|0l ay3 ol
6/£0 DNV winu [e101) AD4S AVvD-ON\QVD VOl 1500g5X NG +1D3dS  ybisur Buluies| suiyey 0207 uejexseq
Ansibal 1 534S
INI43Y 213U NW WOy
sa|qeueA  SNsal ] D3JS uoisnyiad
180 DNV Buibew gz pue  [eIpJedOAU 15e) JS)e Uo}
|9ssan-1ad 1usnied-iad 1uaied 'S9|CelIBA 159 -BZ|1e|NJSPASI A1BUOIOD
6/°0 DNY (0861 :Sabew -19d pue |9559A-49d -SSaN1S 6 's9|gqe  Alea |9ssan-iad s1oipaid
[95S9N-12d wnu [e10]) AD40L AVvD-ON\QVD VOl 1500gUBOT  -lieA [edjuld | Buluses| suydey  020C NH UISH-UaI]
77/ eddey| suayod
6£°0 :APYPds
££°0 AUANISUSS
8/°0 :AoeInddy elep
[ElelelN] |edjuld> pue buibew uols
120 :Adynads -njiad [eipsedoAw buisn
680 :AUARISUSS 159104 sisoubelp aseasip Jejnd
£°0 :Aoeindoy wopuey+(gA  [ed1ulD +sdepy -seAoIpled 4oy yoeoidde
uadx3 — (s192[gNns 995) ADA0L AQv2-ON\AVD VoI uondadu|) NND Jejod  buiuses| dssp indu-niny - 020¢ so|nodojoisody
(sabew jo ‘wnu wyjiobje
s)nsay Ayjiqeurejdx3 |e303) uonepijep awodnQ ERIVEICTEN] Bujuiea induj 9L Jedp Joyneisi4y ‘ON

(penunuod) L ajqeL



Page 13 of 43

(2023) 10:6

Apostolopoulos et al. EINMMI Physics

0S80 DNV
9%99°0 :21005 | 4
YEv/ 0 ANdYPadS

95e35Ip A1ae A1euoiod
4o uonoipaid Joy buibew
uolsnyiad [elpiedoAu

058/°0:A1IAISUSS (81€€ :sabew 123dS wouy sdewl Jejod
795/°0:AoeINJDY wnu [p101) AD4S  [eUWJOUQPe JO [eUON  J9peas ueuwnp NND sdewl Jejod  Jo sisAjeue Buluies| daag 1207 uyez
K121ie Aleuoiod S}IoMIau [einau dasp
S6'0 DNV 1ybu pue A1ape obe Buisn Aydeibrus uols
1uaned-iad XaunouPD Y| A1ape pue swoiduwlAs -njJad [eIpIEdOAW WO
680 DNV (09 :sabew Jola1ue Ya| ay3 Ul euibue + sdew 95e3s|p A191Je A1euoiod
[9SSON-12d winu [e101) AD4S avD Jo Aujigeqoid VoI NND Jejod  9AIIdNISQO JO UORDIPRld  1Z0T UOSSpIALY
sdew Jejod | H3dS
uoysnyiad |eipIedoAu
8560 :AorINdDY (/001 :Sobew ysinbunsip o1 swyilobje
€680 DNV winu [BJ0}) AD40L  [PWIOUQY 1O [BULION  J9PEal UPWNH 15910} Wopuey 103dS Bujuies| sulydel 10z oy|14 eznos ap
Bujuies)
daap buikojdwa buibew
uolsnyiad |eipIedoAu
103ds ul
9€6'0 DNV (5303[QNSs $17) (payeld 95e3s|p AIa1ie A1euoIod
870 F £6'0 :Aoeinddy - 0G1-G8 1IN0 P|OH  [PWIOUQY JO [BWION  Japeas uewny -puey) NND-gOY 103dS Jo sisoubelp dewolny 170z souelpuedey
Bujules)
daap Aq panoiduwil
1D34S uoisnyiad [eip
(st¢'/€ :sabew 123dS -1e20AW AJuo-ssans Jo
2000 F ¢/80: DNV - winu [L101) AD4G  [BWIOUQY JO [BWION  Japeas uewny $E-19UsaY Ajuo ssais Aoeindoe onsoubelq  1Z0Z n Ny
uopeoyiuenb
pajewoine 0y uosiied
-wod :bujbew uoisnpiad
[e1p1ed0AW 1 D3dS 17D
760 :Adypads WOJ) BIWIBYDS| [eIPIBDOAW
18°0 :ANAINSUSS (payeid sobewll  JO UONEN[BAS U1 Ul 3IOM
/80 :AoeIndoy WYD-PRID  (s103[gns 6/6) AD4S AVYD-ON\QYD  PIsOPsIp 10N -puey) NND-a¢ 103dS AeIH  -1aU [RINSU [BUOINIOAUOD 1 20T usyp usr-Inf
(sabew jo ‘wnu wyiiobje
s)nsay Anjiqeurejdx3 |e303) uonepijep awodnQ ERIVEICTEN] Bujuiea induj 9L Jedp Joyineisi4y ‘ON

(penunuod) L ajqeL



Page 14 of 43

(2023) 10:6

Apostolopoulos et al. EINMMI Physics

(W) uoneul feip

SOWN|OA
JeIPJED PUB ‘X35
‘abe yum pauiq

Bujules)
daap o|geuledxa buisn
puibew uoisnyiad

(lPUIRIXd) ££°0 DNV (s109[gns  -1eDOAW |RYRJUOU JO -wiod sdew [eIP4EDOAU WO JUSW
(leus=nul) 9£°0 DNV WVYD-peio LO¥'027) AD40L  Y1eap JO uoidIpaid VOl (payesd-puey) NND  Jejod 1sal ssang -Ssossesi1allg  ¢e0e ybuis edueuy
€60 DNV
Ajsnow
-0UOINe SuNI g Usyp
LY/ 0DNY
7@ asniou
Op Slapeal ay3 Uayp\ Buibew uoisnyiad |eip
6//°0 DNV -1eD0AW JO uolielaidiaiul
hleEM (ove ueIsAyd sanoidw buj
Siopeal 3y} Usym Aungeureidxy  sabew wnu [e1o]) AvD-ON\AVYD VOl [spow 1@ 103dS  -uiesjdasp jqeuteidx3  zzoe 9N
95easIp A1a1ie A1euoiod Ul
uonedsyisse|d sabew| dew
(vLg sobew [ew Jejod |dIAl 1D3dS 404 uon
260 :Aoeinddy wnu [eJ0]) AD4S  -Jouge pue [euwliON  Japeal uewnH NND-go4 sdew Jejod -ejo|dxa bujuies| dasq 720z souelpueded
Sylomiau
(1€ :sabew |BINSU [PUOIIN|OAUOD BUl
LE60°DNY wnu [e10] ) uon -Kidde sabewlt |dN 1D3dS
060 :Adeinddy —  -BpI|PA IO} SISED /8 [RWIOUQE IO [BULION  J9PEaJ UBWNH  (Paijeld-puey) NND 1D3dS  Jo uoneoyissed buloldxy  zzoz souelpuedey
(sabewt jo ‘wnu wyiiobje
s} nsay Ayjiqeurejdx3 |e303) uonepijep awodnQ ERIVEICTEN] Bujuieaq nduj 9L Jedp Joyineisi4y ‘ON

(penunuod) | 3|qeL



Apostolopoulos et al. EINMMI Physics (2023) 10:6 Page 15 of 43

studies. ML methods differentiate themselves from the DL methods because they do
not process the SPECT images directly. Instead, they analyze clinical data or predefined
image features for the same task. Table 1 summarizes the presented literature regarding
the diagnosis and classification tasks. Table 2 showcases studies that perform external
validation of the proposed techniques.

Handcrafted CNNs

Various studies propose handcrafted CNNs that distinguish between normal and abnor-
mal SPECT images visualizing the myocardia, or Polar Maps, which summarize the 3D
information of multiple heart views into a single polar plot.

Papandrianos et al. [18] presented an RGB-CNN model to classify SPECT images
concerning their abnormal findings. There are a total of 513 cases, and they are repre-
sented in stress and rest conditions. The problem that is addressed is the differentiation
of normal and ischemic images. Data scarcity issues were circumvented by applying data
augmentations. The proposed model accomplished 90.2% accuracy and a 93.77% AUC
value in discriminating ischemic from normal SPECT images, with the human reader
interpretation considered as the ground truth. These results demonstrate the magnif-
icent capability of the model to predict correctly, despite the small dataset. The same
research team [19] extended their previous work to diagnose ischemia and/or infarction
using CNNs. The dataset of the corresponding research includes a total of 224 patients
who had undergone stress and rest SPECT tests. The participants underwent invasive
coronary angiography (ICA) 40 days after MPI. Two DL techniques were followed: an (a)
implementation of RGB-CNN from scratch and (b) transfer learning to classify images
as normal or abnormal. The pre-trained models were VGG16, DenseNet, MobileNet,
and InceptionV3. With reference to the visual assessment performed by medical experts,
the results reported significant abilities of the proposed CNN with an overall accuracy of
93.48 £2.81%. This accuracy is significantly improved compared to the 90.2%, which was
initially obtained in [18].

Narges Zabhiri et al. [20] aimed to explore the potential of deep CNNs to distinguish
between normal and abnormal polar maps with reference to the physician’s diagno-
sis. The dataset included 3318 stress and rest polar maps. Data augmentation was uti-
lized to expand the training dataset. The proposed DL model was thoroughly validated
under a fivefold cross-validation procedure. The model achieved a 0.845 AUC. Besides,
the inclusion of rest perfusion maps significantly improved the AUC of the DL model
(AUC: 0.845) compared with stress polar maps only (AUC: 0.827). Papandrianos et al.
[21] explored the potential of automatic classification of polar maps between normal
and abnormal by implementing a custom RGB CNN. The study included 314 polar maps
in stress, rest representation, and AC and NAC formats. RGB-CNN was trained using
physician interpretation as ground truth. The RGB-CNN proposal competed against the
pretrained VGG-16 network. According to the results, RGB extracted 92.07% and VGG-
16 95.83%. RGB-CNN competed against robust state-of-the-art methods.

Some research compares DL-based results against quantifiable metrics advised by
the guidelines. For example, Yuka Otaki et al. [22] developed a DL model to identify
CAD and compared its results against the Total Perfusion Deficit (TPD) method. One
thousand one hundred sixty patients were included to classify raw upright and supine
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stress MPI polar maps. MPI and ICA were performed within a 6-month interval. As
an external validation method, leave-one-centre-out was utilized with four models.
Julian Betancur et al. [23] designed a CNN for the same purpose. The number of par-
ticipants was 1160, whilst the utilized data involved semi-upright and supine stress
Polar Map representations. The classification of obstructive disease was evaluated
using the leave-one-centre-out cross-validation technique with four centres, where
all validated predictions were merged to avoid a calculation for a single centre. The
CNN model performs the diagnosis without adding predefined coronary territories.
The performance of CNN was compared against combined perfusion quantification
by TPD, achieving 84.8% sensitivity versus 82.6% obtained with clinical reading. In
a subsequent study, Julian Betancur et al. [24] evaluated the automatic diagnosis of
CAD from SPECT image inputs in contrast with TPD with a deep CNN. A total of
1638 patients without known CAD and with ICA performed within 6 months of MPI
were examined. The data involved raw and quantitative polar maps in only stress rep-
resentation. A stratified tenfold cross-validation procedure was adopted. The AUC
score for disease prediction by their proposed DL scheme was superior to TPD (per
patient: 0.80 vs 0.78; per vessel: 0.76 vs 0.73). With the DL threshold set to the same
specificity as TPD, per-patient sensitivity improved from 79.8% (TPD) to 82.3%, and
per-vessel sensitivity improved from 64.4% (TPD) to 69.8%.

Besides distinguishing between normal and abnormal subjects, some studies aim
to perform region-based classification. Arvidsson et al. [25] developed a CNN to
predict obstructive coronary artery disease in the left anterior artery, left circumflex
artery, and right coronary artery using SPECT Polar Maps. A total of 588 patients
were included in this study, whilst clinical data like angina symptoms and age were
also utilized. The proposed CNN framework achieved an average AUC of 0.89 per
vessel and 0.95 per patient, using the ICA findings as a reference. Furthermore, gra-
dient-weighted class activation mapping (Grad-CAM) was utilized to visually demon-
strate the regions on which predictions are based to extract the output. The authors
observed sex differences in the diagnostic performance of DL for the prediction of
obstructive CAD from D-SPECT, with DL outperforming visual and TPD in men but
not in women.

An increasing number of works propose explainable DL-based methods that per-
form image classification and inform the user about the suggested areas of interest
wherein the model bases its predictions. Miller et al. [26] utilized an explainable DL
model to improve the diagnostic accuracy of CAD and aid physical interpretation. A
total of 240 patients underwent MPI examinations and were included in this study,
with ICA as a reference. Regarding the results, human readers using the DL’s predic-
tion achieved an AUC of 0.779, whereas their interpretation without DL reached an
AUC of 0.747. It is worth mentioning that DL, on its own, achieved an AUC of 0.793.
Yuka Otaki et al. [27, 28] proposed an explainable DL model to detect obstructive
CAD. A total of 3578 patients with suspected CAD from 9 centres were enrolled. The
authors proposed a hand-crafted CNN to process the SPECT Polar Maps in stress
conditions. In the fully-connected layer of the CNN, the authors supplied the sex
and age of the patient to increase the number of features. Concerning ICA findings,
this method achieved an Area Under Curve (AUC) score of 0.83 following a tenfold
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cross-validation procedure, which was superior to the quantitative analysis results
by expert readers (AUC =0.8). Also, attention maps were produced to highlight the
regions and segments contributing most to the per-vessel prediction.

Singh et al. [29] developed an explainable deep learning model to predict nonfatal
myocardial infarction (MI) or death, which also provides highlighted image regions
related to obstructive CAD. The study included 20,401 patients, who went under SPECT
MPI procedure for training and internal testing purposes and 9019 patients were added
from external testing group gathered from two different sites. The external testing group
was included to evaluate generalizability. The dataset consisted of polar maps in stress
and rest representation with the inclusion of age, sex and cardiac volumes, which were
added at the first fully connected layer. Referring to explainability, Grad-CAM was
developed. For comparison reasons a logistic regression model was developed with
the following values age, sex, stress total perfusion deficit (TPD), rest TPD, stress left
ventricular ejection fraction, and stress left ventricular end-systolic volume. The model
achieved and AUC of 0.76, which is higher than stress TPD with 0.63 AUC, ischemic
TPD with 0.6 AUC and compared to logistic regression model, which extracted 0.72
AUC. The developed model improved accuracy in contrast to traditional quantitative
approaches and is well calibrated and provides robust results.

Jui-Jen Chen et al. [30] examined 979 SPECT subjects from a local hospital for the
diagnosis. However, whether the images are labelled based on experts’ visual inspection
or on the ICA’s findings is not reported. A three-dimensional CNN has been applied to
classify the SPECT slices. Furthermore, Grad-CAM heat maps have been produced to
identify myocardial defects in the images. The proposed model obtained accuracy, sensi-
tivity, and specificity metrics of 87.64%, 81.58%, and 92.16%, respectively, in distinguish-
ing between normal and abnormal images using a test set of 89 samples. Nathalia Spier
et al. [31] investigated Graph CNNs for CAD diagnosis. They enrolled 946 polar map
images in stress and rest representations of the heart. Labelling has been done using the
human observer interpretation. Also, heatmaps were produced and demonstrated the
segments of the heart that were indicated as pathological. The extracted results demon-
strate adequate performance in classifying unseen data under a fourfold cross-valida-
tion procedure, in contrast to clinical visual analysis, with 92.8% and 95.9% specificity
in rest and stress data, respectively. The proposed model achieves an agreement with
the human observer on 89.3% of rest test polar maps and on 91.1% of stress test polar
maps. Localization performed on a fine 17-segment division of the polar map achieves
an agreement of 83.1% with the human observer.

CNNs and transfer learning

Selcan Kaplan Berkaya et al. [32] intended to produce a classification model to clas-
sify SPECT images and identify perfusion abnormalities like ischemia and infarction.
The summed stress and rest images from 192 patients were studied. Two models were
proposed. The first is a DL-based model which employs State Of The Art (SOTA)
CNNs and fully-connected layers of support vector machines (SVM) for the classifi-
cation of the deep extracted image features. As far as the second model is concerned,
it involves image processing techniques like segmentation, feature extraction, and
colour thresholding applied to segmented parts of each SPECT slice. This method
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extracts five predefined image features classified by a rule-based algorithm. With ref-
erence to the visual assessment as performed by the experts, the integrated CNN-
SVM model achieved 92% accuracy, 84% sensitivity, and 100% specificity, whereas
the knowledge-based classification attained 93% accuracy, 100% sensitivity, and 86%
specificity. Those metrics are reported on a test dataset that includes 17% of the total
samples. Hui Liu et al. [33] demonstrated a DL approach to automatically diagnose
myocardial perfusion abnormalities in abnormal and normal with only stress MPI
profile maps as input. A total of 37,243 patients who underwent stress-only and
stress/rest SPECT MPI have been examined. The study involved three SPECT/CT
cameras. There was an addition of six extra features, including gender, BMI, length,
stress type, radiotracer, and the option of including or not including the attenuation
correction. The ResNet-34 model is employed to perform the feature extraction. The
results were compared against the conventional quantitative perfusion defect size
(DS) method. With reference to the diagnostic impression from nuclear cardiologists,
the model achieved an AUC of 0.87, outperforming the DS method. Also, the pro-
posed network showed robustness to image acquisition device variation, achieving an
82% and 84% accuracy in all scanners. The model also achieved greater performance
in female participants, reaching an accuracy of 87%.

Apostolopoulos et al. [34] used the Polar Map images under stress and at rest to diag-
nose CAD using the pretrained VGG16 model. The study involved 216 participants.
The attenuation correction (AC) and the non-attenuation correction (NAC) Polar Map
images were merged into a single image per patient. With reference to the findings of
ICA, VGG16 achieved an accuracy of 74.53%, a sensitivity of 75.00% and a specificity
of 73.43%. The respective figures for MPI interpretation by experienced nuclear medi-
cine physicians were 75.00%, 76.97%, and 70.31%. The accuracy of semi-quantitative
polar map analysis was lower, at 66.20% and 64.81% for the AC and NAC techniques,
respectively. Besides, the model showed robustness to acquisition device variation. The
same author team extended their study [35] by proposing a hybrid CNN-Random Forest
approach for classifying Polar Map images and clinical attributes into normal and abnor-
mal classes, using ICA findings as a reference for CAD disease. The study involved 566
patient cases. The authors used the InceptionV3 pretrained model to predict the class of
the input Polar Maps. The model’s output was considered a unique attribute among 22
clinical factors, such as gender and age. The Random Forest classifier was employed to
predict the outcome. With reference to ICA results, the model achieved 78.44% accu-
racy, 77.36 sensitivity, and 79.25% specificity. The human cognitive process’s overall
accuracy reached 79.15%, which is approximately 1% better than the automatic model’s
accuracy (78.43%). Besides, the overall agreement rating between the human experts
and the model was 86% (Cohen’s Kappa=72.24). The model was also tested on unseen
data from a different SPECT scanner and achieved consistent results (76.53% accuracy).

Trung et al. [36] proposed a CNN to diagnose CAD. The authors utilized polar
maps and SPECT slices. The dataset included 1413 heart SPECT images labelled by a
nuclear expert as CAD and non-CAD. The DL network’s (VGG-16) performance was
evaluated using fivefold cross-validation. The results indicated that SPECT images
guarantee a better diagnosis than polar maps, with a precision of 86.14% +2.14% and
82.57% £ 2.33%, respectively.
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Machine learning

Kenichi Nakajima et al. [37] proposed an ANN for CAD diagnosis and myocardial
ischemia and/or infarction detection. This research consisted of 1001 stress/rest MPI
images for training, and there was an addition of 364 images for validation. Expert
interpretations served as the gold standard. The achieved results were compared
against the conventional quantitative approach. The ANN algorithm outperformed
the conventional summed difference scores, scoring an AUC of 0.92 in identifying
stress defects and 0.91 in stress-induced ischemia.

Souza Filho et al. [38] explored the potential of developing different ML mod-
els like Adaptive Boosting (AB), Gradient Boosting (BG), Random Forest (RF), and
Extreme Gradient Boosting (XGB) to find the ideal model for efficient differentiation
between normal and abnormal cases of SPECT Polar Maps labelled by human read-
ers. The stress and rest conditions included a total of 1007 Polar Maps. Each image
was divided into five horizontal and five vertical slices, where the sum of pixel intensi-
ties from each slice was computed, and ten attributes were acquired. Afterwards, data
augmentation was applied to generate 324 Polar Maps. RF was concluded to have the
best sensitivity with 96%, whereas AB, GB, and XGB obtained 92%, 94%, and 95%,
respectively.

Hu et al. [37] evaluated the per-vessel and per-patient predictions using an ML
methodology. A total of 1980 patients were utilized in stress and rest demonstra-
tions, and overall, 18 clinical, nine stress test and 28 imaging variables were utilized
for this study. The model achieved an AUC of 0.79 on a patient-level basis and 0.81 on
a vessel-level basis using ICA findings for reference. Baskaran et al. [39] investigated
the importance of including clinical and imaging variables for the successful predic-
tion and revascularization of CAD by developing XGBoost and estimated the results
by developing a fivefold cross-validation. Seven hundred nineteen ICA-confirmed
patients were included in this research. The proposed model performed similarly to
previous history-based scores and achieved an AUC of 0.779, a sensitivity of 89.2%,
and a specificity of 92.9%. Following the results, BMI is the most valued non-imaging
variable to be included in the prediction and revascularization of CAD. Nevertheless,
BM]I, age, and angina severity are the most important parameters for prediction.

Betancur et al. [40] evaluated the inclusion of clinical and SPECT MPI data to pre-
dict MACE (Major Adverse Cardiac Events) by developing an ensemble boosting
algorithm, LogitBoost. A total of 2617 patients were considered under stress exam-
ination. Twenty-eight clinical variables, seventeen stress test variables, and twenty-
five imaging variables were included. Furthermore, LogitBoost with both clinical and
imaging data (ML-Combined) was compared against the utilization of only imaging
variables as input, and visual diagnosis and automated quantitative imaging analy-
sis, and ML-combined outperformed with an AUC of 0.81. Rahmani et al. [41] aimed
to investigate the integration of ANN to predict obstructive CAD by adding clinical
data. Ninety-three polar maps were included, with the patients in stress and rest dem-
onstrations. Regarding the clinical data, various combinations were examined, and
the accuracy increased with age, gender, and the number of cardiac risk factor addi-
tions. ANN achieved 85.7% accuracy and improved the results by adding patient data.
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Image quality improvement
Image quality improvement alludes to various improvements, including low-count
SPECT estimation, AC, de-noising, and reconstruction. Table 3 presents the reviewed

literature.

Low-count SPECT image estimation

Reduction of human body radiation exposure is highly desirable. Reducing radiation
exposure involves a low-dose SPECT scan with low-count emission data. Full-count
SPECT image outcome is difficult to estimate from low-count data based on the exist-
ing image processing and de-noising methods. Besides, the low-count SPECT noise
is different from the full-count noise. Fast-scan is another way to reduce radiation
exposure and the patients’ discomfort during the examination. Patient pain and dis-
comfort are responsible for artefacts due to motion. Fast scan results in low-count
SPECT images. DL methods address such issues and estimate the full-count SPECT
scans given the low-dose or fast-scan outcome.

A. Low-dose

Ramon et al. [42] proposed a 3D CNN based on CAEs to estimate the standard-dose
SPECT image from the low-dose image. The study included 930 SPECT scans simulated
at 1/8 and 1/16 of the standard clinical dose. The authors evaluated their method using
the average correlation between the estimated and standard dose images. Also, the esti-
mated images were compared to those obtained from conventional image de-noising
methods (spatial post-filtering). When estimating the standard dose from 1/16 dose, the
proposed method achieved similar image quality to the quality obtained from 1/ g dose
with conventional de-noising. In another study by Olia et al. [43], the authors explored
the results of predicting the standard-dose image from a low-dose setup at half, quarter,
and one-eighth dose levels. The study involved 345 patients. A GAN architecture was
deployed to decrease the administered activity, ensuring stable accuracy and clinical val-
ues to achieve the standard dose image estimation. With reference to the actual standard
dose images, the highest PSNR and SSIM and lowest RMSE were attained at a half-dose
level. Overall, the proposed network can increase the quality of high low-dose SPECT
images with 100% acceptance, according to a nuclear medicine specialist.

Ramon et al. [44] investigated the application of different 3D DL methodologies to
suppress noise in low-dose SPECT MPI images. The dataset includes 1052 patients,
and two reconstruction methods were applied, namely FBP (Filtered Back-Propaga-
tion) and OSEM (Ordered-Subsets Expectation—Maximization). The authors trained
the model with low-dose acquisitions as input and full-dose images as target and
explored different numbers of dose levels (1/2, %, 1/8 and 1/16 of full dose). Review-
ing the results, the proposed DL approach can reduce substantial noise and enhance
the accuracy compared to conventional reconstruction filtering. More specifically,
with % dose, the model achieved 0.799 AUC, whereas full dose attained 0.801 AUC.

Similarly, Song et al. [45] explored a de-noising methodology based on a three-
dimensional residual CNN for low-dose cardiac-gated SPECT images. The study
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includes 119 clinical cases in total. Regarding the model’s training, the CNN utilized
as a training dataset included the low-dose images with a 25% reduction of radia-
tion dose as input and the corresponding full-dose images as output. The proposed
CNN methodology was compared against traditional methods based on the ST-NLM
(SpatioTemporal Non-Local Means) technique, and CNN attained an nMSE of 0.153,
where ST-NLM and Gaussian post-filter extracted 0.163 and 0.172. Furthermore, the
CNN decreased the nMSE by 6.13% and the ST-NLM, Gaussian post-filter, reduced
it by 6.13%. Overall, the proposed CNN enhanced the noise reduction in the recon-
structed myocardium and the spatial resolution of the LV wall.

Song et al. [46] developed a spatiotemporal CNN (ST-CNN) model for image denois-
ing in low-dose cardiac gated SPECT studies. A total of 119 cases were included, and the
proposed model is trained with low-dose images as input and includes full-dose images
as output. Moreover, the authors included in the developed model an LSTM component
in order to perform correctly with the format of a gated sequence. The corresponding
model was compared against spatial-only S-CNN and ML reconstruction, where ST-
CNN outperformed with NMSE 0.127, and S-CNN and ML extracted 0.161 and 0.273,
respectively.

B. Fast-scan

Estimating the standard acquisition time image given a fast scan is seldom investi-
gated in the literature. In the only work discovered, Shiri et al. [17] aimed to reduce the
acquisition time of acquiring SPECT images from patients by exploring two approaches.
The first approach refers to the reduction of scanning time per projection. The second
approach refers to reducing the number of acquired projection images during acqui-
sition. The study includes 363 cases with normal patients but various heart disorders,
like infarction and ischemia, where the SPECT data were reconstructed with the OSEM
algorithm. For each patient, four datasets were produced: FT (full-time projections), HT
(half-time acquisition per projection), FP (full projections) and HP (half projections).
The proposed method is applying a residual network, namely ResNet, to predict FT
from HT and FP from HP images, and the results were evaluated with tenfold cross-vali-
dation. According to the results, the predicted FT had better image quality than the pre-
dicted FP, with a decreasing RMSE of 8.0+ 3.6 and 6.8 +2.7 for FT and FP, respectively.

Moreover, the HP reconstructed images acquired better quality than the HT recon-
structed images. The error increases as acquisition time is reduced. The deep neural net-

work can effectively restore image quality.

Attenuation correction
The majority of dedicated cardiac SPECT scanners do not have integrated CT technol-
ogy. As a result, attenuation correction (AC) for image quantification is very challenging
due to the presence of artefacts. Several research papers address this issue by introduc-
ing DL-based AC methods.

Several studies employ the U-Net CNN to estimate the NAC image directly or gener-
ate the attenuation maps that deliver the AC image. In [47], Yang et al. used a Deep CNN
to generate the attenuation-corrected SPECT from the NAC scan. The study involved
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100 participants. The effectiveness of the proposed method was verified by voxelwise
and segment-wise analyses against the reference, CT-based AC using the 17-segment
myocardial model of the American Heart Association under a tenfold cross-validation
procedure. Voxelwise correlations with the reference image were 97.7% +1.8% (slope,
0.94; R2=0.91), whereas the segmental errors stayed mostly within+10%. The gener-
ated Polar Maps were visually assessed for artefact reduction. The study showed promis-
ing results, but the performance of the proposed method was affected by the amounts of
attenuation introduced between the scans and the different observed uptake patterns.
In another work, Mostafapour et al. [48] analyzed the direct attenuation correction of
SPECT MPI images, utilizing two DL-based algorithms, ResNet and U-Net. The data-
set consisted of 99 patients, including both normal and abnormal cases. Moreover, the
Chang AC approach [49] was applied for comparison against DL models. Based on the
quantitative metrics and external evaluation of 19 images, the DL approaches produced
images that agree with SPECT CT-AC images, whereas the Chang approach underesti-
mated the patient’s status based on the horizontal profile. ResNet and U-Net achieved a
ME of 6.99+£16.72 and —4.41 £+ 11.8 and an SSIM of 0.99+ 0.04 and 0.98 £ 0.05, respec-
tively. The Chang approach extracted the ME and SSIM of 25.52 4 33.98 and 0.93+0.09,
respectively.

Mostafapour et al. [50] investigated the generated attenuation-corrected images uti-
lizing ResNet and U-Net. This research enrolled 99 patient cases. NAC SPECT images
were included as input, and CT-based attenuation-corrected images were used as refer-
ence. Nineteen cases were provided as an external validation dataset to further evaluate
the models. Chang’s method [49] was compared against the deployed ResNet and U-Net
approaches and was found inferior, with a ME of —6.99+16.72, against —4.41+11.8,
and an SSI of 0.99+0.04 and 0.98 +0.05, respectively. Chen et al. [51] explored the capa-
bilities of transfer learning and utilized the state-of-the-art networks U-Net and DuRDN
to generate attenuation maps from SPECT. A total of 200 SPECT/CT cases were
included in this research. Regarding the results, DuRDN outperformed the prediction
of p-maps and the reconstruction of SPECT AC images. The concluded error between
ground-truth and predicted p-maps is 5.13+7.02 and between ground-truth and recon-
structed images is 1.11+1.57%.

Chen et al. [52] compared the efficiency between direct and indirect techniques for
dedicated SPECT and general purpose SPECT datasets by developing U-Net and
DuRDN. In both approaches, AC was performed using CT-derived pu-maps as ground
truth. More specifically, in indirect methodologies, attenuation maps (y-maps) are gen-
erated from emission images, whereas in direct methodologies, attenuation-corrected
(AC) images are predicted directly from non-attenuation (NAC) images without the
need for p-maps. Concerning general purpose SPECT, the study involved 400 partici-
pants, who underwent stress and rest examinations, where in the direct approach, both
photopeak and scatter images were concatenated and inserted as input into the networks
to predict the corresponding AC images directly. In indirect methodologies with gen-
eral purpose SPECT, the NAC images were first concatenated. They were then applied
as input to the networks to predict the intermedia p-maps, which were then utilized
for the iterative reconstructions to output the predicted AC images. The indirect strat-
egies with DuRDN as a DL approach for dedicated SPECT with full p-maps achieved
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better results with an nMSE (average normalized Mean Squared Error) of 1.2 4+0.72%,
in contrast to the 2.21£1.17% yielded by past direct methodologies. Overall, for both
SPECT systems, the indirect approaches demonstrate stability and efficiency in contrast
to direct approaches, where the direct image-to-image transformation might not ensure
constancy.

GANSs enjoy remarkable success in generating the AC image directly from the NAC
input. For example, Shi et al. [53] developed a 3D CNN based on a cGAN framework to
estimate attenuation maps directly from emission data. Sixty-five cardiac SPECT images
were included, where both photopeak and scatter were inserted. Clinical characteristics
such as gender, age, height, weight, and BMI were also incorporated. The corresponding
patients went on a 1-day stress-only low-dose protocol. The proposed model achieved
an nMAE of 3.6%0.85% on a test set of 25 images, ensuring that the model can generate
trustworthy attenuation maps consistent with CT-based maps. Liu et al. [54] explored
the potential of the PRAC (Post-Reconstruction Attenuation Correction) approach com-
bined with DL methodology to provide accurate AC images for SPECT systems. The
study included 30 SPECT clinical cases in stress demonstration. The researchers devel-
oped a 3D GAN model to synthesize the attenuation map directly from the NAC SPECT
image. Following this, the PRAC image was reconstructed utilizing the synthesized map
and the virtual projections. For further evaluation, the PRAC image was generated based
on the DL attenuation map and the CT-based attenuation map. The results were com-
pared with scanner-generated AC images to serve as the reference ground truth. Fol-
lowing the post-reconstruction AC, both approaches performed consistently in contrast
with scanner-generated NC images. Overall, the PRAC method with both approaches
can enhance the correlation with the scanner-generated AC images compared with scan-
ner-generated NC images. Furthermore, PRAC-CT outperformed PRAC-DL regarding
scattering. In terms of metrics, the PRAC-CT extracted SSIM of 0.946 +0.041 compared
to the PRAC-DL of 0.902 £ 0.056. However, both methodologies reduce ROI biases after
attenuation correction. The authors developed a PRAC approach based on scanner-gen-
erated NC images without adding raw data from CT-less attenuation correction.

Shanbhag et al. [55] developed a conditional generative adversarial neural network
model to generate simulated AC images straightly from NAC images, without including
the use of CT. The dataset included 4886 patients, where short-axis NC and AC images
are demonstrated for training purposes and 604 patients from two separate external sites
included for testing purposes. For comparison reasons the authors gathered the results
of stress TPD attained from NC, AC and DeepAC (generated of the proposed model)
images. The proposed model achieved 0.79 AUC compared to NC TPD with 0.7 AUC
and similar with AC TPD. With respect to normalcy rate the generated simulated images
produced better results with 70.4% and 75.0% for DeepAC TPD and AC TPD accord-
ingly, in contrast with NC TPD which extracted 54.6%. As a conclusion, the developed
model enhanced the diagnostic accuracy for obstructive CAD and can function without
the need of CT hardware and produced results similar to actual AC images.

Hagio et al. [56] proposed a convolutional neural network based on deep learning
methodology to generate “virtual” attenuation-corrected polar maps from NAC data,
without adding CT imaging scans. The study includes 11,532 cases with paired NAC and
CTAC images. The authors developed a DL algorithm based on the U-Net architecture
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framework to predict DLAC polar maps from NAC polar maps. The produced model
attained 0.827 AUC, in contrast with NAC images, which extracted 0.78 AUC. Regard-
ing sensitivity and specificity, the produced model extracted 88% sensitivity and achieved
18.9% increased value of specificity for DLAC and 25.6% for CTAC polar maps. Conclu-
sively the developed model generated similar attenuation-correction images with CTAC
and accomplished better diagnostic accuracy with exceptional overall performance.

Similar results have been reported in other studies as well [56, 57]. Nguyen et al. [58]
developed a 3D-GAN with U-Net as a generator to produce AC images. The study
involved 603 patients under SPECT MPI stress and rest demonstration; however, only
stress cases were included in the research. The proposed model was evaluated against
CAE-based and GAN-based architectures, and the 3DU-Net-GAN network outper-
formed with SSIM 0.945% and NMAE 0.034. Torkaman et al. [59] proposed a 3D condi-
tional GAN for producing AC SPECT images directly from NAC images. A total of 100
SPECT/CT images were involved. Unlike traditional methods, the suggested approach
does not require intermediate attenuation maps, which depend on the generation of
CT counterparts utilized as input for attenuation correction. According to the results,
the proposed cGAN can generate AC images without utilizing CT data. The reference
CT-based correction yielded nRMSE of 0.2258 +0.0777, greater than that of the cGAN
(0.1410+0.0768). Similar performance was reported when considering the PNSR and
the SSIM values.

De-noising

SPECT images suffer from noise and artefacts. Metallic implants, patient motion, con-
trast medium, and truncation typically produce image artefacts affecting the SPECT
quantification procedure [60].

The U-Net CNN is occasionally utilized for down-sampling and up-sampling the noisy
input image to improve its quality. Liu et al. [61] presented a coupled U-Net modifica-
tion and compared it against the iterative OSEM algorithm with three-dimensional (3D)
Gaussian post-filtering for SPECT image denoising. The experiment involved 895 clini-
cal studies. The authors used the non-prewhitening matched filter (NPWMF) to evaluate
the performance of perfusion defect detection. Their method achieved a significant (8%)
increase in the signal-to-noise ratio (SNRD) in the NPWMF output, and the denoised
images significantly improved the detection performance of perfusion defects. In a sub-
sequent study [62], the same framework was evaluated on 190 SPECT subjects. ROC
analysis on reconstructed images with and without processing by the DL network using
a set of clinical SPECT-MPI was performed. Again, compared to the Gaussian post-fil-
tering reconstruction, the proposed DL network achieved greater de-noising, increas-
ing the AUC from 0.80 to 0.88. Kikuchi et al. [63] explored the automatic extraction of
myocardial regions from SPECT images to reduce the negative impact of extracardiac
activity in the patient. Six hundred ninety-four myocardial SPECT images were included
in stress and rest conditions. Various deep neural network architectures were proposed,
such as 1-layer U-Net, 4-layer U-Net and 4-layer U-Net++. A multi-slice input method
was also developed for the training procedure in order to improve myocardial detection
performance. Reviewing the results, U-Net++ performed tremendously and decreased
the effects of the extra-myocardial activity. Its structure was characterized as useful. The
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Dice coefficient was 0.918 at the pixel level, and there were no false positives at the slice
level using U-Net++ with 9 input slices.

GAN:Ss can serve as denoising CNNs as well, aiming to estimate the low-noise coun-
terpart, given a noisy image. There are three works employing such CNNs for this task.
By developing a GAN model, Mok et al. [64] aimed to reduce the noise level in each
SPECT dual respiratory and cardiac gating case produced from an XCAT phantom.
The study involves 120 realistic noisy projections simulated from RAO (Right Anterior
Oblique). The results revealed that with the application of GAN, the noise level gradually
reduced for the DG reconstructed images, extracting NSD 0.514 and 0.215 for without
and denoising, respectively. However, when the DG images formed a cardiac image, the
NSD were 0.229 and 0.093 for without and with denoising. Sun et al. [65] developed
a denoising method for dual gating MP-SPECT images utilizing a 3D ¢cGAN. Twenty
patients underwent stress examinations and produced 5D SPECT/CT scans. Twenty
extended phantoms were also included in the simulation, where six respiratory and eight
cardiac gates were demonstrated. The results have demonstrated that both simulation
and real data and the cGAN approach can reduce the image noise effect and provide bet-
ter image quality. The authors compared their method with post-reconstruction image
improvement filters. The noise level was substantially reduced from 0.1671+0.078
to 0.0520£0.023 with the cGAN approach, whereas conventional filtering methods
achieved a minimum of 0.0902+0.051 noise level. Sun et al. [66] developed a GAN
structure to decrease the noise effect in SPECT images. A total of five XCAT phantoms
were included, where, for each phantom, six respiratory and eight cardiac gates were
used. Overall, 48 DGs were included. Regarding the clinical dataset, one clinical patient
underwent stress SPECT/CT, where the dataset was re-binned into seven respiratory
and eight cardiac gates. Overall, 56 DGs were included. Based on the results, the clinical
data provides superior performance to denoising along with the development of GAN,
achieving NSD 0.083 and FWHM 1.489.

Reconstruction

Dietze et al. [67] presented a custom CNN to increase the quality of SPECT/CT images
and compared the results against standard methods like Monte Carlo-based reconstruc-
tion, FBP (Filtered Back Projection), and CLINIC (Clinical Reconstruction). A total of
128 SPECT/CT scans were included in the study. The researchers proposed generat-
ing a low-quality reconstructed image utilizing FBP and then inserting the result into
a deep convolutional encoder—decoder neural network to improve the image quality.
The research demonstrated that FBP with the combination of CNN for image enhance-
ment in SPECT/CT images could apply reconstruction in a minimized time with simi-
lar results to the Monte Carlo-based reconstructions, which perform slower. The mean
squared error of the neural network approach in the validation set was between the
Monte Carlo-based and clinical reconstruction, and the lung shunting fraction differ-
ence was lower than 2 per cent. In another study, Chrysostomou et al. [68] investigated
the capabilities of DL methodology and, more specifically, CNNR (CNN Reconstruc-
tion) with encoding—decoding capabilities for SPECT image reconstruction, with the
intent to retain patient radiopharmaceutical injection to minimum levels. The study
includes 600,000 software phantoms for training the network. The proposed network
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was compared against FBP, MLEM (Maximum Likelihood Expectation Maximization)
and OSEM (Ordered Subset Expectation Maximization), where CNNR achieved an
SSIM of 0.938 and FBP, OSEM, and MLEM attained 0.834, 0.929, and 0.928, respectively,
for low noise methodology.

In [69], Song et al. explored a post-processing technique to reconstruct 4D SPECT
images utilizing a 3D residual CNN. A total of 197 clinical cases were included. The
training of CNN consists of reconstructed gated images as input and their correspond-
ing counterparts acquired from the 4D reconstruction algorithm as output, which
means that the CNN will be trained to map gated reconstructed images as the result of
4D reconstruction. The proposed CNN demonstrated that it could suppress the noise
level in the reconstructed myocardium and outperformed two standard methods, NLM
and Gaussian post-filter. CNN achieved an NMSE of 0.033, whereas NLM and Gaussian
post-filter obtained 0.04 and 0.042, respectively. In addition, the proposed CNN model
decreases the MSE by 17.5% and 21.4%, in contrast with the NLM and Gaussian filters,
respectively.

Xie et al. [70] explored the potential to add projection angular sampling data to
improve the reconstruction process and developed a U-Net structure for this purpose.
Their study used pig and physical phantom data to evaluate the DL methodology. The
results were compared with the multi-angle reconstruction approach. U-Net receives
one-angle images and outputs multi-angle images. According to the results, increasing
angular sampling can enhance the image quality. The U-Net structure and multi-angle
approach generate enhanced-quality images compared to their one-angle counterparts,
and the U-Net structure was found to be outstanding in clinically used one-angle results.
More importantly, U-Net outperforms the generation of images since it is not always
suitable to obtain multi-angle data.

Other imaging improvements

Other image improvements and manipulation methods include super-resolution and
reorientating cardiac SPECT images. The reorientation of SPECT images refers to an
approach wherein the transaxial cardiac SPECT images are reoriented into the standard
short-axis slices.

Cheng et al. [71] developed a super-resolution reconstruction network based on resid-
ual architectures to improve the resolution of SPECT images. Thirty-five sets of XCAT
phantoms were used for training, and three sets of XCAT were used for validation. The
study focused on 2D parallel beam reconstruction, where the input is an LR sinogram,
and the output is an SR sinogram. Following the SR projection image acquisition, the SR
image is reconstructed. According to the results, the proposed method achieved bet-
ter PSNR and SSIM and executed superior noisy sinograms in contrast to traditional
methods.

Zhang et al. [72] proposed a CNN structure to reorient SPECT images for accurate
processing and analysis. The dataset includes 322 patients in the stress demonstration.
Seventy-five images were utilized as external validation. The proposed CNN predicted
six rigid-body transformation parameters, and then a spatial transformation network
was developed to employ these parameters on the input images for generating reori-
ented images. Furthermore, polar maps were acquired from the produced images, and
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the average count values from 17 segments were calculated to estimate the quantitative
accuracy of the presented method. According to the results, all images were reoriented
effectively and the average count of 17 segments complied with the reference manual
method.

It is worth noticing that other imaging improvements include motion correction and
artefact removal. Several studies are addressing such issues in the PET modality [73].
In the current review, such studies were not found in the literature. Nevertheless, those
challenges also apply to SPECT imaging, opening the horizons for future studies.

Discussion and conclusions

Major objectives/major findings

CDV detection/classification

Four major objectives have been identified in related studies concerning CDV detection.
Firstly, the development of Al methods for diagnosing Coronary Artery Disease based
on ICA findings. Secondly, developing frameworks that strongly agree with the human
interpretation of SPECT images in identifying abnormal/ischemic/defected locations
in segmented Polar Maps or identifying CAD risk based on the complete SPECT scan.
Thirdly, per-vessel detection of defects and abnormalities is based on visual interpreta-
tion by human experts. Finally, the development of pipelines that exhibit superior per-
formance to quantitative analysis, such as Total Perfusion Deficit in the tasks mentioned
above.

With reference to ICA findings, most of the studies report an accuracy of 82+5%. It
is worth mentioning that most diagnostic tests, such as MPI, Dobutamine stress test,
and ECG, exhibit sub-optimal performance. For example, in the data collected in [34],
MPI yielded an accuracy of 75%, a sensitivity of 76.94%, and a specificity of 70.31%. DL
approaches improved this performance by at least 10%. Ensemble models use image data
and clinical attributes, thereby approaching the problem from a broader perspective.
Besides, the diagnostic tests do not always reflect predisposing factors and recurrent dis-
eases that significantly affect the risk of suffering from cardiac diseases. Diagnostic tests
may overestimate or underestimate the situation. AI manages to integrate complex fac-
tors and image processing to predict the outcome.

Reporting whether the study examines the agreement rating with the visual interpreta-
tion by the experts or the accuracy in detecting CAD based on reliable labelling of the
dataset is essential. Only 28.6% per cent of the studies train their networks to predict
the presence of CAD, whilst other studies compare their results with the visual inter-
pretation performed by the experts, thereby measuring the agreement between Al and
humans. In the case of CAD, SPECT imaging performs sub-optimally [35], yielding false
positives and negatives. SPECT imaging exhibits an AUC of 0.83 in [74], sensitivity and
specificity of 0.84 and 0.69 in [75], and sensitivity and specificity of 0.83 and 0.41. In such
cases, Al methods are not expected to perform significantly better due to the nature of
the images. More specifically, significant features that are not visible to the human eye
seldom appear, so there is a limitation from the outset regarding how accurate an artifi-
cial intelligence model can be in diagnosing diseases from such images.

On the contrary, studies that address the efficiency of their models based on human
experts’ diagnostic yield are expected to exhibit much better results. Many studies have
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used nuclear medicine experts’ diagnostic yield as their gold standard. They aimed to
compare Al methods against the human eye and interpret the results. Such studies
reported a remarkable agreement rate between the Al prediction and the experts’ diag-
nosis. For example, Selcan Kaplan Berkaya et al. [32] achieved a 92% agreement rating.
Papandrianos et al. [19] achieved a rating of 93.48 +2.81%. The overall agreement rating
ranged from 86 to 93%.

DL methods are found to be superior to conventional quantitative assessment. In all
the reported studies, DL models improved the diagnostic accuracy by approximately
10%. Besides, DL methods yielded better AUC scores. For example, in [24], the AUC
score for disease prediction by DL was higher than for TPD (per patient: 0.80 vs. 0.78;
per vessel: 0.76 vs. 0.73). With the DL threshold set to the same specificity as TPD,
per-patient sensitivity improved from 79.8% (TPD) to 82.3%, and per-vessel sensitivity
improved from 64.4% (TPD) to 69.8%.

Finally, excellent agreement ratings with the human interpretation were reported in
the localization performed on a fine 17-segment division of the polar maps. For exam-
ple, in [31], graph convolutional neural networks achieve an agreement of 83.1% with the

human observer.

Image quality improvement

Three major objectives were examined within the category of image quality improve-
ment. Firstly, some studies focused on SPECT image de-noising and, more specifically,
artefact removal. Secondly, several studies proposed DL-based methods to estimate the
AC SPECT image using the uncorrected counterpart. Thirdly, some studies proposed
DL methods to estimate standard dose and standard time SPECT scan images using
their low-dose and fast-scan counterparts.

Concerning image de-noising, the proposed CNNs outperformed conventional image
denoising algorithms and methods, such as the well-established three-dimensional (3D)
Gaussian post-filtering. The classic U-Net was employed in most of the studies with spe-
cific modifications.

The direct attenuation correction achieved by DL methods, such as the U-Net and
GAN topologies, reported metric results that are similar or superior to the conventional
attenuation correction methods. Their results are remarkable despite the small-scale
datasets used to train such networks in the current literature. However, visual inspec-
tion of the corrected images is not present in most cases. Image similarity metrics,
though undeniably reliable, need to be accompanied by visual comparisons performed
by experienced medical experts. CNNs and GANs have been designed and successfully
deployed for denoising and reconstruction purposes with similar results.

The estimation of the full-count SPECT scan from the low-count SPECT has been the
focal point of a few studies. CAE, GANs, and ResNet are the most famous strategies
in the literature. They are reported to accurately estimate the full-count SPECT image
given the 1/8 and 1/16 standard clinical dose image or the half acquisition time out-
put. Though managing to exhibit similar or fewer errors (RMSE) than the conventional
methods, the trade-off between radiation exposure reduction and clinical information

loss has not been investigated yet.
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In terms of the employed algorithm, combination of U-Net, GAN, and CNN is found
in most of the reported studies (37.9%), as seen in Fig. 7.

Clinical factors can improve the diagnostic accuracy

Integration of clinical factors would aid in the explainability issue and can improve the
diagnostic accuracy of the models. Some studies supply demographic characteristics to
their models, such as the gender and sex of the subject. The importance of the demo-
graphic factors in the final prediction is not examined further. In the study of Apostolo-
poulos et al. [35], the authors used 23 clinical attributes and the DL model’s prediction
on the image to build a Random Forest classifier. There was a 14% improvement in accu-
racy when the clinical attributes were embedded into the model. However, the impor-
tance of each attribute was not further examined.

Future research could involve both images and clinical information. Studies that per-
form clinical information feature analysis and selection, whilst employing explainable
techniques such as the Grad-CAM algorithm for the involved images, are expected to
provide better results and be more explainable. Before the era of DL, cardiovascular
disease detection relied on clinical attributes in most studies. Such studies offer great
insight into the relationship between the clinical attributes and could advise how such
attributes can be analyzed and embedded into the model.

Hand-crafted and pre-trained CNNs

Most methods use handcrafted CNNs (52.2%), as seen in Fig. 8. On the contrary, few
studies employ state-of-the-art pretrained networks, such as VGG and ResNet. Hand-
crafted CNNs seem preferable, perhaps due to their minimum complexity. Besides, the
nature of the images does not pose additional challenges that would require millions of
trainable parameters and sufficient depth. CNNs designed for cardiovascular disease
diagnosis from SPECT images are not expected to discover novel image biomarkers or
complex patterns inside the image. Moreover, most studies involve small-scale datasets
that are inherently unsuitable for training large and deep networks. Despite those facts,
it is observed that both strategies yield equivalent results. This is because studies which
employ pretrained networks usually freeze some of their layers, thereby reducing the
trainable parameters and retaining their depth. In essence, they adjust those networks to
the needs of the particular datasets.

Effective Medical Decision Support Frameworks require lightweight models to facili-
tate their prediction in real-time during the daily routine. Hence, it would be interesting
to report the training and testing times of the models. Training and testing times depend
heavily on the number of trainable parameters each network introduces, the general net-
work structure and depth, and the input data format (2D, 3D, etc.). In the study of Ber-
kaya et al. [32], the authors observed that the proposed VGG-16 network required 0.43 s
to classify a new image, whereas the rule-based approach required 4 s. From a technical
point of view, it is a limitation that most of the studies do not report the training and
testing times of the developed networks.
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Fig. 7 Proportion of image quality improvement studies in terms of: a learning type (CNN, GANs, UNET or
combinations of them), b data source (SPECT images and phantoms)

Robustness to SPECT scanner variation

SPECT scanners differ from each other, introducing extra challenges. DL may identify
variabilities between sites, camera types, and tracers as important features. Using the
polar map format resolves such variabilities. However, that is not the case in many stud-
ies. Hence, the suggested pipelines may perform differently in unseen data than other
devices. Some works in the literature seek to examine this property of the developed
models [34, 35]. The developed frameworks show some robustness to image acquisi-
tion device variation, though this issue is not rigorously examined in current research.
Multicenter studies give the overall picture more comprehensively since the control of
the models is done using images from different scanners. In addition, studies that utilize
Polar Maps might circumvent these issues because they do not interact with the raw
SPECT image directly. The review identified some studies based on Polar Maps (34.8%),
as observed in Fig. 8.

Most studies that achieve image quality improvement (attenuation correction, de-nois-
ing, etc.) do not evaluate their methods on different scanners. This can be considered a
limitation of the current research. On the contrary, studies on disease classification often
tested their networks for robustness to SPECT scanner variation.

The explainability issue

Deep Learning methods face the explainability issue [76]. Since medical decisions
are undeniably based on strict and specific criteria and guidelines, the inability of DL
to present how and why it performed the desired task is a major obstacle to becom-
ing an established pipeline in everyday practice. At present, DL is found to be excel-
lent in extracting features, detecting artefacts, tissues, tumours, segmenting parts of
the body and organs, and generating synthetic data, but severely weak in revealing
crucial cause and effect relationships that would aid the current medical research
towards finding new image biomarkers, at least at present. The act of DL as a black
box makes the medical community reluctant to adopt DL in assisting with everyday
challenges. There is an increasing demand for transparency and interpretability of the
new methods.

The literature review identified many studies that use explainability techniques. It
is worth noting that most studies do not use any explainable methods (Fig. 7). Three
studies used the Grad-CAM algorithm to visualize important regions of the image
based on the model’s prediction. In the study of Chen et al. [30], the visualization
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Fig. 8 Proportion of diagnosis classification studies in terms of: a learning type employing pretrained
networks and hand-crafted networks, b data source employing SPECT images and Polar Maps, and ¢
explainability employing GradCAM, attention maps, polar map segmentation techniques or without any XAl
tool

pointed out areas with myocardial defects. However, a visual assessment of the entire
test set is not provided.

Otaki et al. [22] used attention maps for each segment of the standard 17-segment
American Heart Association model to generate the segmental CAD probability map.
The CAD probability map marks the degree to which the segments contribute to the
model’s prediction. Similar approaches were followed in [31, 37]. Although the tech-
niques mentioned above do not reveal the internal decision-making procedure of the
model, they help address the model’s performance in detecting the right areas of the
image.

Though explainability is highly desirable in image classification tasks, improving the
image quality does not require rigorous explainability tools. However, the black-box
nature of DL methods still raises concerns, especially when compared to conventional
denoising methods, which are highly transparent.

Concluding remarks

The review addressed major objectives and findings in cardiac SPECT imaging using
the recent advances in DL methods. The research identified 52 studies. Five major
application categories have been distinguished: disease classification, image de-nois-
ing, attenuation correction, full-count SPECT estimation, and reconstruction. It can
be concluded that DL methods exhibit strong agreement ratings with human experts,
are superior to the traditional quantitative assessment, and can effectively diag-
nose cardiovascular disease in a non-invasive manner with an accuracy of 82+ 5%.
Besides, DL methods are remarkably effective in image quality improvement tasks,
obtaining high precision in estimating the AC SPECT image and the full-count
SPECT image. Image reconstruction and de-noising are also investigated using DL
methods and yield promising results. Limitations—future research directions include
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(1) the small-sized datasets that are currently available and the sparse deployment of
advanced data augmentation techniques; (2) the occasional use of clinical attributes
to enhance the effectiveness of the DL models; (3) the lack of many multi-centre stud-
ies to verify the robustness of the developed frameworks; and (4) the establishment of
explainability tools and algorithms to evaluate the effectiveness and enhance the reli-
ability of the proposed methods.

Abbreviations

AB Adaptive boosting

AC Attenuation correction

Al Artificial intelligence

ANN Artificial neural network

ARE Absolute relative error

CAD Coronary artery disease

CLINIC Clinical reconstruction

CNN Convolutional neural network

DL Deep learning

FBP Filtered back-propagation

GAN Generative adversarial network

GB Gradient boosting

Grad-CAM  Gradient-weighted class activation mapping
MAGE Major adverse cardiac events

ME Mean error

ML Machine learning

MLEM Maximum likelihood expectation maximization
NAC Non attenuation correction

nME Normalized mean error

NPWMF  Non-prewhitening matched filter
nRMSE Normalized root-mean-squared error

NSD Noise level measured as the normalized standard deviation
OSEM Ordered-subsets expectation—-maximization

PET Positron emission tomography

PRAC Post-reconstruction attenuation correction

PSNR Peak signal-to-noise ratio

RAO Right anterior oblique

RF Random forest

RMSE Root-mean-squared error

ROC Receiver operating characteristic

SOTA State of the art

SPECT Single-photon emission computerized tomography
SSIM Structural similarity index measure

ST-NLM Spatiotemporal non-local means

SVM Support vector machine

TPD Total perfusion deficit

XGB Extreme gradient boosting

Acknowledgements
Not applicable

Author contributions

IDA, AF, and SM collected the literature. NIP, IDA, and AF analysed the findings and classified the collected research stud-
ies. SM examined and discussed the methodology of each study. EIP and AF performed the final reports regarding the
presented studies. The original draft was prepared by IDA, NIP, AF, SM, and EIP. Editing was performed by SM, EIP, and IDA.
EIP was responsible for the supervision. All authors read and approved the final manuscript.

Funding
The research project was supported by the Hellenic Foundation for Research and Innovation (H.FR.l) under the “2nd Call
for H.FR.I. Research Projects to support Faculty Members & Researchers” (Project Number: 3656).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.



Apostolopoulos et al. EINMMI Physics (2023) 10:6

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 29 August 2022 Accepted: 19 December 2022
Published online: 27 January 2023

References

1.

uhwN

o

20.

21.

22.

23.

24.

25.

26.

Seifert R, Weber M, Kocakavuk E, Rischpler C, Kersting D. Artificial intelligence and machine learning in nuclear medi-
cine: future perspectives. Semin Nucl Med. 2021;51:170-7.

Nensa F, Demircioglu A, Rischpler C. Artificial intelligence in nuclear medicine. J Nucl Med. 2019;60:295-37S.

Krogh A. What are artificial neural networks? Nat Biotechnol. 2008;26:195-7.

Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24:1565-7.

LeCunY, Bengio Y, et al. Convolutional networks for images, speech, and time series. Handb Brain Theory Neural
Netw. 1995;3361:1995.

Goodfellow |, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Ghahram-
ani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors,, et al., Advances in neural information processing
systems, vol. 27. Red Hook: Curran Associates, Inc; 2014. p. 2672-80.

Erratum to: European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43:799-799.
Goodfellow |, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.

Roscher R, Bohn B, Duarte MF, Garcke J. Explainable machine learning for scientific insights and discoveries. IEEE
Access. 2020;8:42200-16.

Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. ArXiv160806993 Cs.
2018. http://arxiv.org/abs/1608.06993. Cited 9 Jun 2020.

. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances

in Neural Information Processing Systems; 2012. p. 1097-105.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv14091556 Cs.
2015. http://arxiv.org/abs/1409.1556. Cited 18 Nov 2019.

Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulys B. 3D deep learning on medical images: a review. Sensors.
2020;20:5097.

Zhang Y, Rabbat M. A graph-CNN for 3D point cloud classification. In: 2018 IEEE international conference on acous-
tics, speech, and signal processing ICASSP. Calgary, AB: IEEE; 2018. p. 6279-83. https://ieeexplore.ieee.org/docum
ent/8462291/. Cited 28 Jul 2022.

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N,
Hornegger J, Wells WM, Frangi AF, editors. medical image computing and computer assisted intervention—MICCAI
2015. Cham: Springer; 2015. p. 234-41. https://doi.org/10.1007/978-3-319-24574-4_28. Cited 18 Nov 2019.

Page MJ, McKenzie JE, Bossuyt PM, Boutron |, Hoffmann TC, Mulrow CD, et al. The PRSMA 2020 statement: an
updated guideline for reporting systematic reviews. BMJ. 2020;2021:n71.

Shiri I, AmirMozafari Sabet K, Arabi H, Pourkeshavarz M, Teimourian B, Ay MR, et al. Standard SPECT myocardial
perfusion estimation from half-time acquisitions using deep convolutional residual neural networks. J Nucl Cardiol.
2021,28:2761-79.

Papandrianos N, Feleki A, Papageorgiou E. Exploring classification of SPECT MPI images applying convolutional neu-
ral networks. In: 25th Pan-Hellenic conference on informatics. Volos Greece: ACM; 2021. p. 483-9. https://doi.org/10.
1145/3503823.3503911. Cited 28 Jul 2022.

Papandrianos N, Papageorgiou E. Automatic diagnosis of coronary artery disease in SPECT myocardial perfusion
imaging employing deep learning. Appl Sci. 2021;11:6362.

Zahiri N, Asgari R, Razavi-Ratki S-K, parach A-A. Deep learning analysis of polar maps from SPECT myocardial perfu-
sion imaging for prediction of coronary artery disease. In: Review; 2021. https://www.researchsquare.com/article/
rs-1153347/v1.

Papandrianos NI, Apostolopoulos ID, Feleki A, Apostolopoulos DJ, Papageorgiou El. Deep learning exploration for
SPECT MPI polar map images classification in coronary artery disease. Ann Nucl Med. 2022. https://doi.org/10.1007/
$12149-022-01762-4.

OtakiY, Singh A, Kavanagh P, Miller RJH, Parekh T, Tamarappoo BK, et al. Clinical deployment of explainable artificial
intelligence of SPECT for diagnosis of coronary artery disease. JACC Cardiovasc Imaging. 2022;15:1091-102.
Betancur J, Hu L-H, Commandeur F, Sharir T, Einstein AJ, Fish MB, et al. Deep learning analysis of upright-supine
high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multi-
center study. J Nucl Med. 2019;60:664-70.

Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. Deep learning for prediction of obstruc-
tive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging. 2018;11:1654-63.
Arvidsson |, Overgaard NC, Astrom K, Heyden A, Figueroa MO, Rose JF, et al. Prediction of obstructive coronary artery
disease from myocardial perfusion scintigraphy using deep neural networks. In: 2020 25th international conference
on pattern recognition ICPR. Milan, Italy: IEEE; 2021. p. 4442-9. https://ieeexplore.ieee.org/document/9412674/.
Cited 28 Jul 2022.

Miller RJH, Kuronuma K, Singh A, Otaki Y, Hayes S, Chareonthaitawee P, et al. Explainable deep learning improves
physician interpretation of myocardial perfusion imaging. J Nucl Med. 2022;63(11):1768-774. https://doi.org/10.
2967/jnumed.121.263686.

Page 41 of 43


http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1409.1556
https://ieeexplore.ieee.org/document/8462291/
https://ieeexplore.ieee.org/document/8462291/
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1145/3503823.3503911
https://doi.org/10.1145/3503823.3503911
https://www.researchsquare.com/article/rs-1153347/v1
https://www.researchsquare.com/article/rs-1153347/v1
https://doi.org/10.1007/s12149-022-01762-4
https://doi.org/10.1007/s12149-022-01762-4
https://ieeexplore.ieee.org/document/9412674/
https://doi.org/10.2967/jnumed.121.263686
https://doi.org/10.2967/jnumed.121.263686

Apostolopoulos et al. EINMMI Physics (2023) 10:6 Page 42 of 43

27.

28.

29.

30.

31

32.

33

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

Otaki Y, Tamarappoo B, Singh A, Sharir T, Hu L-H, Gransar H, et al. Diagnostic accuracy of deep learning for myocar-
dial perfusion imaging in men and women with a high-efficiency parallel-hole-collimated cadmium-zinc-telluride
camera: multicenter study. J Nucl Med Soc Nucl Med. 2020;61:92-92.

Miller RJH, Singh A, Otaki 'Y, Tamarappoo BK, Kavanagh P, Parekh T, et al. Mitigating bias in deep learning for diagno-
sis of coronary artery disease from myocardial perfusion SPECT images. Eur J Nucl Med Mol Imaging. 2022. https://
doi.org/10.1007/500259-022-05972-w.

Singh A, Miller RJH, Otaki 'Y, Kavanagh P, Hauser MT, Tzolos E, et al. Direct risk assessment from myocardial perfusion
imaging using explainable deep learning. JACC Cardiovasc Imaging. 2022. https://doi.org/10.1016/}jcmg.2022.07.
017.

Chen J-J, SUT-Y, Chen W-S, Chang Y-H, Lu HH-S. Convolutional neural network in the evaluation of myocardial
ischemia from CZT SPECT myocardial perfusion imaging: comparison to automated quantification. Appl Sci.
2021;11:514.

Spier N, Nekolla S, Rupprecht C, Mustafa M, Navab N, Baust M. Classification of polar maps from cardiac perfusion
imaging with graph-convolutional neural networks. Sci Rep. 2019;9:7569.

Kaplan Berkaya S, Ak Sivrikoz |, Gunal S. Classification models for SPECT myocardial perfusion imaging. Comput Biol
Med. 2020;123:103893.

Liu H, Wu J, Miller EJ, Liu C, Yagiang L, et al. Diagnostic accuracy of stress-only myocardial perfusion SPECT improved
by deep learning. Eur J Nucl Med Mol Imaging. 2021;48:2793-800.

Apostolopoulos ID, Papathanasiou ND, Spyridonidis T, Apostolopoulos DJ. Automatic characterization of myocardial
perfusion imaging polar maps employing deep learning and data augmentation. Hell J Nucl Med. 2020;23:125-32.
Apostolopoulos ID, Apostolopoulos DI, Spyridonidis T, Papathanasiou ND, Panayiotakis GS. Multi-input deep learn-
ing approach for cardiovascular disease diagnosis using myocardial perfusion imaging and clinical data. Phys Med.
2021,84:168-77.

Trung NT, Ha NT, Thuan ND, Minh DH. A deeplearning method for diagnosing coronary artery disease using SPECT
images of heart. J Sci Technol. 2020;144:022-7.

Nakajima K, Kudo T, Nakata T, Kiso K, Kasai T, TaniguchiY, et al. Diagnostic accuracy of an artificial neural network
compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. Eur J Nucl
Med Mol Imaging. 2017,44:2280-9.

de Souza Filho EM, de Amorim Fernandes F, Wiefels C, de Carvalho LND, dos Santos TF, dos Santos AASMD, et al.
Machine learning algorithms to distinguish myocardial perfusion SPECT polar maps. Front Cardiovasc Med.
2021;8:741667.

Baskaran L, Ying X, Xu Z, Alaref SJ, Lee BC, Lee S-E, et al. Machine learning insight into the role of imaging and clinical
variables for the prediction of obstructive coronary artery disease and revascularization: an exploratory analysis of
the CONSERVE study. Zirlik A, editor. PLoS ONE. 2020;15:¢0233791.

Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocar-
dial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2018;11:1000-9.

Rahmani R, Niazi P, Naseri M, Neishabouri M, Farzanefar S, Eftekhari M, et al. Precision diagnostica mejorada para la
imagen de perfusion miocardica usando redes neuronales artificiales en diferentes variables de entrada incluyendo
datos clinicos y de cuantificacion. Rev Esp Med Nucl E Imagen Mol. 2019;38:275-9.

Ramon AJ, Yang Y, Pretorius PH, Johnson KL, King MA, Wernick MN. Initial investigation of low-dose SPECT-MPI via
deep learning. In: 2018 IEEE nuclear science symposuim & medical imaging conference NSSMIC. Sydney, Australia:
IEEE; 2018. p. 1-3. https://ieeexplore.ieee.org/document/8824548/. Cited 28 Jul 2022.

Aghakhan Olia N, Kamali-Asl A, Hariri Tabrizi S, Geramifar P, Sheikhzadeh P, Farzanefar S, et al. Deep learning-based
denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance. Eur J
Nucl Med Mol Imaging. 2022;49:1508-22.

Ramon AJ, Yang Y, Pretorius PH, Johnson KL, King MA, Wernick MN. Improving diagnostic accuracy in low-

dose SPECT myocardial perfusion imaging with convolutional denoising networks. IEEE Trans Med Imaging.
2020;39:2893-903.

Song C, Yang Y, Wernick MN, Pretorius PH, King MA. Low-dose cardiac-gated spect studies using a residual convo-
lutional neural network. In: 2019 IEEE 16th international symposium on biomedical imaging ISBI 2019. Venice, Italy:
IEEE; 2019. p. 653-6. https://ieeexplore.ieee.org/document/8759586/. Cited 28 Jul 2022.

Song C, Yang Y, Wernick MN, Pretorius PH, King MA. Low-dose cardiac-gated spect via a spatiotemporal convolu-
tional neural network. In: 2020 [EEE 17th international symposium on biomedical imaging ISBI. lowa City, IA, USA:
IEEE; 2020. p. 814-7. https://ieeexplore.ieee.org/document/9098629/. Cited 28 Jul 2022.

Yang J, Shi L, Wang R, Miller EJ, Sinusas AJ, Liu C, et al. Direct attenuation correction using deep learning for cardiac
SPECT: a feasibility study. J Nucl Med. 2021;62:1645-52.

Mostafapour S, Gholamiankhah F, Maroofpour S, Momennezhad M, Asadinezhad M, Zakavi SR, et al. Deep learning-
based attenuation correction in the image domain for myocardial perfusion SPECT imaging. arXiv; 2021. https://
arxiv.org/abs/2102.04915. Cited Jul 28 2022.

Chang L-T. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci.
1978;25:638-43.

Mostafapour S, Gholamiankhah F, Maroufpour S, Momennezhad M, Asadinezhad M, Zakavi SR, et al. Deep learning-
guided attenuation correction in the image domain for myocardial perfusion SPECT imaging. J Comput Des Eng.
2022;9:434-47.

Chen X, Hendrik Pretorius P, Zhou B, Liu H, Johnson K, Liu Y-H, et al. Cross-vender, cross-tracer, and cross-protocol
deep transfer learning for attenuation map generation of cardiac SPECT. J Nucl Cardiol. 2022. https://doi.org/10.
1007/512350-022-02978-7.

Chen X, Zhou B, Xie H, Shi L, Liu H, Holler W, et al. Direct and indirect strategies of deep-learning-based attenuation
correction for general purpose and dedicated cardiac SPECT. Eur J Nucl Med Mol Imaging. 2022;49:3046-60.

Shi L, Onofrey JA, Liu H, Liu Y-H, Liu C. Deep learning-based attenuation map generation for myocardial perfusion
SPECT. Eur J Nucl Med Mol Imaging. 2020;47:2383-95.


https://doi.org/10.1007/s00259-022-05972-w
https://doi.org/10.1007/s00259-022-05972-w
https://doi.org/10.1016/j.jcmg.2022.07.017
https://doi.org/10.1016/j.jcmg.2022.07.017
https://ieeexplore.ieee.org/document/8824548/
https://ieeexplore.ieee.org/document/8759586/
https://ieeexplore.ieee.org/document/9098629/
https://arxiv.org/abs/2102.04915
https://arxiv.org/abs/2102.04915
https://doi.org/10.1007/s12350-022-02978-7
https://doi.org/10.1007/s12350-022-02978-7

Apostolopoulos et al. EINMMI Physics (2023) 10:6 Page 43 of 43

54, LiuH,Wu J, Shi L, LiuY, Miller E, Sinusas A, et al. Post-reconstruction attenuation correction for SPECT myocardium
perfusion imaging facilitated by deep learning-based attenuation map generation. J Nucl Cardiol. 2021. https://doi.
org/10.1007/s12350-021-02817-1.

55. Shanbhag AD, Miller RJH, Pieszko K, Lemley M, Kavanagh P, Feher A, et al. Deep learning-based attenuation correc-
tion improves diagnostic accuracy of cardiac SPECT. J Nucl Med. 2022. https://doi.org/10.2967/jnumed.122.264429.

56. Hagio T, Poitrasson-Riviere A, Moody JB, Renaud JM, Arida-Moody L, Shah RV, et al.“Virtual” attenuation correc-
tion: improving stress myocardial perfusion SPECT imaging using deep learning. Eur J Nucl Med Mol Imaging.
2022;49:3140-9.

57. Chen X, Zhou B, ShiL, Liu H, Pang Y, Wang R, et al. CT-free attenuation correction for dedicated cardiac SPECT
using a 3D dual squeeze-and-excitation residual dense network. J Nucl Cardiol. 2021. https://doi.org/10.1007/
$12350-021-02672-0.

58. Nguyen TT, Chi TN, Hoang MD, Thai HN, Duc TN. 3D Unet generative adversarial network for attenuation correction
of SPECT images. In: 2020 4th international conference on recent advances in signal processing, telecommunica-
tions & computing (SigTelCom). Hanoi, Vietnam: IEEE; 2020. p. 93-7. https://ieeexplore.ieee.org/document/91990
18/. Cited 28 Jul 2022.

59. Torkaman M, Yang J, Shi L, Wang R, Miller EJ, Sinusas AJ, et al. Direct image-based attenuation correction using con-
ditional generative adversarial network for SPECT myocardial perfusion imaging. In: Gimi BS, Krol A, editors. Medical
imaging 2021: biomedical applications in molecular, structural, and functional imaging. Online Only, United States:
SPIE; 2021. p. 27. https://doi.org/10.1117/12.2580922 full. Cited 28 Jul 2022.

60. Abbott BG, Case JA, Dorbala S, Einstein AJ, Galt JR, Pagnanelli R, et al. Contemporary cardiac SPECT imaging—
innovations and best practices: an information statement from the American Society of Nuclear Cardiology. Circ
Cardiovasc Imaging. 2018;11:2000020.

61. LiuJ,Yang Y, Wernick MN, Pretorius PH, King MA. Deep learning with noise-to-noise training for denoising in SPECT
myocardial perfusion imaging. Med Phys. 2021;48:156-68.

62. Liu J,Yang Y, Wernick MN, Pretorius PH, Slomka PJ, King MA. Improving detection accuracy of perfusion defect in
standard dose SPECT-myocardial perfusion imaging by deep-learning denoising. J Nucl Cardiol. 2021. https://doi.
0rg/10.1007/512350-021-02676-w.

63. Kikuchi A, Wada N, Kawakami T, Nakajima K, Yoneyama H. A myocardial extraction method using deep learning for
99mTc myocardial perfusion SPECT images: a basic study to reduce the effects of extra-myocardial activity. Comput
Biol Med. 2022;141:105164.

64. Mok GSP, Zhang Q, Cun X, Zhang D, Pretorius PH, King MA. Initial investigation of using a generative adversarial
network for denoising in dual gating myocardial perfusion SPECT. In: 2018 IEEE nuclear science symposium and
medical imaging conference proceedings NSSMIC. Sydney, Australia: IEEE; 2018. p. 1-3. https://ieeexplore.ieee.org/
document/8824286/. Cited 28 Jul 2022.

65. Sun J, Zhang Q, Du'Y, Zhang D, Pretorius PH, King MA, et al. Dual gating myocardial perfusion SPECT denoising using
a conditional generative adversarial network. Med Phys. 2022;49:5093-106. https://doi.org/10.1002/mp.15707.

66. Sun J, Zhang Q, Zhang D, Pretorius PH, King MA, Mok GSP. Generative adversarial network for denoising in dual
gated myocardial perfusion SPECT using a population of phantoms and clinical data. In: 2019 IEEE nuclear science
symposium and medical imaging conference NSSMIC. Manchester, United Kingdom: IEEE; 2019. p. 1-2. https://ieeex
plore.ieee.org/document/9059884/. Cited 28 Jul 2022.

67. Dietze MMA, Branderhorst W, Kunnen B, Viergever MA, de Jong HWAM. Accelerated SPECT image reconstruction
with FBP and an image enhancement convolutional neural network. EJINMMI Phys. 2019;6:14.

68. Chrysostomou C, Koutsantonis L, Lemesios C, Papanicolas CN. SPECT imaging reconstruction method based on
deep convolutional neural network. In: 2019 IEEE nuclear science symposium and medical imaging conference
NSSMIC. Manchester, United Kingdom: IEEE; 2019. p. 1-4. https://ieeexplore.ieee.org/document/9060056/. Cited 28
Jul 2022.

69. Song C,Yang Y, Wernick MN, Hendrik Pretorius P, King MA. Approximate 4D reconstruction of cardiac-gated spect
images using a residual convolutional neural network. In: 2019 IEEE international conference on image processing
ICIP. Taipei, Taiwan: IEEE; 2019. p. 1262-6. https://ieeexplore.ieee.org/document/8803772/. Cited 28 Jul 2022.

70. Xie H, Thorn S, Chen X, Zhou B, Liu H, Liu Z, et al. Increasing angular sampling through deep learning for stationary
cardiac SPECT image reconstruction. J Nucl Cardiol. 2022. https://doi.org/10.1007/512350-022-02972-z.

71. Cheng Z,Wen J, Zhang J, Yan J. Super-resolution reconstruction for parallel-beam SPECT based on deep learning
and transfer learning: a preliminary simulation study. Ann Transl Med. 2022;10:396-396.

72. Zhang D, Pretorius PH, Lin K, Miao W, Li J, King MA, et al. A novel deep-learning-based approach for automatic
reorientation of 3D cardiac SPECT images. Eur J Nucl Med Mol Imaging. 2021,48:3457-68.

73. Apostolopoulos ID, Papathanasiou ND, Apostolopoulos DJ, Panayiotakis GS. Applications of generative adversarial
networks (GANSs) in positron emission tomography (PET) imaging: a review. Eur J Nucl Med Mol Imaging. 2022.
https://doi.org/10.1007/500259-022-05805-w.

74. Takx RA, Blomberg BA, Aidi HE, Habets J, de Jong PA, Nagel E, et al. Diagnostic accuracy of stress myocardial perfu-
sion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc
Imaging. 2015;8:€002666.

75. NudiF, Iskandrian AE, Schillaci O, Peruzzi M, Frati G, Biondi-Zoccai G. Diagnostic accuracy of myocardial perfusion
imaging with CZT technology. JACC Cardiovasc Imaging. 2017;10:787-94.

76. Singh A, Sengupta S, Lakshminarayanan V. Explainable deep learning models in medical image analysis. J Imaging.
2020;6:52.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.1007/s12350-021-02817-1
https://doi.org/10.1007/s12350-021-02817-1
https://doi.org/10.2967/jnumed.122.264429
https://doi.org/10.1007/s12350-021-02672-0
https://doi.org/10.1007/s12350-021-02672-0
https://ieeexplore.ieee.org/document/9199018/
https://ieeexplore.ieee.org/document/9199018/
https://doi.org/10.1117/12.2580922.full
https://doi.org/10.1007/s12350-021-02676-w
https://doi.org/10.1007/s12350-021-02676-w
https://ieeexplore.ieee.org/document/8824286/
https://ieeexplore.ieee.org/document/8824286/
https://doi.org/10.1002/mp.15707
https://ieeexplore.ieee.org/document/9059884/
https://ieeexplore.ieee.org/document/9059884/
https://ieeexplore.ieee.org/document/9060056/
https://ieeexplore.ieee.org/document/8803772/
https://doi.org/10.1007/s12350-022-02972-z
https://doi.org/10.1007/s00259-022-05805-w

	Deep learning-enhanced nuclear medicine SPECT imaging applied to cardiac studies
	Abstract 
	Introduction
	Machine learning in a nutshell: definitions and terminology
	Materials and methods
	Research questions
	Review protocol
	Search sources and terms
	Inclusion and exclusion

	Literature collection
	Types of outcomes measures

	Results
	Diagnosisclassification
	Handcrafted CNNs
	CNNs and transfer learning
	Machine learning

	Image quality improvement
	Low-count SPECT image estimation
	Attenuation correction
	De-noising
	Reconstruction
	Other imaging improvements


	Discussion and conclusions
	Major objectivesmajor findings
	CDV detectionclassification
	Image quality improvement

	Clinical factors can improve the diagnostic accuracy
	Hand-crafted and pre-trained CNNs
	Robustness to SPECT scanner variation
	The explainability issue

	Concluding remarks
	Acknowledgements
	References


