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Abstract
The objective of this paper is to introduce new classes of m-fold symmetric
bi-univalent functions. We discuss estimates on the Taylor–Maclaurin coefficients
|am+1| and |a2m+1|, and the Fekete–Szegő problem is also considered for the new
classes of functions introduced. We denote these classes byMF – Sp,q� ,m(h),MF – Sp,q� ,m(s),

andMF – Sb,d� ,m. Quantum calculus aspects are also considered in this study to
enhance its novelty and to obtain more interesting results.
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1 Introduction and preliminary results
Let A denote the family of functions of the form

f (z) = z +
∞∑

k=2

akzk , (1)

which are analytic in the open unit disk U = {z ∈C : |z| < 1} and normalized by the condi-
tions f (0) = 0, f ′(0) = 1.

The subclass S ⊂ A is formed of all functions in the class A that are univalent in U
(see[14]).

The Koebe one-quarter theorem ensures that the image of the unit disk under every
f ∈ S function contains a disk of radius 1/4, see [14].

If the function f ∈ S, then it has an inverse f –1, which is defined by

f –1(f (z)
)

= z, z ∈ U
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and

f
(
f –1(w)

)
= w, |w| < r0(f ), r0(f ) ≥ 1/4,

where

g(w) = f –1(w) = w – a2w2 +
(
2a2

2 – a3
)
w3 –

(
5a3

2 – 5a2a3 + a4
)
w4 + · · · . (2)

We say that a function f ∈A is bi-univalent in U if both f and f –1 are univalent in U .
We denote by � the class of all bi-univalent functions in U given by (1).
The study on bi-univalent functions has its origins in the article published by Lewin in

[25], where it was shown that |a2| < 1.51.
The domain D is m-fold symmetric if a rotation of D about the origin through an angle

2π/m carries D on itself.
The holomorphic function f in the domain D is m-fold symmetric if the following con-

dition is true: f (e 2π i
m z) = e 2π i

m f (z).

Definition 1 ([36]) A function f is said to be m-fold symmetric if it has the following
normalized form:

f (z) = z +
∞∑

k=1

amk+1zmk+1, z ∈ U , m ∈ N∪ {0}. (3)

The normalized form of f is given as in (3), and the series expansion for f –1(z) is given
below (see[4]):

g(w) = f –1(w) = w – am+1wm+1

+
[
(m + 1)a2

m–1 – a2m+1
]
w2m+1

–
[

1
2

(m + 1)(3m + 2)a3
m+1 – (3m + 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · . (4)

Examples of m-fold symmetric bi-univalent functions are:

[
– log

(
1 – zm)] 1

m ;
{

zm

1 – zm

} 1
m

;
1
2

log

(
1 + zm

1 – zm

) 1
m

.

Srivastava et al. in the paper [36] defined m-fold symmetric bi-univalent functions fol-
lowing the concept of m-fold symmetric univalent functions.

The interest in bi-univalent functions resurfaced in 2010 when a paper authored by Sri-
vastava et al. in [35] was published. It opened the door for many interesting developments
on the topic. Soon other new subclasses of bi-univalent functions were introduced [19–21]
and special classes of bi-univalent functions were investigated such as Ma–Minda star-
like and convex functions [3], analytic bi-Bazilevic functions [23], and recently a family
of bi-univalent functions associated with Bazilevic functions and the λ-pseudo-starlike
functions [38]. Brannan and Clunie’s conjecture [8] was further investigated [32] and sub-
ordination properties were also obtained for certain subclasses of bi-univalent functions
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[11]. New results continued to emerge in the recent years such as coefficient estimates
for some general subclasses of analytic and bi-univalent functions [13, 27, 34]. Horadam
polynomials were used for applications on Bazilevic bi-univalent functions satisfying sub-
ordination conditions [40] and for introducing certain classes of bi-univalent functions
[1]. Operators were also included in the study as it can be seen in earlier publications [9]
and in very recent ones [28]. Interesting results regarding m-fold symmetric bi-univalent
functions were published in the same year when this notion was introduced [21]. This con-
tinued to appear in the following years [4, 16, 31, 33] and is still researched today [10, 37],
proving that the topic remains in development.

The Fekete–Szegö problem is the problem of maximizing the absolute value of the func-
tional |a3 – μa2

2|.
The Fekete–Szegö inequalities introduced in 1933, see [18], preoccupied researchers

regarding different classes of univalent functions [15, 24]. Hence it is obvious that such
inequalities were obtained regarding bi-univalent functions too and very recently pub-
lished papers can be cited to support the assertion that the topic still provides interesting
results [2, 6, 41]. Inspiring new results emerged when quantum calculus was involved in
the studies, as can be seen in many papers [30] and in studies published very recently
[5, 12, 17, 39]. Some elements of the (p, q)-calculus must be used for obtaining the original
results contained in this paper. Further information can be found in [22, 30]. The tremen-
dous impact quantum calculus has had when associated with univalent functions theory
is nicely highlighted in the recent review paper [22, 30].

For obtaining the original results contained in this paper, some elements of the (p, q)-
calculus must be used.

Definition 2 ([22], p. 2) Let f ∈A given by (1) and 0 < q < p ≤ 1. Then the (p, q)-derivative
operator for the function f of the form (1) is defined by

Dp,qf (z) =
f (pz) – f (qz)

(p – q)z
, z ∈ U∗ = U – {0} (5)

and

(Dp,qf )(0) = f ′(0), (6)

it follows that the function f is differentiable at 0.

We can deduce from relation (2) that

Dp,qf (z) = 1 +
∞∑

k=2

[k]p,qakzk–1, (7)

where the (p, q)-bracket number is given by

[k]p,q =
pk – qk

p – q
= pk–1 + pk–2q + pk–3q2 + · · · + pqk–2 + qk–1, p 
= q

which is a natural generalization of the q-number.
We can see that limp→1– [k]p,q = [k]q = 1–qk

1–q , see the papers [17, 22].
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Definition 3 ([7], p.137) Let the function f ∈ A, where 0 ≤ d < 1, s ≥ 1 is real. The func-
tion f ∈ Ls(d) of an s-pseudo-starlike function of order d in the unit disk U if and only
if

Re

(
z[f ′(z)]s

f (z)

)
> d.

Lemma 4 [14, 29] Let the function w ∈ P be given by the following series w(z) = 1 + w1z +
w2z2 + · · · , z ∈ U , where we denote by P the class of Carathéodory functions analytic in the
open disk U ,

P =
{

w ∈A|w(0) = 1, Re
(
w(z)

)
> 0, z ∈ U

}
.

The sharp estimate given by |wn| ≤ 2, n ∈ N
∗ holds true.

In the next section of the paper, the original results obtained are presented in three
definitions of new subclasses of m-fold symmetric bi-univalent functions and theorems
concerning coefficient estimates and Fekete–Szegő problem for the newly defined classes.

2 Main results
Definition 5 The function class M – FSp,q

�,m(h), (m ∈N, 0 < q < p ≤ 1, 0 < h ≤ 1, (z, w) ∈ U),
contains all the functions f given by relation (3) that satisfy the following conditions:

⎧
⎨

⎩
f ∈ �m

| arg{Dp,qf (z) + z(Dp,qf (z))′}| < hπ
2 , (z ∈ U)

(8)

and

∣∣arg
{

Dp,qg(w) + w
(
Dp,qg(w)

)′}∣∣ <
hπ

2
, (9)

where g is given by relation (4).

The coefficient bounds for the functions class MF – Sp,q
�,m(h) are obtained in the next

theorem.

Theorem 6 If the function f , given by relation (3), is in the function class MF –Sp,q
�,m(h), (m ∈

N, 0 < q < p ≤ 1, 0 < h ≤ 1, (z, w) ∈ U), then the following inequalities are true:

|am+1| ≤ 2h√
(m + 1)h[2m + 1]p,q(1 + 2m) – (h – 1)(1 + m)2[m + 1]2

p,q

(10)

and

|a2m+1| ≤ 2h
(1 + 2m)[2m + 1]p,q

+
2h2

(1 + m)[m + 1]2
p,q

. (11)

Proof If we use (8) and (9), we obtain

Dp,qf (z) + z
(
Dp,qf (z)

)′ =
[
α(z)

]h, z ∈ U (12)
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and

Dp,qg(w) + w
(
Dp,qg(w)

)′ =
[
β(w)

]h, w ∈ U , (13)

where α(z) and β(w) in P are given by

α(z) = 1 + αmzm + α2mz2m + α3mz3m + · · · (14)

and

β(w) = 1 + βmwm + β2mw2m + β3mw3m + · · · . (15)

Comparing the coefficients in (12) and (13), we obtain

(1 + m)[m + 1]p,qam+1 = hαm, (16)

(1 + 2m)[2m + 1]p,qa2m+1 = hα2m +
h(h – 1)

2
α2

m, (17)

–(1 + m)[m + 1]p,qam+1 = hβm, (18)

(1 + 2m)[2m + 1]p,q
(
(m + 1)a2

m+1 – a2m+1
)

= hβ2m +
h(h – 1)

2
β2

m. (19)

From (16) and (18) we obtain

αm = –βm (20)

and

2(1 + m)2[m + 1]2
p,qa2

m+1 = h2(α2
m + β2

m
)
. (21)

Now, from (17), (19), and (21) we obtain that

(m + 1)(1 + 2m)[2m + 1]p,qa2
m+1

= h(α2m + β2m) + (h – 1)
[ (1 + m)2[m + 1]2

p,q

h

]
a2

m+1.

Therefore, we obtain that

a2
m+1 =

h2(α2m + β2m)
(m + 1)(1 + 2m)[2m + 1]p,qh – (h – 1)(1 + m)2[m + 1]2

p,q
.

Now, for the coefficients α2m and β2m, if we apply Lemma 4, we obtain

|am+1| ≤ 2h√
h(m + 1)(1 + 2m)[2m + 1]p,q – (h – 1)(1 + m)2[m + 1]2

p,q

.
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If we use (17) and (19), then we obtain

2(1 + 2m)[2m + 1]p,qa2m+1 – (m + 1)(1 + 2m)[2m + 1]p,qa2
m+1

= h(α2m – β2m) +
h(h – 1)

2
(
α2

m – β2
m
)
. (22)

From (20), (21), and (22), we obtain

a2m+1 =
h(α2m – β2m)

2(1 + 2m)[2m + 1]p,q
+

h2(α2
m + β2

m)
4(1 + m)[m + 1]2

p,q
. (23)

If we apply Lemma 4 for the coefficients αm, α2m, βm, β2m, we obtain

|a2m+1| ≤ 2h
(1 + 2m)[2m + 1]p,q

+
2h2

(1 + m)[m + 1]2
p,q

. �

The Fekete–Szegö functional for the class MF – Sp,q
�,m(h) is given in the next theorem.

Theorem 7 Let f be a function of the form (3) in the class MF – Sp,q
�,m(h). Then

∣∣a2m+1 – ρa2
m+1

∣∣ ≤
⎧
⎨

⎩

2h
(1+2m)[2m+1]p,q

, |l(ρ)| ≤ 1
(1+2m)[2m+1]p,q

,

4h(1 + 2m)[2m + 1]2
p,q|l(ρ)|, |l(ρ)| ≥ 1

(1+2m)[2m+1]p,q
,

(24)

where we denote

l(ρ) =
h{m + 1 – 2ρ}

2{h[2m + 1]p,q(1 + 2m) – [m + 1]2
p,q(h – 1)(1 + m)} .

Proof The values of the coefficients a2
m+1 and a2m+1 are given in the proof of Theorem 6

as follows:

a2m+1 =
h(α2m – β2m)

2(1 + 2m)[2m + 1]p,q
+

h2(α2
m + β2

m)
4(1 + m)[m + 1]2

p,q
,

a2
m+1 =

h2(α2m + β2m)
h(m + 1)(1 + 2m)[2m + 1]p,q – (h – 1)(1 + m)2[m + 1]2

p,q
.

We start to compute a2m+1 – ρa2
m+1.

It follows that

a2m+1 – ρa2
m+1

= h{α2m

[
1

2(1 + 2m)[2m + 1]p,q

+
h(m + 1 – 2ρ)

2{[2m + 1]p,q(1 + 2m)h – (h – 1)(1 + m)[m + 1]2
p,q}

]

+ β2m

[
–

1
2(1 + 2m)[2m + 1]p,q

+
h(m + 1 – 2ρ)

2[h(1 + 2m)[2m + 1]p,q – (h – 1)(1 + m)[m + 1]2
p,q]

]
.
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After some computations and according to Lemma 4, we obtain

∣∣a2m+1 – ρa2
m+1

∣∣ ≤
⎧
⎨

⎩

2h
(1+2m)[2m+1]p,q

, |l(ρ)| ≤ 1
(1+2m)[2m+1]p,q

,

4h(1 + 2m)[2m + 1]2
p,q|l(ρ)|, |l(ρ)| ≥ 1

(1+2m)[2m+1]p,q
. �

Definition 8 The function class MF – Sp,q
�,m(s), (0 < q < p ≤ 1, 0 ≤ s < 1, m ∈ N, (z, w) ∈ U),

contains all the functions f given by relation (3) that satisfy the following conditions:

⎧
⎨

⎩
f ∈ �m

Re{Dp,qf (z) + z(Dp,qf (z))′} > s, z ∈ U
(25)

Re
{

Dp,qg(w) + w
(
Dp,qg(w)

)′} > s, w ∈ U (26)

where the function g is of the form (4).

Coefficient bounds for the functions class MF –Sp,q
�,m(s) are obtained in the next theorem.

Theorem 9 Let f be a function in the class MF – Sp,q
�,m(s), (m ∈ N, 0 < q < p ≤ 1, 0 ≤ s <

1, (z, w) ∈ U), which has the form (3). Then

|am+1| ≤ min

{
2(1 – s)2

(1 + m)2[m + 1]2
p,q

, 2

√
(1 – s)

(m + 1)(1 + 2m)[2m + 1]p,q

}
(27)

and

|a2m+1| ≤ 2(1 – s)
(1 + 2m)[2m + 1]p,q

. (28)

Proof We can see that from (24) and (25) we obtain

Dp,qf (z) + z
(
Dp,qf (z)

)′ = s + (1 – s)α(z), z ∈ U (29)

and

Dp,qg(w) + w
(
Dp,qg(w)

)′ = s + (1 – s)β(w), w ∈ U , (30)

where α(z) and β(w) in P are given by (14) and (15).
Now we compare the coefficients from (28) and (29), and we obtain

(1 + m)[m + 1]p,qam+1 = (1 – s)αm, (31)

(1 + 2m)[2m + 1]p,qa2m+1 = (1 – s)α2m, (32)

–(1 + m)[m + 1]p,qam+1 = (1 – s)βm, (33)

(1 + 2m)[2m + 1]p,q
[
(m + 1)a2

m+1 – a2m+1
]

= (1 – s)β2m. (34)

We obtain from (30) and (32) that

αm = –βm (35)



Breaz and Cotîrlă Journal of Inequalities and Applications         (2023) 2023:15 Page 8 of 13

and

2(1 + m)2[m + 1]2
p,qa2

m+1 = (1 – s)2(α2
m + β2

m
)
. (36)

From (33) and (31) we obtain

(1 + 2m)[2m + 1]p,q(m + 1)a2
m+1 = (1 – s)(α2m + β2m). (37)

If we apply Lemma 4 for the coefficients αm, α2m, βm, β2m, then we obtain

|am+1| ≤ 2

√
1 – s

[2m + 1]p,q(m + 1)(1 + 2m)
.

Using (33) and (31) to find the bound on |a2m+1|, we obtain

–(m + 1)(1 + 2m)[2m + 1]p,qa2
m+1 + 2(1 + 2m)[2m + 1]p,qa2m+1

= (1 – s)(α2m – β2m), (38)

or equivalently

a2m+1 =
(1 – s)(α2m – β2m)

2(1 + 2m)[2m + 1]p,q
+

(m + 1)
2

a2
m+1. (39)

From (35) we substitute the value of a2
m+1 and obtain

a2m+1 =
(1 – s)(α2m – β2m)

2(1 + 2m)[2m + 1]p,q
+

(1 – s)2(α2
m + β2

m)
4(1 + m)[m + 1]2

p,q
. (40)

Now, we will apply Lemma 4 for the coefficients αm, α2m, βm, β2m, and we obtain

|a2m+1| ≤ 2(1 – s)
(1 + 2m)[2m + 1]p,q

+
2(1 – s)2

(1 + m)[m + 1]2
p,q

.

From (36) and (38), if we apply again Lemma 4, then we obtain

|a2m+1| ≤ 2(1 – s)
(1 + 2m)[2m + 1]p,q

. �

In the next theorem we compute the Fekete–Szegö functional for the class MF – Sp,q
�,m(s).

Theorem 10 Let f be a function of the form (3) in the class MF – Sp,q
�,m(s). Then

∣∣a2m+1 – ρa2
m+1

∣∣ ≤
⎧
⎨

⎩

2(1–s)
(1+2m)[2m+1]p,q

, |l(ρ)| ≤ 1
2(1+2m)[2m+1]p,q

,

4(1 + 2m)(1 – s)[2m + 1]2
p,q|l(ρ)|, |l(ρ)| ≥ 1

2(1+2m)[2m+1]p,q
,

(41)

where l(ρ) is given by

l(ρ) =
(1 – s)(1 + 2m)[2m + 1]p,q – 4ρ[m + 1]2

p,q

4(1 + m)[m + 1]2
p,q(1 + 2m)[2m + 1]p,q

.
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Proof Using the values of a2
m+1 and a2m+1 from the proof of Theorem 9, we can compute

a2m+1 – ρa2
m+1.

a2m+1 =
(1 – s)(α2m – β2m)

2[1 + 2m]p,q(1 + 2m)
+

(1 – s)2(α2m + β2m)
4(1 + m)[m + 1]2

p,q
,

a2
m+1 =

(1 – s)(α2m + β2m)
(1 + 2m)[2m + 1]p,q(m + 1)

.

We obtain

a2m+1 – ρa2
m+1

= (1 – s)
{
α2m

[
1

2[1 + 2m]p,q(1 + 2m)

+
(1 – s)(2m + 1)[1 + 2m]p,q – 4ρ[m + 1]2

p,q

4(1 + m)[m + 1]2
p,q(1 + 2m)[2m + 1]p,q

]

+ β2m

[ (1 – s)(1 + 2m)[2m + 1]p,q – 4ρ[m + 1]2
p,q

4(1 + m)[m + 1]2
p,q(1 + 2m)[2m + 1]p,q

–
1

2[1 + 2m]p,q(1 + 2m)

]}
.

The next inequality is obtained after some computations and according to Lemma 4:

∣∣a2m+1 – ρa2
m+1

∣∣ ≤
⎧
⎨

⎩

2(1–s)
(1+2m)[2m+1]p,q

, |l(ρ)| ≤ 1
2(1+2m)[2m+1]p,q

,

4(1 + 2m)(1 – s)[2m + 1]2
p,q|l(ρ)|, |l(ρ)| ≥ 1

2(1+2m)[2m+1]p,q
. �

Definition 11 Let b, d : U → C be analytic functions with the property min{Re(b(z)),
Re(d(z))} > 0, where z ∈ U , b(0) = d(0) = 1.

The class MF – Sb,d
�,m contains all the functions f given by (3) if the following conditions

are satisfied:

(
Dp,qf (z) + z

(
Dp,qf (z)

)′) ∈ b(U), z ∈ U (42)

and

(
Dp,qg(w) + w

(
Dp,qg(w)

)′) ∈ d(U), w ∈ U (43)

where the function g is given by (4).

In the next theorem we obtain the coefficient bounds for the function class MF – Sb,d
�,m.

Theorem 12 If the function f of the form (3) is in the class MF – Sb,d
�,m, then the following

inequalities are satisfied:

|am+1| ≤ min

{√
|b′

1(0)|2 + |d′
1(0)|2

2(1 + m)2[m + 1]2
p,q

,

√
|b′′

2(0)| + |d′′
2 (0)|

(1 + 2m)(m + 1)[2m + 1]p,q

}
(44)
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and (45)

|a2m+1| ≤ min

{
(|b′(0)|2 + |d′(0)|2)
4(1 + m)[2m + 1]2

p,q
+

|b′′(0)|2 + |d′′(0)|2
2(1 + 2m)[2m + 1]p,q

,

|b′′(0)| + |d′′(0)|
2(1 + 2m)[2m + 1]p,q

+
(|b′′(0)| + |d′′(0)|)

2(1 + 2m)[2m + 1]p,q

}
. (46)

Proof We can write relations (42) and (43) as follows:

Dp,qf (z) + z
(
Dp,qf (z)

)′ = b(z) (47)

and

Dp,qg(w) + w
(
Dp,qg(w)

)′ = d(w), (48)

where the functions b and d have the following forms and satisfy the conditions from
Definition 11:

b(z) = 1 + b1z + b2z2 + · · · , (49)

d(w) = 1 + d1w + d2w2 + · · · . (50)

Substituting relations (49) and (50) into (47) and (48), respectively, and equating the coef-
ficients, we obtain

(1 + m)[m + 1]p,qam+1 = b1; (51)

(1 + 2m)[2m + 1]p,qa2m+1 = b2; (52)

–(1 + m)[m + 1]p,qam+1 = d1; (53)

(1 + 2m)[2m + 1]p,q
(
(m + 1)a2

m+1 – a2m+1
)

= d2. (54)

We obtain from (51) and (53) that

b1 = –d1 (55)

and

b2
1 + d2

1 = 2(1 + m)2[m + 1]2
p,qa2

m+1. (56)

Adding relations (52) and (54), we obtain

{
(1 + 2m)(m + 1)[2m + 1]p,q

}
a2

m+1 = b2 + d2. (57)

From (56) and (57), we obtain

a2
m+1 =

b2
1 + d2

1
2(1 + m)2[m + 1]2

p,q
(58)
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and

a2
m+1 =

b2 + d2

(1 + 2m)(m + 1)[2m + 1]p,q
. (59)

We find from (58) and (59) that

|am+1|2 ≤ |b′
1(0)|2 + |d′

1(0)|2
2(1 + m)2[m + 1]2

p,q

and

|am+1|2 ≤ |b′′
2(0)| + |d′′

2(0)|
(1 + 2m)(m + 1)[2m + 1]p,q

.

We get in this way the desired estimate on the coefficient |am+1| as asserted in (44).
By subtracting (54) from (52), we obtain

2(1 + 2m)[2m + 1]p,qa2m+1 – (1 + 2m)[2m + 1]p,q(m + 1)a2
m+1

= b2 – d2. (60)

It follows that

a2m+1 =
b2 – d2

2(1 + 2m)[2m + 1]p,q
+

b2
1 + d2

1
4(1 + m)[2m + 1]2

p,q
,

using the value of a2
m+1 from (58) into (60).

Hence,

|a2m+1| ≤ (|b′(0)|2 + |d′(0)|2)
4(1 + m)[2m + 1]2

p,q
+

|b′′(0)|2 + |d′′(0)|2
2(1 + 2m)[2m + 1]p,q

.

Using in (60) a2
m+1 given by (59), we have

a2m+1 =
b2 – d2

2(1 + 2m)[2m + 1]p,q
+

b2 + d2

2(1 + 2m)[2m + 1]p,q
.

It follows that

|a2m+1| ≤ |b′′(0)| + |d′′(0)|
2(1 + 2m)[2m + 1]p,q

+
|b′′(0)| + |d′′(0)|)

2(1 + 2m)[2m + 1]p,q
. �

3 Conclusion
These classes of functions introduced in this paper can be extended and similar proper-
ties to those presented can be studied. Using the same research method as in the paper
[36], we introduce in Definitions 5, 8, and 11 three new classes of m-fold symmetric bi-
univalent functions. As future research, using other operators or the (p, q)-derivative op-
erator, properties of starlikeness, convexity, and close-to-convexity of the new classes of
functions could be investigated, and we can study the properties of symmetry of (p, q)-
derivative operator. We believe that this study will motivate a number of researchers to
extend this idea for other functions and classes of functions.
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Breaz and Cotîrlă Journal of Inequalities and Applications         (2023) 2023:15 Page 13 of 13

26. Netanyahu, E.: The minimal distance of the image boundary from the origin and the second coefficient of a univalent
function in |z| < 1. Arch. Ration. Mech. Anal. 32, 100–112 (1969)

27. Páll-Szabó, Á.O., Oros, G.I.: Coefficient related studies for new classes of bi-univalent functions. Mathematics 8, 1110
(2020)

28. Patila, A.B., Naik, U.H.: On coefficient inequalities of certain subclasses of bi-univalent functions involving the Sălăgean
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