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1 Motivations

Relativistic four-dimensional quantum field theories feature several renormalizable opera-
tors: Yukawa, gauge, scalar self-interactions and the topological terms. The latter stand
out of this list because they are total derivatives. At the classical level they have no impact
since they do not alter the equations of motion; at the quantum mechanical level they do
not introduce Feynman vertices. Nevertheless, the topological angles θ can affect physical
observables if non-perturbative effects are taken into account [1–4] or if topological defects
are present [5]. In a semi-classical analysis one studies the quantum fluctuations around a
certain background field configuration, and θ shows up in the path integral via a factor eiθν

whenever the background gauge fields are associated to a non-trivial topological charge ν.
Because θ can appear in observables, it is only natural to wonder about its renormaliza-

tion group evolution. Since θ does not parametrize vertices for the quantum fluctuations, it
is clear that the perturbative correlators and beta functions cannot depend on it. At most,
perturbatively θ represents a counterterm necessary to reabsorb (finite and divergent) cor-
rections to CP-violating diagrams with external background gauge fields. In other words,
in perturbation theory θ can only get additively renormalized because of contributions
induced by the other couplings.

That θ renormalizes is out of the question. We can distinguish between finite and
infinite renormalization effects. Finite (threshold) corrections to θ are very common. In
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generic theories they occur at tree-level, when crossing a CP-violating fermion mass thresh-
old, and even more often at loop level. In the case of the QCD θ angle, for example, ref. [9]
found that the leading order finite correction is a 3-loop effect when matching to the ef-
fective field theory below the W± mass. Infinite corrections are more rare. A necessary
condition for these contributions to actually occur in a mass independent renormalization
scheme is that the quantum field theory under consideration possesses polynomial CP-odd
flavor-invariant combinations of the couplings (other than θ) that can contribute to

βθ = µ
dθ

dµ
. (1.1)

In the Standard Model the first such combination appears at a very high power in the
Yukawa couplings [6, 7] indicating that, if present, the UV divergence that renormalizes
θ should occur at a prohibitive perturbative order. In view of this one may ask if such
divergence exists at all, and whether this high perturbative order is a general feature of
renormalizable quantum field theories. To better assess these questions it would be useful
to find “toy” field theories in which θ develops a beta function at a sufficiently low order
as to allow an explicit computation, which may provide an indirect confirmation of our
expectations in the Standard Model. It is not difficult to find non-renormalizable field
theories that induce divergent corrections to θ. For example, adding cg2|H|2GG̃/Λ2 to the
Standard Model Lagrangian gives the minimal subtraction result βθ = −4cm2

H/Λ2, see [8].
However, the latter effect is power-law suppressed and is therefore practically irrelevant in
the presence of a large gap between the IR scales and the UV cutoff. In addition, we will see
there are a few non-trivial challenges that a calculation of divergent contributions to θ faces
within renormalizable theories, including the fact that the regularization scheme adopted
must be able to consistently deal with the so-called γ5 problem. In the non-renormalizable
theory we mentioned above those challenges are not encountered because the operator GG̃
was already present on the outset. The questions we are interested in therefore better be
addressed within renormalizable field theories. Yet, surprisingly enough, to the best of our
knowledge nobody has ever found divergent corrections to θ in that context.

While no concrete renormalizable example where θ gets infinitely renormalized is on
the market, there exists well-known instances in which one can rigorously prove that θ is not
infinitely renormalized at any order. An example is pure Yang-Mills, where this property
follows trivially because that theory does not satisfy the necessary condition stated above:
there are no flavor-invariant CP-odd phases other than θ, and hence there is nothing that
can contribute perturbatively to βθ. The same holds for QCD with massive fermions, since
once the phases in the quark mass matrix are removed via anomalous chiral rotations of
the fermions, CP-violation is entirely encoded in θ. Another popular instance is provided
by supersymmetric gauge theories, where the exact one-loop running of the holomorphic
gauge coupling reveals that the theta angle does not run. The reason here is again the same:
there is no available CP-odd (holomorphic) combination of the other marginal couplings.

The main goals of this paper are to present concrete examples of four-dimensional
renormalizable field theories that can induce infinite corrections to θ, as well as to identify
the leading order structure of the beta function βθ in any mass-independent renormalization
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scheme (see section 3); to discuss the subtleties encountered in a perturbative treatment
of θ as well as to show how to concretely approach the calculation of βθ in dimensional
regularization (see sections 2); and finally to analyze the relevance of βθ (section 4).1

Studying the RG evolution of θ in a general renormalizable theory is not only of
academic interest. There are technical as well as potentially phenomenological reasons for
doing it. At a genuinely phenomenological level, studying the beta function of θ in general
theories might potentially shed light on the absence of CP-violation in QCD, or more
precisely on the necessary properties that its UV completion must satisfy to account for
experimental observations, which in fact was the original motivation of our precursors [6,
10]. Yet another reason is that we do not know what theory will eventually be found to
complete the SM at shorter distances. It is perhaps not completely unconceivable that in
such a UV-completion topological angles occur in some particular observable, say because
of the presence of magnetic monopoles or because small-instanton effects cannot be ignored.
In these situations a renormalization group evolution of θ may become phenomenologically
relevant. At a more technical level, βθ is an obvious target for explicit calculations. The
beta functions of the “ordinary” couplings of general renormalizable field theories have been
explicitly calculated up to 2-loop order (see [11–13] and more recent updates). Yet, strictly
speaking, this program cannot be viewed as fully complete until βθ is also computed. On a
completely different note, the peculiar nature of θ encodes important information about the
renormalization properties of the theory. For example we will see that the independence
of perturbative correlators on θ translates into a constraint on the anomalous dimension
of the CP-odd operators of the theory. These and other observations may turn out to be
useful in concrete calculations.

2 θ in perturbation theory

In a semi-classical approach to quantum field theory, the bare fields φ0 are split into a clas-
sical finite-action background φ0c overlapping with the vacuum, plus a quantum fluctuation
δφ0 that vanishes sufficiently fast at the boundary. The path integral is defined to include
a sum over all inequivalent background configurations (e.g. collective coordinates) along
with the functional integration over the fluctuations around each background. Singling out
the topological term from the total gauge-fixed action,2 which we schematically write as

1It is worth dissipating a possible source of confusion right away. It is well-known that physical observ-
ables must depend on a flavor-invariant combination θ̄ of the topological angle and the other couplings of
the theory (e.g. the quark masses in QCD or the Yukawa couplings in the Standard Model). In a generic
field basis the beta function of θ̄ receives contributions from corrections to both θ, which represent the
main subject of this paper, and the other couplings as well (these latter corrections are those estimated
in [6], strictly speaking). Throughout the paper we will be mostly concerned with the basis-dependent
parameter θ, the coefficient of the topological term. The physics of the QCD parameter θ̄ will be discussed
in section 4.2.

2Throughout the paper we assume the gauge-fixing preserves the background gauge invariance.
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Stot = S + (g2
0θ0)/(32π2)

∫
G0G̃0, this recipe produces the following generating functional

Z[J0] =
∑
φ0c

ei
g2
0θ0

32π2
∫
G0cG̃0c+i

∫
J0φ0c

∫
Dδφ0 e

iS[φ0c+δφ0]+i
∫
J0δφ0 (2.1)

=
∑
φ0c

ei
g2
0θ0

32π2
∫
G0cG̃0c Ẑ[J0, φ0c].

The topological term is special because it is a total derivative. By construction the quantum
fluctuations vanish at the boundary, so that any fluctuation-dependent contribution to
such a term vanishes and

∫
G0G̃0 =

∫
G0cG̃0c reduces to an integral of the sole external

background fields, which we can take outside the functional integral in (2.1): the angles θ
do not appear in any interaction of the quantum fluctuations but can act as counterterms
in computations with external background fields.

So far our discussion has been rather general. Yet, an actual evaluation of (2.1) is nec-
essarily regularization-scheme dependent. In the following we will specialize on dimensional
regularization (Dim-Reg), in which space-time is continued to d dimensions with coordi-
nates xµ =

{
xµ̄, xµ̂

}
, where µ̄, ν̄, · · · = 0, 1, 2, 3 and µ̂, ν̂, · · · denote the (d− 4)-dimensional

indices.
In Dim-Reg the very definition of topological term forces us to define the Levi-Civita

tensor and deal with the famous γ5 problem. So far the only known consistent prescription
is the ’t Hooft-Veltman-Breitenlohner-Maison scheme [14, 15], where the Levi-Civita tensor
is a formal object εµ̄ν̄ᾱβ̄ that carries only 4-dimensional indices. In other words, the (d−4)-
dimensional indices µ̂, ν̂, · · · of an arbitrary vector do not contribute when contracted with
this tensor. An important implication is that

G0G̃0 ≡
1
2G

µ̄ν̄
0 Gᾱβ̄0 εµ̄ν̄ᾱβ̄ = ∂µ̄K

µ̄
0 (2.2)

is 4-dimensional divergence of a (xµ-dependent) vector. Hence the regularized quantity∫
ddx G0cG̃0c contains a non-trivial residual (d − 4)-dimensional integral and is not a

topological term in d dimensions.
The d-dimensional continuation of (2.1) formally represents a set of regularized Green’s

functions. Such a path integral violates two of the familiar properties of the topological
angle, namely its periodicity in 2π and its role as compensator (spurion) of the abelian
axial symmetry. The technical reason for the first loss boils down to the fact that, as a
consequence of (2.2), the bare angle θ0 is not the coefficient of a topological operator in
the regularized theory. The second loss occurs because anomalies are d-dependent; as a
result, in d-dimensions a shift of the coefficient of GG̃ does not fully compensate an axial
rotation. An intuitive way of arriving to the same conclusions is provided by dimensional
analysis: the engineering dimension of the bare coupling in Dim-Reg is [θ0] = d − 4, and
it is therefore impossible for θ0 to be periodic in 2π or even to shift via the dimensionless
parameter of the axial transformation while retaining its µ-independence in d-dimensions.3

3In our discussion we implicitly assume the theory has integer topological index ν. The extension of our
arguments to theories in which ν is rational is straightforward.
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To recover the topological nature of the theta angle, as well as its role as a compensator
for abelian axial transformations, one has to derive the renormalized 4-dimensional version
of the path integral. In general this procedure requires a renormalization of theta as
well. Renormalization renders θ a genuinely (4-dimensional) topological term and the
background-dependence in the 4-dimensional limit of the path integral (2.1) reduces to
a dependence on the topological index ν. The renormalized coupling θ is periodic in 2π
and transforms via a shift under abelian axial rotations. This ensures in particular that
physical amplitudes are invariant under unitary field re-definitions.

2.1 βθ from (extra)-ordinary diagrams

For completeness we recall the standard prescription to extract the beta function within the
Minimal Subtraction scheme. The relation between the bare couplings θ0, ξ0i (the latter
symbol denotes all couplings except θ0) and the renormalized couplings θ and ξi read (in
d = 4− ε dimensions)

θ0 = µ−ε[θ + Zθ], (2.3)

and ξ0i = µρiε[ξi + Zξi ]. By definition Zθ =
∑∞
n=1 ε

−nZθ,n(ξi) contains no finite term,
and similarly for Zξi . The 4-dimensional beta functions βξ ≡ limd→4 µdξ/dµ read βθ =
ρiξi∂Zθ,1/∂ξi + Zθ,1 and similarly βξi = ρjξj∂Zi,1/∂ξj − ρiZi,1. In the above ∂Zθ/∂θ =
∂Zξi/∂θ = 0 because θ does not appear in Feynman diagrams. As customary for ordinary
couplings, also the beta function of θ is controlled by the simple pole Zθ,1/ε. Diagram-
matically, the latter counterterm is defined to subtract the divergent contributions to the
connected, CP-odd vertices with external background gauge fields in Ẑ[J0, φ0c], see (2.1):

Ẑ[J0, φ0c] ⊃ −
Zθ,1
ε
i
g2

0
32π2µ

−ε
∫
ddxGc0G̃c0. (2.4)

The divergent corrections to the external legs are removed via a renormalization of the
background field, Aµ0c = (g/g0)Aµc , so that g2

0G0cG̃0c = g2GcG̃c. The divergence remaining
in (2.4), if any, must be subtracted by Zθ,1.

A word regarding the actual computation of Zθ,1 is now needed. After all, we have
argued that the topological term does not represent an ordinary vertex, so how can we now
claim that combining the ordinary vertices of the theory one can find divergent corrections
to it? The key point is that (2.4), in order to be non-vanishing, must be a functional of
classical backgrounds with non-trivial asymptotic behavior. This implies the calculation
of Zθ,1 must be dealt with care. In particular, integration by parts cannot be performed
lightly, as opposed to what is customary done when dealing with external sources for
asymptotic states.4 One way to proceed is to extract the divergent piece in (2.4) directly

4If integration by parts is performed neglecting boundary terms, the structure (2.4), say the part with
two external legs for definiteness, would be written in the familiar form

Ẑ[J0, φ0c] ⊃
∫
ddxAµ0c(x)

∫
ddyAν0c(y) Gµν(x− y), (2.5)

with Gµν(x− y) an ordinary Feynman diagram. This cannot contribute to the beta function of θ, since it
is impossible for Gµν(x− y) to contain two derivatives contracted with a Levi-Civita tensor, as required to
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in position space while allowing an arbitrary background Aµc [16]. This is the approach
followed in [9] and [17] to compute the induced θ term in the Standard Model below the
weak scale.

An alternative way to calculate the divergent diagrams contributing to Zθ,1 may be
via the trick proposed in [18]. The idea is to promote the CP-odd couplings to non-
propagating fields, i.e. “axions”, in the intermediate steps and then send them to constant
values at the very end of the computation. In this way

∫
ddx θGG̃ would describe an

ordinary vertex with θ(x) and a number of gluons, which is non-vanishing as long as the
external θ(x) carries a momentum. It is now plausible that ordinary Feynman diagrams
with external gluons and non-dynamical axions contain divergent contributions that need
to be subtracted by

∫
ddx θGG̃, very much like ordinary diagrams were shown in [18] to

be capable of generating finite threshold corrections to θ. Amusingly, though, now that
the topological term behaves as an ordinary vertex one may naively expect θ to be able to
show up in matrix elements as well as in the beta functions. It turns out however that this
cannot happen. One way to see it is that the renormalized S-matrix amplitudes must be
periodic functions of θ. Yet, the new vertex described by the topological term is measured
by the strength θg2/32π2. Hence the only way it can contribute to renormalized amplitudes
and beta functions is via powers of θg2/32π2. However there is no way that a perturbative
function of θg2/32π2 and the other couplings be invariant under θ → θ + 2π unless the
dependence on θg2/32π2 is actually absent altogether. The situation is completely different
when non-perturbative effects are taken into account, of course, since in that case inverse
powers of the gauge coupling cannot be excluded a priori and a dependence on θg2/32π2

can be turned into a periodic function of the sole θ.
We see that the divergent contributions to θ can be seen via non-standard perturbative

calculations, either by directly evaluating (2.4) in position space [16] or via the method
proposed in [18]. In section 2.2 we will present a third alternative approach to calculate
directly βθ, based on more conventional perturbative methods.

Yet, whatever method is adopted one has to pay particular attention to how chiral-
ity is implemented. The divergent contribution we are interested in is proportional to
the Levi-Civita tensor and must arise from a fermion trace involving the γ5 matrix. A
consistent treatment of the latter has to be implemented, and at present in Dim-Reg the
unique option seems to be given by the ’t Hooft-Veltman-Breitenlohner-Maison scheme.
Unfortunately, using this scheme might complicate the calculation a bit, due to the non-
standard anti-commutation properties that γ5 satisfies and the necessity of introducing
ad-hoc symmetry-restoring counterterms in order to preserve non-anomalous (global and
gauge) chiral symmetries. Fortunately the results of this paper are completely general and
hold independently of the approach followed.

2.2 Extracting βθ from operator mixing

The insertion of composite operators in correlator functions can be systematically described
by introducing in the bare Lagrangian appropriate spacetime-dependent sources for them
reproduce the topological term in (2.4). Any CP-violating structure of the type (2.5) identically vanishes
and cannot describe (2.4).
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(and adding the appropriate counterterms). After having integrated out the dynamical
fields one is left with a generating functional for the time-ordered, connected correlation
functions of the renormalized operators. The local renormalization group [19–22] is a
very powerful incarnation of this general prescription. In that approach the Lagrangian
is expanded in a complete basis of operators O and all couplings of the theory become
functions of spacetime, including the metric that sources the energy momentum tensor.
A local version of the renormalization group equation for the operators O can be derived.
Once all couplings are sent to their constant (xµ independent but µ-dependent) background
values, this reads [23]

µ
d

dµ

(
∂µJ

µ

Ȧ

OĪ

)
= −

(
γȦḂ 0
γĪḂ

∂
∂ξĪ
βJ̄

)(
∂µJ

µ

Ḃ

OJ̄

)
. (2.6)

Here Jµ
Ȧ

are the (conserved or anomalous [24]) currents of the global symmetries of the
theory, OĪ denote the marginal interactions, ξĪ the associated couplings, and βĪ = µdξĪ/dµ.
We considered a theory without mass operators for simplicity, but the introduction of mass
terms is straightforward and does not affect our discussion.5

Let us begin by discussing the consequence of (2.6) on the CP-odd sector of QCD.
The marginal CP-odd operators are the divergence of the singlet axial current, ∂µJµ5 , and
the topological term GG̃ (modulo operators that vanish via the equations of motion). By
CP-invariance the anomalous dimension matrix contains a block diagonal 2 by 2 subgroup
involving these two operators only (the operators that vanish on-shell do not affect the
following discussion). From (2.6) one confirms that this takes the form discussed in [25].
The vanishing γȦJ̄ = 0 entry is understood as a result of the fact that in Dim-Reg the
current Jµ5 renormalizes multiplicatively, being the unique gauge-invariant axial current
of the theory, and the same is true for its derivative. Eq. (2.6) reveals that the GG̃-GG̃
element of the anomalous dimension, often denoted by γ

GG̃
in the literature, is given by

γ
GG̃

= ∂β
GG̃
/∂ξ

GG̃
, with ξ

GG̃
being the renormalized coupling

ξ
GG̃
≡ θg2

32π2 . (2.7)

Crucially, θ cannot appear in any perturbative calculation, so all our expressions are un-
derstood as being evaluated at ξ

GG̃
= 0 = θ. As expected, in the external source formalism

5A complete basis of OĪ ’s includes two sets of marginal operators: OĪ = {EĪ′′ , OĪ′}. The interactions
OĪ′ are those that define the bare action. These are multiplied by sources ξĪ′ whose background values
represent the ordinary couplings of the theory. The EĪ′′ ’s denote instead redundant marginal interactions.
They include evanescent operators as well as operators that vanish via the equations of motion. They
are not associated to any actual coupling of the theory. However they must be included in the functional
integral multiplied by spacetime-dependent sources ξĪ′′ in order for OĪ to form a closed set of composite
operators under renormalization. The background value of such sources vanishes. Because the ξĪ′′ ’s are not
actual couplings, their (background-value) beta functions are proportional to the ξĪ′′ ’s themselves times
functions of the true couplings ξĪ′ , i.e. the operators EĪ′′ are multiplicatively renormalized. With this
observation we see that (2.6) describes a familiar pattern of RG-mixing: the anomalous dimension matrix
for {EĪ′′ , OĪ′} has a lower triangular form in which the redundant operators renormalize among each other
whereas the OĪ′ renormalize via a mixture of themselves, ∂µJµȦ, and EĪ′′ .
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the latter can only occur with derivatives [26]. Because µd(θg2)/dµ = βθg
2 + θβg2 we find

γ
GG̃

= ∂

∂ξ
GG̃

β
GG̃

∣∣∣∣∣
ξ
GG̃

=0
= ∂

∂ξ
GG̃

[
βθ

g2

32π2 + ξ
GG̃

βg2

g2

]∣∣∣∣∣
ξ
GG̃

=0
=
βg2

g2 . (2.8)

In the last equality it is crucial that βθ nor βg2 depend on θ, or equivalently ξ
GG̃

. The
resulting relation between γ

GG̃
and the beta function of the gauge coupling is consistently

observed in explicit calculations [27, 28]6 and proven in [29, 30]. Note that βθ disappears
from this relation and (2.8) would still hold even if it was non-trivial. Yet, we know that
βθ = 0 in QCD because of the argument given in the introduction: by CP-invariance of
the theory the only quantity that could appear in βθ is θ itself, but this can never happen
in perturbation theory.

Suppose now we extend QCD introducing in the Lagrangian new CP-violating dimen-
sion-4 operators OĪ with Ī 6= GG̃, e.g. Yukawa couplings. A priori these may mix with the
topological term as well as the derivative of the axial current. Yet, according to (2.6) the
anomalous dimension matrix has a lower triangular form. This is because by dimensional
analysis the renormalized axial and Chern-Simons currents cannot contain a component
of the bare dimension-4 interactions OĪ0, they can only mix among each other following
the pattern described above. On the other hand, nothing forbids the renormalized OĪ to
contain a linear combination of ∂µJµ5 0, G0G̃0. The lower-triangular structure can also be
understood as a consequence of the independence of the anomalous dimensions and beta
functions on θ, i.e. ∂β

Ī 6=GG̃/∂ξGG̃ = 0 [24].
Interestingly, eq. (2.6) demonstrates that (2.8) remains valid even in the presence

of the new interactions OĪ (Ī 6= GG̃). More importantly for us, the new CP-violating
couplings make it possible for θ to get additively renormalized, and (2.6) turns out to
contain important information on βθ. The component of −µdOĪ/dµ proportional to GG̃
is (for Ī 6= GG̃)

γĪG = ∂

∂ξĪ
β
GG̃

∣∣∣∣∣
ξ
GG̃

=0
= ∂

∂ξĪ

[
βθ

g2

32π2 + ξ
GG̃

βg2

g2

]∣∣∣∣∣
ξ
GG̃

=0
= g2

32π2
∂

∂ξĪ
βθ. (2.9)

Eq. (2.9) may be interpreted as an indirect procedure for deriving βθ. The latter may
indeed be extracted by integrating the off-diagonal element γĪG of the anomalous dimension
matrix of the CP-violating operators, roughly measured by the amount of G0G̃0 contained
in OĪ , with respect to the couplings ξĪ that contribute additively to βθ. Interestingly, this
procedure does not require the background field method nor promoting the CP-odd phases
to spurion fields. It can be carried out using ordinary perturbation theory because the
anomalous dimension matrix is to be calculated assuming a non-vanishing momentum is
flowing into the relevant operators, such that even GG̃ describes an ordinary vertex.

A generalization of eq. (2.9) to arbitrary renormalizable theories is straightforward.

6We use a different convention than these authors. For us the scaling dimension of an operator is dcl +γ,
with dcl the engineering dimension.
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3 βθ in renormalizable QFTs

In the previous section we have shown how to extract the beta function of the topological
angle. In this section we are interested in identifying which renormalizable theories have
enough CP-violating phases to allow, at least in principle, the presence of divergent con-
tributions to θ. More precisely, we will identify the explicit form of the leading non-trivial
order beta function βθ as well as the Feynman diagrams responsible for generating it.

The most general (d = 4) renormalizable gauge theory can be compactly written in
terms of Weyl fermions ψi and real scalars φa as

L = − 1
4g2
AB

FAµνF
Bµν + 1

2(Dµφ)a(Dµφ)a + ψ†i iσ̄
µ(Dµψ)i (3.1)

−
(1

2Ya ijψiψjφa + hc
)
− λabcd

4! φaφbφcφd + θAB

64π2 ε
µνρσFAµνF

B
ρσ

+(relevant couplings) + (gauge fixing) + (ghosts),

where (Dµψ)i = ∂µψi − iAAµTAijψj and (Dµφ)a = ∂µφa − iAAµSAabφb. The gauge generators
TA are hermitian whereas SA are purely imaginary hermitian, and hence anti-symmetric.
The fermions and scalars are in general in a reducible representation of the gauge group,
and the indices i, j, · · · (ranging from 1 to some integer Nψ) and a, b, · · · (ranging from
1 to Nφ) include both gauge and flavor components. The coupling λ is fully symmetric,
and Y is symmetric in the fermionic indices. The gauge symmetry is an arbitrary product
of abelian factors and simple groups Ggauge = ΠGG. The indices A,B, · · · run over the
adjoint representation of Ggauge and the (real) gauge coupling g2

AB is to be interpreted as
the direct sum of identities in the non-abelian part of that space plus a symmetric part for
the abelian factors. Note that our normalization of the gauge fields is non-canonical, so
that the gauge boson propagators are proportional to g2

AB.
Gauge invariance restricts the form of some of the couplings in (3.1). Most importantly

for us, the topological term must be proportional to the identity δABG in any non-abelian
components G and symmetric, but potentially with off-diagonal entries, in the abelian
factors:

θAB =
∑

G=non−Ab.
θGδ

AB
G +

∑
G1,G2=Ab.

θABG1,G2 . (3.2)

Another implication of gauge invariance is

SAabYb = YaT
A + (TA)∗Ya. (3.3)

We will make use of this relation extensively throughout the text. There is also a constraint
on λ, though such a relation will not be relevant here. Note that none of these relations
depend on the space-time dimension and hence can be assumed to hold in Dim-Reg as well.

3.1 CP and flavor symmetry

We want to identify which combinations of the couplings can appear in βθ. In Dim-Reg
the renormalization group evolution of θ is necessarily controlled by the marginal couplings
of the theory. Classically relevant interactions are therefore not important in the present
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discussion and have not been explicitated in (3.1). To proceed we first have to familiarize
with the approximate symmetries of our theory.

In the absence of interactions eq. (3.1) enjoys a large global symmetry that includes a
flavor symmetry that rotates the matter fields, one that rotates vectors, and CP:

Gflav × Gglob × CP. (3.4)

The flavor symmetry Gflav ≡ U(Nψ) × O(Nφ) rotates all fermions among each other and
acts similarly on scalars, the group Gglob rotates the vectors leaving g2

AB in (3.1) invariant
and finally CP acts as usual up to unitary rotations. The combined action on the fields
reads:

ψi(x)→ Uijεψ
†
j(Px), φa(x)→ Oabφb(Px), AAµ (x)→ RABPνµABν (Px) (3.5)

where U,O,R are matrices respectively of U(Nψ), O(Nφ), Gglob and we defined Pνµxν = xµ.
The symmetry (3.4) is explicitly broken by the gauge generators, the Yukawa and scalar
couplings as well as anomalies. Yet, it can be formally restored by promoting TA, SA,
Ya, λ, θ to spurions with transformations designed to exactly compensate (3.5) so that the
theory is manifestly invariant under the full group (3.4).7 Explicitly, the transformations
of the spurions TA, SA, Ya, λ under Gflav × Gglob × CP are given by

TAij → −RABUimU∗jn[TB]∗mn (3.6)
SAij → −RABOimOjn[SB]∗mn
Ya ij → U∗imU

∗
jnOab[Ybmn]∗

λabcd → OamObnOcoOdpλmnop.

The renormalized coupling θAB should also be interpreted as a spurion. It is a complete
singlet of O(Nφ), a 2-index symmetric tensor of Gglob, and is also U(Nψ)-invariant except
for its anomalous subgroup. Denoting with TAr the generators of each irreducible repre-
sentation r of the gauge group modulo flavor degeneracies, and by Ur the flavor rotation
among the fermions in r, the spurious Gflav × Gglob × CP transformation of θ explicitly
reads

θAB → −RAMRBN
{
θMN − 2

∑
r

Arg Det[Ur] Tr[TMr TNr ]
}
. (3.7)

Here the overall minus is necessary to compensate the P-odd nature of εµνρσFAµνFBρσ.
The beta function µdθAB/dµ is not affected by the anomalous shift of the topological

term and therefore is a complete singlet of the flavor symmetry Gflav and CP-odd in the
sense that

µ
d

dµ
θAB → −RAMRBNµ d

dµ
θMN . (3.8)

The beta function is a linear combination of functions IAB of the spurions (3.6) multiplied
by real numerical coefficients, since its calculation involves no branch cuts. The quantities

7In Dim-Reg the addition of counterterms is generically necessary to render the theory formally invariant
under the axial part of U(Nψ). We assume this is done order by order in perturbation theory.
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IAB are obtained by contracting the indices of the spurions with the invariant tensors
δij , δab, g

2
AB that define the kinetic terms. In the language of Feynman diagram, this is just

a consequence of the fact that any diagram contributing to the beta function is obtained
by contracting vertices with propagators. In order to appear in βθ the tensors should
transform precisely as in (3.8). Yet, from (3.6) follows that under the full symmetry (3.4)
any 2-index tensor function of (3.6) transforms as

IAB(T, S, Y, λ)→ RAMRBNIMN (T ∗, S∗, Y ∗, λ∗) (3.9)

The minus signs of (3.6) cancel out because Gglob-covariance forces IAB to be built out of
an even number of (scalar plus fermion) gauge generators. Now, to reproduce the transfor-
mation of µdθAB/dµ the tensors must satisfy IAB(T ∗, S∗, Y ∗, λ∗) = −IAB(T, S, Y, λ), and
of course be real. We thus conclude that it is the imaginary part of the invariant that has
the correct CP-odd property, namely8

µ
d

dµ
θAB =

∑
α

cα Im
[
IABα

]
, (3.10)

where cα are real numbers and α is some label. In other words, the CP-odd invariants that
define βθ are the imaginary parts of the Gflav-singlet, 2-index tensors of Gglob. A theory
that does not possess any such quantity cannot renormalize θ. This is what happens in
Yang-Mills theories as well as QCD. In the next subsection we will show the explicit form of
the leading order contribution to βθ in arbitrary renormalizable theories of the form (3.1).

3.2 The 3-loop diagrams

Following the method described above we identified all structures that can potentially
contribute to βθ at the first few perturbative orders. Our analysis is summarized in ap-
pendix A. We find that there are no 1-loop-sized 2-index tensors that are CP-odd, and
therefore that the 1-loop beta function must vanish. The first non-trivial contribution to
βθ potentially arises at 2-loops and is controlled by a unique structure

µ
d

dµ
θAB = c

~2

(16π2)2 Im
[
IAB(2)

]
+O(~3), (3.11)

where c is an ordinary number expected to be of order unity and

IAB(2) = Tr
{

(Y ∗a [TA]∗YbY ∗a Yb − Y ∗a YbY ∗a [TA]∗Yb)TB
}

= Tr
{

(Y ∗a YcY ∗b Yc − Y ∗c YaY ∗c Yb)TB
}
SAab

= 1
2Tr {Y ∗a YcY ∗b Yc − Y ∗c YaY ∗c Yb} (SASB)ab

(3.12)

is the only invariant with non-vanishing CP-odd component (i.e. an imaginary part) at
O(~2). Note that symmetry under the exchange A↔ B in the first and third lines of (3.12)

8The relations IAB(T ∗, S∗, Y ∗, λ∗) = [IAB(T, S, Y, λ)]∗ = −IAB(T, S, Y, λ), the first equality following
from the fact that all coefficients are real and the second from the requirement that (3.9) reproduces (3.8),
are equivalent to Re[IAB(T ∗, S∗, Y ∗, λ∗)] = Re[IAB(T, S, Y, λ)] = 0 and Im[IAB(T ∗, S∗, Y ∗, λ∗)] =
−Im[IAB(T, S, Y, λ)].
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is a consequence of cyclicity of the trace as well as symmetry of the Yukawa under the
exchange of the fermionic indices and hermiticity of the gauge generators, whereas in the
second line of (3.12) also (3.3) is needed.

The invariant I(2)
AB has been written in three different forms employing the iden-

tity (3.3). These expressions provide complementary information about the properties that
a theory must possess in order to renormalize θAB at this order. For instance, from the sec-
ond and third lines in (3.12) it is evident that there would be no 2-loop beta function if the
scalars were gauge-singlets, i.e. if SA = 0. To show this using the expression in the first line
is less immediate: one has to use (3.3) with SA = 0 to prove that Y ∗a YbTA = TAY ∗a Yb, from
which consistently follows that the first line of (3.12) vanishes. Actually, a more careful
inspection reveals that the scalar fields have to belong to at least two different representa-
tions of G. To prove this we distinguish between non-abelian and abelian gauge groups.
In the case the indices A,B are associated to a non-abelian gauge group, from (3.2) we
know that the relevant part of the beta function is the one proportional to δGAB. If all the
scalars belonged to the same representation, then contracting the latter with the expres-
sion in the third line of (3.12) would give a Casimir times the identity in the scalar index
space. This implies that the invariant would vanish as Tr {Y ∗a YcY ∗a Yc − Y ∗c YaY ∗c Ya} = 0.
In the case A,B refer to abelian gauge groups the generators can all be taken diagonal,
i.e. SAab = qAa δab and so (SASB)ab = qAa q

B
a δab. As before, we see that when the charges

qAa , q
B
a do not depend on the index a then the combination of scalar generators is again

proportional to the identity δab and the third line of (3.12) is identically zero.
The three equivalent forms of (3.12) also help us identify the diagrams that contribute

to the 2-loop beta function, e.g. if we adopted the background field method. These are
illustrated in figure 1, with the ⊗ indicating the insertion of the external background gauge
field. The topology in figure 1a is responsible for generating the invariant in the first line
of (3.12), the one in figure 1b is associated to the second line of (3.12) and finally the
topology of figure 1c to the third form of the CP-odd invariant. The overall correction to
βθ must include a sum over all three topologies. We emphasize that these are effectively
3-loop diagrams, and yet they contribute to the 2-loop order beta function because θ

appears in the action multiplied, in the canonically normalized field basis, by a loop factor
g2~/32π2.

The coefficient c in (3.11) is model-independent and may be derived calculating the
above diagrams in any model with a non-vanishing IAB(2) , as for example in the toy scenario
discussed below. We will not be able to compute it here because far beyond our current
technical abilities. Yet, we think there is circumstantial evidence that an explicit compu-
tation would find c 6= 0. Indeed, ref. [31] presents a calculation of the beta function of the
gauge coupling at 3-loop order using the background field method. The class of diagrams
considered there includes those of figure 1.9 Consistently, those authors find that the beta
function of the gauge coupling is controlled by the set of CP-even invariants of appendix A,
including in particular the CP-even component of our IAB(2) (namely its real part). This

9In practice the calculation is very different, though, because here we are interested in the CP-odd
contributions proportional to the Levi-Civita tensor (see the discussion in section 2), whereas in [31] the
authors were allowed to take εµ̄ν̄ᾱβ̄ = 0.
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(a) (b) (c)

Figure 1. Topologies of the diagrams generating the CP-odd invariant (3.12). Crossed circles
represent insertions of the external gauge field. Topology (a) refers to the form in (3.12) written in
terms of two fermionic generators, topology (b) to the one in terms of one fermionic and one scalar
generator, and topology (c) to the one in terms of two scalar generators. It is intended that each
diagram within a given topology should be properly symmetrized.

gives us confidence that the evaluation of the diagrams in figure 1 will not cancel against
each other. The result c = 0 would thus be rather surprising to us, and would indicate the
presence of an accidental cancellation.

4 Implications

In the introduction we mentioned a few implications of βθ, both technical and phenomeno-
logical. Here we elaborate on two of them. First we show the impact of a non-vanishing βθ
on the Weyl consistency conditions. Next we discuss the relevance of βθ on UV solutions
of the strong CP problem.

4.1 Consistency conditions

Jack and Osborn pointed out that the beta functions in a general P-conserving renormal-
izable theory must satisfy a constraint (see e.g. [22])

∂Ã

∂ξĪ
= TĪ J̄βJ̄ , (4.1)

where Ã and TĪ J̄ are functions of the couplings (except θ) that appear in the Weyl anomaly
when all couplings are promoted to space-time dependent functions. Such conditions relate
terms of the beta functions of different couplings and different orders in perturbation theory,
and can serve as non-trivial consistency checks of multi-loop calculations. For example,
eq. (4.1) has been employed to resolve an ambiguity in the 4-loop beta function of the strong
gauge coupling in the Standard Model [32]. The very same tool can potentially be used to
extract information about the renormalization group evolution in general renormalizable
theories like (3.1) (see e.g. [33]). In that case however one cannot a priori ignore the
topological angles. Irrespective of whether they vanish in the bare action, they may be
needed as counterterms and therefore generically possess a beta function. Let us see how
θ qualitatively impacts (4.1).
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To start, according to [24] the formal structure of (4.1) remains unchanged when
considering P-violating theories. The absence of an explicit dependence on θ then implies
that its Ī = θ component becomes [24]

0 = Tθθβθ + TθY βY + Tθgβg + Tθλβλ, (4.2)

where θ, Y, g, λ schematically denote the couplings in (3.1). The same considerations de-
veloped in section 3 allow us to identify the tensorial form of TĪ J̄ . At leading order we
have

TθABθCD = c1
g2
ACg

2
BD

(16π2)3 (4.3)

and

TθABY dY = c2
g2
ACg

2
BD

(16π2)3 Tr
[
(Y †(TC)∗dY − dY †(TA)∗Y )TD

]
(4.4)

+c3
g2
ACg

2
BD

(16π2)3 Tr
[
(Y †dY − dY †Y )

{
TC , TD

}]
with c1,2,3 numerical coefficients. Note that TθY dY must be CP-odd. In extracting its
form a key role is played by the fact that CP-odd quantities can here depend on the
derivative of the couplings, as opposed to section 3 when we discussed the form of βθ.
Analogously, one can see that the CP-odd structures Tθgdg and Tθλdλ inevitably arise at
a higher perturbative order. Within a 2-loop accuracy the contributions proportional to
βg, βλ can therefore be neglected and (4.2) gives

µ
dθAB

dµ
= c2/c1

16π2 Tr
[
(Y †a (TA)∗βYa − β

†
Ya

(TA)∗Ya)TB
]

(4.5)

+c3/c1
16π2 Tr

[
(Y †a βYa − β

†
Ya
Ya)

{
TA, TB

}]
+O(~3).

Plugging in the 1-loop beta function of the Yukawa coupling Ya we find that the fermionic
trace proportional to c3 does not contribute at 2-loops whereas the one proportional to
c2 consistently reproduces (3.11) provided 2c2/c1 = c. We thus find a fourth independent
method for computing the coefficient c of βθ. Establishing its numerical value would require
knowing the leading order Tθθ and TθY , which means performing a 1-loop and again a 3-loop
calculation respectively.

The remaining components of (4.1) are also quite consequential and deserve to be
carefully explored. A naive counting suggests that, in employing the consistency relations
of Jack and Osborn with Ī = Y , the 2-loop βθ identified in this paper might be correlated
to structures appearing in the 3-loop βg, the 4-loop βY , and the 2-loop βλ via the 6-
loop contribution in Ã of order g4Y 6. Furthermore, an inspection of the full system (4.1)
reveals that the highest perturbative order at which the g-Y -λ-θ beta functions enter in
the consistency relations are respectively 5-4-3-2.
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4.2 (In)Stability of UV solutions of the strong CP problem

In the Standard Model the first contribution to βθ is expected to arise at 7-loops [6, 7].
This implies that the renormalization group evolution of θ is numerically negligible, leaving
open the possibility that the absence of CP violation in low energy QCD be the result of
some unknown mechanism at very short distances ∼ 1/Λ, even close to the Planck scale,
that sets θ̄(Λ) ≈ 0. Among the proposed UV solutions of the strong CP problem we can
find heavy axion scenarios or models with approximate CP [34, 35] and P [36, 37].

The numerical stability of θ = 0 is however not a generic property in field theory. We
have seen that arbitrary renormalizable theories potentially develop a non-trivial renor-
malization of the theta angle already at 2-loops. This demonstrates that UV solutions
of the strong CP problem cannot work if the effective field theory below Λ is completely
generic and has unsuppressed Yukawa interactions. This has important phenomenological
implications. If no QCD axion is ever to be found, the possibility that some yet unknown
UV solution is at play would become increasingly more likely. Tools like those developed
here should then be used to identify the class of extensions of the Standard Model that
may consistently describe the low energy physics below Λ.

The radiative instability of UV solutions to the strong CP problem is typically worse
than naively expected, actually. First of all, arbitrary extensions of the Standard Model
would necessarily feature new mass scales, and it is well-known that threshold corrections
can affect the topological angles at tree and loop order. A recent discussion of these
corrections in the context of CP-invariant models is given by [38] and in P-invariant models
by [39] (see [40] for a model-independent qualitative assessment). What we want to stress
here is another subtle effect: despite the fact that the beta function of θ is generically at
2-loop order, physical phases typically renormalize at 1-loop. By physical phases we mean
those special combinations of the renormalized couplings, namely those combinations that
are invariant under unitary rotations of the fields, that enter observables. We have seen
that θ is not invariant under anomalous rotations of the fermions, see (3.7), and therefore
the physical rescaling invariant quantity of interest must take the form

θ̄ = θ + f({ξi}), (4.6)

where f is a model-dependent function. Here θ̄ is what we may call the physical, rescaling
invariant “topological” angle. When no f with the required properties exists then no
invariant can be built out of θ and that parameter is unphysical. The physical angle runs
according to

βθ̄ = βθ + ∂f

∂ξi
βξi . (4.7)

The symmetry properties of βθ̄ are precisely the same as those of βθ. In particular, both
must be proportional to the imaginary parts of the invariants IAB. Yet, while βθ and βξi
are polynomial in the couplings, it may happen that ∂f/∂ξi brings inverse powers of the
ξi’s that are not compensated by βξi . In such a situation βθ̄ develops negative powers
of the couplings in front of the invariants IAB, which in practice indicates that βθ̄ arises
at an order in perturbation theory that is lower compared to βθ. We will see explicitly
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below how this can occur in a concrete model. Importantly, the Standard Model turns
out to be special even in this respect because this enhancement cannot appear. Indeed,
adopting the standard definition θ̄ = θ − Im Tr log[YuYd], where Yu,d denote the Standard
Model couplings, we find βθ̄ = βθ − ImTr

[
Y−1
u βYu + Y−1

d βYd

]
. Since by the accidental

flavor symmetries βY = β′YY, for some polynomial β′Y , then βθ̄ is made up of the very same
polynomial structures of couplings as βθ. This fact for example ensures that the estimates
of [6, 7] are robust.

The faster renormalization group evolution of the physical theta angles and the pres-
ence of important threshold corrections put significant stress on whatever low energy theory
emerges from possible UV solutions of the strong CP problem. Rather than carrying out
a general analysis of the challenges these scenarios have to face, we find it convenient to
discuss a simple representative model.

An example. Consider the following extension of the Standard Model. We introduce
two Weyl fermions with charges ψ ∼ 3 and ψc ∼ 3 under the QCD group SU(3)c, a singlet
scalar φ1 and a scalar octet φ2 ∼ 8. These fields are all neutral under the electroweak
group. The Lagrangian reads

L = LSM + 1
2(∂φ1)2 + 1

2(Dφ2)2 + ψ†i /Dψ + ψc†i /Dψc (4.8)

−[(m+ y1φ1)ψψc + y2ψψ
cφ2 + hc]− V (φ1, φ

2
2, |H|2).

In addition to the CP-odd parameters of the Standard Model, this theory features two
more phases. On top of that, the rescaling-invariant QCD theta angle contains a new
contribution because θQCD is now affected by chiral rotations of ψ,ψc as well. A natural
definition of the phases (the definition of the Jarlskog invariant is the standard one) is
given by

ϕy = Arg
[
(y1y

∗
2)2
]

(4.9)

ϕm = Arg
[
y2

1y
2
2[m∗]4

]
θ̄ = θQCD −Arg det[YuYd]−Arg[m].

All these CP-odd parameters run already at 1-loop:

µ
dϕy
dµ

= − 4
16π2 sinϕy

[
|y1|2 + 4

3 |y2|2
]

µ
dϕm
dµ

= + 4
16π2

[
|y1|2

(
sinϕy − 2 sin ϕy + ϕm

2

)
+ 4

3 |y2|2
(
− sinϕy + 2 sin ϕy − ϕm2

)]
µ
dθ̄

dµ
= − 2

16π2

[
|y1|2 sin ϕy + ϕm

2 + 4
3 |y2|2 sin −ϕy + ϕm

2

]
.

Note that, as opposed to the Standard Model, this is also true for θ̄ because the phase of
the exotic fermion mass has a non-trivial renormalization group evolution. As a result βθ̄
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arises at 1-loop while our result (3.11) says that

βθ = c

(16π2)2 (+3)Im
[
(y1y

∗
2)2
]

+O(~3) (4.10)

= 3c
(16π2)2 |y1|2|y2|2 sinϕy +O(~3).

Therefore, in the present model the latter beta function is always subdominant and can be
neglected. Indeed it would be enough to have either a small y1 or a small y2 in order to
suppress βθ, but this would not stop θ̄ from running. Similarly, sinϕy = 0 would suppress
βθ but not βθ̄ if sinϕm 6= 0. Only under the simultaneous conditions sinϕy = sinϕm = 0
the parameter θ̄ becomes approximately stable under the renormalization group, but this
is obvious since in that situation our theory introduces no new CP-odd phases compared
to the Standard Model.

It is interesting to verify our earlier claim that the 2-loop βθ requires at least two
scalars with different gauge representations. In the present model

IAB(2) = 3 Im
[
(y1y

∗
2)2
]
δAB. (4.11)

If we replace φ2 with another scalar singlet (or φ1 with another scalar in the adjoint) that
invariant would not be generated by any diagram. The reason is that in such a scenario
the kinetic term of the scalars would possess a O(2) symmetry that rotates (φ1, φ2). As
usual this flavor symmetry is explicitly broken by the interactions, but may be formally
resurrected by promoting all the couplings to spurions, as described in section 3. The pair
(y1, y2) would be formally a doublet of O(2) and βθ should be a singlet. However (4.11)
does not meet this requirement. Manifestly O(2) invariants are yaya, which is not invariant
under axial rotations of the fermions, and yay∗a, which is CP-even. There is no combination
of the former that is simultaneously CP-odd and invariant under axial rotations, besides
of course the one involving θ, which we know has no perturbative effect. Note that the
quantity yaεabyb = iIm[y1y

∗
2] is SO(2)-symmetric and CP-odd, but in order to have an

invariant under Z2 ⊂ O(2) one would need an even power of it, thus resulting in a CP-even
combination. We conclude that φ1,2 cannot be in the same representation if (4.11) is to be
generated.

An important point to stress is the following. The definitions (4.9) (and more gener-
ally (4.6)) are ambiguous because any combination of invariants is also invariant. One may
then object that the claim that the rescaling-invariant topological angle runs at 1-loop
is not sufficiently general: maybe there exists a rescaling invariant combination that is
also approximately renormalization group invariant, and one may decide to call it θ̄. Yet,
the ambiguity in defining the physical theta angle arises only from a UV perspective. Its
IR definition is basically fixed by experiments. In the Standard Model one usually takes
θQCD − Arg det[YuYd] because at leading order in a perturbative expansion in Yukawas
(masses) this is precisely the quantity observed in low energy processes. The situation is
similar here. Indeed, because the new fermions ψ,ψc are colored, phenomenologically we
expect |m| & 1TeV; at scales below the mass threshold |m| we can thus integrate them out
such that our theory reduces to the Standard Model with topological angle given by

θ̄SM = {θQCD −Arg det[YuYd]−Arg[m]}µ=|m| +O(~),
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where the small corrections are due to 1-loop threshold effects. We thus see that the
UV ambiguity is resolved: within the accuracy we are working the rescaling-invariant
topological angle defined in (4.9) is precisely the one constrained by low energy experiments.
The distinction between θ̄SM and θ̄ is 1-loop order, and so the difference in their beta
functions starts at 2-loops. Hence the statement that θ̄ runs already at 1-loop in fact also
applies to the physically relevant CP-odd parameter measured in experiments. An UV
solution of the strong CP problem that enforces the condition θ̄(Λ) = 0 would not be able
to explain the absence of CP violation in low energy QCD. To ensure |θ̄SM| . 10−10 one
has to invoke a non-trivial conspiracy among different UV parameters.

We conclude by commenting on what would happen if we set m = 0. Such an alter-
native scenario may still be phenomenologically viable provided the exotic fermion gets a
mass y1v1 from the vacuum expectation value of the singlet 〈φ1〉 = v1. This model in-
troduces a unique new phase ϕy whereas the QCD topological angle may be defined as
θ̄ = θ − Arg det[YuYd] − Arg

[
y2

1
]
/2 as well as in an infinite number of inequivalent ways.

Again, the ambiguity in its definition is resolved by observing that the QCD angle at the
matching scale reads

θ̄SM = {θQCD −Arg det[YuYd]−Arg[y1v1]}µ=|y1v1| +O(~).

Again, in order to have a small |θ̄SM| there should be a cancellation between the phase of
y1, which runs at 1-loop, and θQCD − Arg det[YuYd], which does not run before 7-loops.
This cancellation is not stable unless sinϕy = 0, i.e. unless we recover the same amount of
CP-violation as in the Standard Model.

The lesson to be learned is clear. Generic extensions of the Standard Model feature
several flavor-invariant CP-odd phases with non-trivial renormalization group evolution.
In such a situation there are no simple UV conditions that ensure |θ̄SM| stays small.

5 Outlook

It has been known for quite some time that topological angles have measurable conse-
quences. Re-summing the logs associated to their renormalization group evolution might
therefore be quantitatively relevant in some case. In this paper we discussed the pertur-
bative running of the θ angles in general renormalizable theories as well as the techniques
necessary to compute it in dimensional regularization.

We found that θ can acquire an additive beta function no earlier than 2-loop order.
This effect is proportional to a unique combination of the ordinary couplings we called
IAB(2) . The effect is present only in sufficiently complex theories with (CP-violating) Yukawa
interactions involving scalars with more than one irreducible representation of the gauge
group. Within the background field method the corresponding divergent diagrams are
shown in figure 1.

There are a number of directions in which our work can be extended. An obvious one
would be to perform the explicit calculation of the numerical coefficient c of the 2-loop beta
function (3.11). This can be achieved with one, or more, of the four techniques discussed
in this paper, namely the background field method [16], the CP-odd spurion trick of [18],
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or the two new techniques proposed here: via inspection of off-diagonal elements of the
anomalous dimension matrix of the CP-odd interactions (see section 2.2) or via the Weyl
consistency conditions (see section 4.1). The calculation may be carried out in any model
with a non-vanishing IAB(2) , like for example the toy model discussed in section 4.2. In all
cases it requires the computation of 3-loop diagrams.

Another direction that needs to be explored is the consistency conditions implied by
the local renormalization group approach of Jack and Osborn. In section 4.1 we have shown
that the 2-loop βθ cannot be ignored compared to the 3-loop βg, the 4-loop βY , and the 3-
loop βλ. Yet, in order to draw more quantitative conclusions a systematic generalization of
the local renormalization group technique to P-violating theories with anomalous currents,
as initiated in [24], as well as a (re)analysis of the beta functions within a consistent scheme
for γ5, appear necessary.

The phenomenological implications of βθ also deserve to be further scrutinized. We
have seen that the radiative stability of the QCD angle is a peculiar accident of the Standard
Model. Quantitatively, a small strong CP phase represents a renormalization-invariant fea-
ture of the Standard Model, but certainly not of arbitrary extensions. This observation
becomes phenomenologically relevant if the strong CP problem is solved by some mecha-
nism at some high UV cutoff (e.g. models based on approximate P or CP symmetries). In
those cases the UV theory would typically predict θ̄(Λ) = 0 and the experimental observa-
tion |θ̄(1 GeV)| < 10−10 would translate into a constraint on the renormalization evolution
below Λ. Our considerations can help identify which extensions of the Standard Model at
renormalization scales 1 GeV < µ < Λ are compatible with such a picture. For example, we
found that a 2-loop βθ can only be generated if there are at least two scalars with different
representations of the gauge group. Thus, a two-Higgs doublet model would not induce
that effect, despite the many additional sources of CP violation. The claim that such an
extension features the same radiative stability as the Standard Model is however too naive.
We have demonstrated that the rescaling-invariant angles θ̄ often run at lower order in
perturbation theory than θ itself and that sizable (finite) effects on θ̄ usually arise at the
mass thresholds that extensions of the Standard Model inevitable possess. UV completions
where all these effects are under control are rather rare. Only a very limited number of
options would be available if Nature decided to address the strong CP problem in the far
UV. The identification of these options represents an interesting open problem.
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A CP-odd flavor-invariants

In this appendix we build the flavor-invariants introduced in section 3 and identify the CP-
odd ones. We approach the problem perturbatively. By counting the powers of ~ in the
flavor-singlet structures one sees that corrections to the 1PI vertex with two external gauge
bosons proportional to g2cgY 2cY λcλ correspond to diagrams with n = cg + cY + cλ loops.
Yet, the associated contribution to Zθ,1 is a 1-loop factor smaller because the definition
of the θ vertex includes a factor g2~/16π2. This implies that in order to find a correction
of n-loop size to the beta function, hereafter denoted by β

(n)
θ , one should calculate an

n+ 1-loop diagram.
On pure dimensional grounds, therefore, corrections to βθ are expected to be con-

trolled by

β
(1)
θ : g4, g2λ, g2Y 2 (A.1)

β
(2)
θ : g6, g4λ, g2λ2, g4Y 2, g2Y 2λ, g2Y 4

· · ·

In this paper we will content ourselves with 1- and 2-loop size effects, namely β(1,2)
θ , though

the formalism we adopt can be extended up to arbitrary order. Up to this order it is rather
straightforward to argue that only the terms involving the Yukawa couplings have some
real chance of being CP-odd, as we now show.

A general renormalizable gauge theory without scalar quartics and Yukawas always
conserves CP (if the topological angles can be neglected, which is the case perturbatively).
Hence there cannot be any CP-odd invariant IAB built out of TA, SA only. Purely bosonic
flavor-invariants cannot work either. They depend on SA, λabcd and are automatically CP-
even. Indeed, λ is real whereas SA are purely imaginary. To build a CP-odd combination
we would need an odd number of SA, which cannot be covariant under rotations of the
adjoint index because the only invariant tensor at our disposal for contractions is g2

AB.
This conclusion was expected on account of that the Feynman diagrams we are interested
in must be proportional to the Levi-Civita tensor, and therefore fermion traces are strictly
necessary to generate them.

We can explicitly demonstrate that even the combinations g2λ, g2λ2 and g4λ can be
discarded. Recall that a fermion loop is necessary, so such invariant must include traces
of the fermion generator. The only g2λ invariant we can have is Tr[TATB]λaabb and is
manifestly real, i.e. CP-even, since the fermionic trace gives the direct sum of identities
in the adjoint index multiplied by (real) fermion Casimirs. Similar considerations apply
to the g2λ2 invariants, which are of the form Tr[TATB]λ2 with all possible contractions
of the scalar indices. Whatever contraction is taken the invariant is CP-even. Finally, at
order g4λ we can have structures of the form Tr[TTTT ]λ, Tr[TT ]Tr[TT ]λ, and Tr[TT ]SSλ.
The former two are manifestly real because the potential CP-violating contribution would
have to come exclusively from the fermionic generators, and we have recalled above that
this is not possible. The last one may either contain [SMSN ]abλabcc or [SMSN ]aaλbbcc,
which are both real. We did not include structures with a single scalar generator because
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those vanish: the (anti-symmetric) scalar indices in SA should necessarily be contracted
with those (symmetric) of λ. Similarly, three scalar generators would require the fermionic
trace TrT = 0, which vanishes in the absence of mixed gravity-gauge anomalies.

We conclude that, at least up to the perturbative order considered here, the Yukawa
couplings are strictly necessary to build the CP-odd flavor-invariants IAB of the the-
ory (3.1). For convenience it is useful to introduce the basic covariant combinations in
which they can appear:

ΥA1···An
ab;ij ≡ Y ∗a ik(TA1)∗ · · · (TAn)∗Yb kj . (A.2)

These objects transform under fermion rotations precisely as TA, under scalar rotations as
the product of two Yukawas, whereas under gauge boson rotations in an obvious way. We
will use this compact notation to write the possible invariants appearing in β(1,2)

θ .

Absence of β(1): 2-loop diagrams. At lowest order we have a very limited number
of flavor-invariant structures that can contribute. They are so few that we can write them
explicitly:

g2Y 2 : Tr[T (ATB)Υaa], Tr[T (AΥB)
aa ], Tr[T (ATB)]Tr[Υaa], S(A

mnS
B)
mnTr[Υaa], (A.3)

Here and in the following Tr[· · · ] denotes a trace over the fermionic indices and ( ) imply
symmetrization. We did not include invariants in which the scalar indices of SAab are
contracted with those of the Yukawas because thanks to (3.3) these can be written in terms
of the first and second invariants of (A.3). Furthermore, we did not include structures of the
form Tr[Υ(AB)

aa ] because Tr[ΥA1···An
ab ] = Tr[ΥabT

An · · ·TA1 ] due to the trace transposition
property. This relation will also be exploited later in enumerating the invariants of higher
order.

We find that none of the invariants in (A.3) is CP-odd. To see this note that the
matrices Υaa, ΥA

aa are hermitian and therefore their trace is real. This immediately tells
us that the last two structures are real. Similarly, the structures Tr[TΥA] are necessarily
CP-even because they are the trace of the product of two hermitian matrices, which is
real. The first structure in (A.3) is CP-even for the same reason, because T (ATB) is also
hermitian.

Terms in β(2): 3-loop diagrams. At the next order, the relevant structures are:

g2Y 2λ : Tr[TTΥ0]λ, Tr[TΥ1]λ, SSTr[Υ0]λ, (A.4)
Tr[TT ]Tr[Υ0]λ

g4Y 2 : Tr[TTΥ2], Tr[TTTΥ1], Tr[TTTTΥ0]
Tr[TT ]Tr[Υ2], SSTr[Υ2], Tr[TT ]Tr[TΥ1], Tr[TTT ]Tr[Υ1], SSSTr[Υ1],
Tr[TTTT ]Tr[Υ0], Tr[TT ]Tr[TT ]Tr[Υ0], SSSSTr[Υ0]

g2Y 4 : Tr[Υ2Υ0], Tr[Υ1Υ1], Tr[Υ1Υ0T ],
Tr[Υ2]Tr[Υ0], Tr[Υ1]Tr[Υ1], Tr[TT ]Tr[Υ0Υ0], SSTr[Υ0Υ0]
Tr[Υ0]Tr[Υ0]Tr[TT ], SSTr[Υ0]Tr[Υ0]
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where to make our notation more compact the n in the expression Υn indicates the number
of adjoint indices in Υ. The indices are left implicit because many contractions are possible,
and again invariants where one scalar index must be contracted with a Yukawa have been
omitted because of (3.3).

g2Y 2λ terms. Most of the g2Y 2λ terms are manifestly real once we take into account
that the symmetry of λ forces the scalar indices in [Υn]ab to be symmetrized or contracted
among themselves, i.e. Υ(ab) or Υaa. In either case the resulting Υ tensor is hermitian in
the fermion indices. Hence all traces are inevitably real and the invariants CP-even.

g4Y 2 terms. Consider next the g4Y 2 terms. Here the scalar indices are contracted
among themselves; it is the possible contractions of the gauge indices that increases the
number of independent structures. However all the invariants turn out to be CP-even
because of properties of the gauge generators and gauge invariance. Let us show this
explicitly by considering the invariants of the form Tr[TTΥ2]. These are

g2
CDTr[T (ATB)ΥCD

aa ] (A.5)
g2
CDTr[TCTDΥ(AB)

aa ]

and

g2
CDTr[TCT (AΥB)D

aa ] (A.6)
g2
CDTr[TCT (A|ΥD|B)

aa ]
g2
CDTr[T (A|TCΥ|B)D

aa ]
g2
CDTr[T (A|TCΥD|B)

aa ]

where the contraction among adjoint indices is consistently performed with the metric
g2
AB, (3.1). In the first two structures, hermiticity of T (ATB) and Υ(MN)

aa ensures they are
all CP-even. The other structures are also CP-even. To see this let us look for a CP-odd
version of the first invariant in (A.6), namely

g2
CDTr[T (A|TCΥ|B)D

aa ]− g2
CDTr[TCT (A|ΥD|B)

aa ] (A.7)

The indices C,D run over all possible adjoint indices. On the other hand, A,B are restricted
to a certain non-abelian group or to any two of the abelian factors. Consider first the case
A,B refer to a certain non-abelian group. Then TA,B commute with all the TC,D that are
associated to the other groups. In addition, θAB ∝ δABG and hence we should not simply
symmetrize but actually sum over A,B as well. As a result the above invariant identically
vanishes. Consider next the case in which A,B refer to the abelian groups. Then TA,B

commute with TC,D and the expression again identically vanishes. Similar considerations
show that all invariants in (A.6) are CP-even.

What about invariants of the form Tr[TTTΥ1]? Here we have

g2
CDTr[T (A|TCTDΥ|B)

aa ] (A.8)
g2
CDTr[TCTDT (AΥB)

aa ]
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and

g2
CDTr[T (A|TCT |B)ΥD

aa] (A.9)
g2
CDTr[TCT (A|TDΥ|B)

aa ]
g2
CDTr[T (ATB)TCΥD

aa]
g2
CDTr[TCT (ATB)ΥD

aa]

The expressions with the Casimir g2
CDT

CTD = ⊕GCG are manifestly real. The first and
second in (A.9) are real because they are the trace of the product of two hermitian matrices.
A potential CP-odd combination with the third structure is

g2
CDTr[

{
TA, TB

}
[TC ,ΥD

aa]]. (A.10)

An identical one is obtained from the last structure in (A.9). Again, these identically vanish
when imposing gauge-invariance. Namely, if A,B refer to indices of a non-abelian group,
then we should include a sum δABG and find that

{
TA, TB

}
is proportional to the Casimir

CG of that group. Hence it commutes with all TC and we get g2
CDTr[CG [TC ,ΥD

aa]] =
g2
CDTr[[CG , TC ]ΥD

aa] = 0. The same result trivially applies also when A,B refer to the
abelian groups.

The arguments just exposed can be applied to all the other invariants appearing
in (A.5), including the ones with the scalar generators. Therefore our conclusion is that
all the g4Y 2 structures are CP-even.

g2Y 4 terms. The structures g2Y 4 are more involved because the scalar indices can
be contracted in several different ways. For example Tr[Υ2Υ0] can be Tr[Υ(AB)

ab Υab],
Tr[Υ(AB)

ab Υba], Tr[Υ(AB)
aa Υbb]. Here it is crucial to observe that [Υab]† = Υba if Υ has

less than two gauge indices, or even more provided they are symmetrized. This way one
finds that Tr[Υ2Υ0] are all CP-even. Similar considerations apply to Tr[Υ1Υ1] as well as
all the multi-trace expressions in (A.5). Including the generator T , however, changes the
game and leads finally to some interesting candidates. We are thus left with the structure
Tr[Υ1Υ0T ]. The CP-odd invariants of this form are

Tr
[
ΥA
ab[TB,Υab]

]
(A.11)

Tr
[
Υ(A
ab [TB),Υba]

]
Tr
[
Υ(A
aa [TB),Υbb]

]
where the first invariant is already symmetric in the adjoint indices, as follows from the
trace transposition property. The same property also shows that the second and third
invariants are actually equivalent. Furthermore, using (3.3) it is straightforward to prove
that [Υaa, T

A] = 0, so the second and third expressions actually vanish. This ensures that
the only non-vanishing CP-odd invariant in (A.11) is the first one, which is therefore the
only possible contribution to the β−function of θAB at 3-loops. This is precisely IAB(2) of
eq. (3.12).
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