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1 Introduction

Euclidean gravity methods [1] have been incredibly successful as an IR window into black
hole microstates, even beyond the leading order in GN . For example, as demonstrated in [2–
6], 1-loop Euclidean path integrals compute logarithmic corrections to black hole entropy
that are in perfect agreement with the microscopic results in string theory or holographic
CFT. At 1-loop, the path integral receives corrections from quadratic fluctuations of matter
fields and the graviton around the black hole, and reduces to functional determinants of
differential operators. For a real scalar,

ZPI(m2) =
∫
Dφ e−

1
2

∫
(∇φ)2+m2φ2

= 1
det (−∇2 +m2)1/2 . (1.1)

What is the Lorentzian interpretation of 1-loop path integrals such as (1.1)? In other
words, what is the computation in the canonical formalism that reproduces (1.1)? In the
case of a static spherically symmetric black hole, the path integral is periodic in Euclidean
time, so a first thought would be that (1.1) is equal to

Zbulk = Tr e−βHĤ , (1.2)
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the canonical partition function for the free scalar outside the horizon at the inverse black
hole temperature βH . Here Ĥ is the Hamiltonian generating time translation, with respect
to which one defines the creation and annihilation operators associated with the negative-
and positive-energy normal modes respectively; Tr traces over the resulting Fock space.

Were the spectrum of Ĥ discrete, one could compute (1.2) by substituting the mode
expansion for the scalar field and summing over the occupation numbers, leading to

Zbulk =
∏
E>0

e−βHE/2

1− e−βHE . (1.3)

Here the product is over the discrete single-particle energy spectrum labeled by E; the
factor e−βHE/2 is due to the zero-point energy for each positive-energy mode. Equivalently,
we can write

logZbulk = −
∫ ∞

0
dω ρ(ω) log

(
eβHω/2 − e−βHω/2

)
, (1.4)

in terms of the single-particle density of states (DOS)

ρ(ω) =
∑
E>0

δ(ω − E) = tr δ(ω − Ĥ) (1.5)

with tr tracing over the single-particle Hilbert space.
For the case at hand, however, the spectrum of Ĥ is continuous; physically this is related

to the fact that the horizon is an infinite redshift surface, enabling the existence of normal
modes with arbitrary angular momentum and energy. Subsequently, expressions (1.3)–(1.5)
do not make sense. The most common approach was suggested by ’t Hooft [7], where one
discretizes the spectrum by putting a brick wall near the horizon and imposing a boundary
condition (variants are reviewed in [8, 9]). In this way, one could apply formulas (1.3)–(1.5);
at the end the answer depends on the brick wall parameter. However, this cannot be equal
to the Euclidean path integral (1.1), which is manifestly covariantly defined.

Recently, motivated by constructing 1-loop tests for microscopic models of de Sitter
quantum gravity, the authors of [10] studied 1-loop sphere path integrals. For scalars and
spinors on Sd+1,

logZPI =
∫ ∞

0

dt

2t

(
1 + e−2πt/βdS

1− e−2πt/βdS
χscalar(t)− 2 e−πt/βdS

1− e−2πt/βdS
χspinor(t)

)
. (1.6)

Here βdS = 2π`dS is the inverse de Sitter temperature. By χscalar(t) and χspinor(t) we denote
the Harish-Chandra characters of the de Sitter group SO(1, d+1) for the scalars and spinors,
which encode the quasinormal mode (QNM) spectrum on a static patch in dSd+1:

χ(t) =
∑
z

Nz e
−izt . (1.7)

Here z and Nz are the frequencies and degeneracies of the QNMs. An important observation
from [10] is that if one replaces in (1.4)

ρ(ω)→
∫ ∞

0

dt

2π
(
eiωt + e−iωt

)
χ(t) (1.8)
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and takes βH = βdS, one recovers the scalar part of the sphere path integral (1.6). The same
is true for spinors. The goal of this work is to elaborate on the physics of this replacement
and extend to general static spherically symmetric black hole backgrounds.

Our starting point is to recast the problem into that of 1D scattering, at which [10]
has already hinted. At each angular momentum l ≥ 0, normal modes for the free scalar are
equivalent to the scattering modes for the scattering problem. From this viewpoint, the
continuum of the normal mode spectrum is identical in nature to that of scattering modes
in any infinite-volume system with a localized potential. Because of this continuum, within
any small interval ∆ω of energy there are infinitely many scattering modes, and thus the
density of states ρl(ω) is strictly infinite.

A common strategy to extract useful spectral information for infinite-volume systems
is to consider changes in the DOS upon changing the potential (see for instance [11]).
For example, one can compare the original system to a reference system of a free particle
(whose scattering problem has an exactly zero potential); the difference in the DOS and
the resulting thermodynamic quantities then measure the effects due to the presence of
a potential. Of course, in principle one is not restricted to choosing free particle as the
reference system. This is the strategy we will pursue in this paper: while the DOS ρl(ω)
is infinite, we can measure its difference from some reference DOS ρ̄l(ω); such a change is
completely finite and is captured by the scattering phases associated with the corresponding
scattering problems. Upon summing over l ≥ 0, we thus have a manifestly covariant quantity
logZbulk − log Z̄bulk, up to a choice of Z̄bulk.

Strikingly, we find that 1-loop Euclidean partition function (1.1) uniquely fixes a
reference Z̄bulk. To that end, we note that a formula for 1-loop determinants developed
by Denef, Hartnoll and Sachdev (DHS) [12], in terms of QNM frequencies of scalar and
spinor fields on the black hole, can in fact be brought into the form (1.6), with βdS replaced
by the inverse black hole temperature βH and the SO(1, d+ 1) character χ(t) by a “QNM
character” defined as a sum analogous to (1.7). Comparing this with the above-mentioned
Lorentzian computation for the examples of scalars on static BTZ, Nariai spacetime and
the de Sitter static patch [10], our central observation is that

ZPI = Z̃bulk , Z̃bulk ≡
Zbulk

ZRindler
bulk (βH)

. (1.9)

Here Zbulk = Tr e−βHĤ is formally defined by (1.4), while ZRindler
bulk (βH) is analogously

defined but on a Rindler wedge of inverse temperature βH .1 The ratio Zbulk/Z
Rindler
bulk (βH)

is understood in a limiting sense explained in section 3. Back to the question in the
beginning, (1.9) suggests that the 1-loop Euclidean path integral is in fact computing
a relative or renormalized partition function. As we will discuss in section 3.2, such a
renormalized partition function has an intuitive physical interpretation from the perspective
of a near-horizon observer. While we have formally established (1.9), quantities in this
relation are UV-divergent and require regularization; in the framework of low-energy effective

1By this we mean the wedge described by the metric ds2 = e
4π
βH

x (−dt+ dx2) + r2
HdΩ2

d−1, which is
natural for an observer (at x = 0) with proper time t and proper acceleration 2π/βH .
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theory of gravity plus matter, these divergences are absorbed into the renormalization of
the cosmological constant, Newton’s constant and couplings to higher curvatures [13, 14].

From the algebraic QFT point of view (see [15] for a recent review), the infinity of ρ(ω)
is related to the fact that the algebra of observables for the scalar QFT outside the horizon
is a von Neumann algebra of Type III, which does not admit a trace. It was pointed out
recently that including 1-loop effects of gravity turns the algebra from Type III to Type
II, for which a trace can be defined up to an arbitrary renormalization [16, 17]. We will
comment more on this with some suggestive observations as we conclude in section 7.

To explain these ideas, we focus almost exclusively on the case of a massive scalar in
this work. In an upcoming paper [18], we extend our discussions to arbitrary spinning fields,
for which other subtleties and qualitatively new features would appear, as already noted in
the context of de Sitter space [10, 19].

Plan of the paper. In section 2, we review the DHS formula and introduce the QNM
character. In section 3 we explain the physics of the QNM character by recasting the
free scalar theory into a 1D scattering problem, after which we are naturally led to the
proposal (1.9). In section 4 and 5 we support (1.9) by the examples of scalars on BTZ and
Nariai. In section 6 we comment on the case of black holes in asymptotically flat space. We
conclude with some remarks in section 7.

2 Comments on the Denef-Hartnoll-Sachdev formula

In this section we review the DHS formula [12], after which we introduce the “QNM
character”. For our purpose of getting the formula (2.14) as soon as possible, we proceed
formally neglecting UV-divergences. A more rigorous treatment is postponed until we discuss
explicit examples in section 4 and 5. The following discussion applies to (d+ 1)-dimensional
static spherically symmetric backgrounds (d ≥ 1):

ds2 = −F (r) dt2 + dr2

F (r) + r2dΩ2
d−1 . (2.1)

Here dΩ2
d−1 is the metric on the unit Sd−1. There is a horizon at r = rH if F (rH) = 0, with

an associated Hawking temperature

βH = 1
TH

= 4π
F ′(rH) . (2.2)

We restrict ourselves to the case where TH is non-zero. Wick-rotating t = −itE and
identifying tE ' tE + βH in (2.1), we obtain a smooth geometry,

ds2 → ds2
E = F (r) dt2E + dr2

F (r) + r2dΩ2
d−1 , (2.3)

that arises as a saddle point in the Euclidean gravitational path integral. The horizon at
r = rH is mapped to the origin, near which we can make a change of variables

ρ2 = 4
F ′(rH)(r − rH) , θ = 2π

βH
tE (2.4)
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so that the space takes the product form

ds2 ≈ dρ2 + ρ2dθ2 + r2
H dΩ2

d−1 . (2.5)

The 1-loop corrections to the gravitational path integral are given by integrating out
quadratic fluctuations of matter fields (including the graviton) living on (2.3). For a real
scalar φ with mass m2, this is given by a functional determinant of a Laplace operator

ZPI(m2) =
∫
Dφ e−

1
2

∫
(∇φ)2+m2φ2

= 1
det (−∇2 +m2)1/2 . (2.6)

We demand the functions in the functional integration to be regular at the origin ρ = 0. In
terms of the complex coordinate u = ρ e−iθ, this means that φ has a Taylor expansion in u
and ū. More precisely, a mode with thermal frequency k has the following ρ→ 0 behavior

φk ∼ ρ|k|e−ikθ =

uk , k ≥ 0
ūk , k ≤ 0

. (2.7)

As part of the definition of the path integral, φ is typically required to satisfy other boundary
conditions (e.g. standard or alternate boundary condition in asymptotically AdS black holes).

The key result in [12] is that

D(m2) ≡ 1
det (−∇2 +m2) =

∏
z,z̄

∞∏
k=−∞

(
|k|+ iz

2πTH

)−Nz/2 (
|k| − iz̄

2πTH

)−Nz̄/2
. (2.8)

Here z = z(m2) and z̄ = z̄(m2) are the QNM and anti-QNM frequencies in the Lorentzian
signature, with degeneracies Nz and Nz̄ respectively.

The idea of deriving (2.8) is the following. We assume that the function D(m2) is a
meromorphic function on the complex m2-plane, and try to match its poles and zeros.2

The observation is that whenever we vary m2 such that iz(m2)
2πTH = −|k| or iz̄(m2)

2πTH = |k|, the
Lorentzian mode with frequency z or z̄ Wick-rotates to a regular mode in the Euclidean
signature while it solves the equation of motion

(
−∇2 +m2)φ = 0, and thus hitting a pole

of D(m2). Since D(m2) has no zeros, it has the same analytic structure as the function (2.8).
This completes the argument.3 A similar reasoning for a Dirac spinor leads to [12]

ZPI(m2) = det
(
/∇+m

)
=
∏
z,z̄

∞∏
k=0

(
|k|+ 1

2 + iz

2πTH

)Nz/2 (
|k|+ 1

2 −
iz̄

2πTH

)Nz̄/2
. (2.9)

When the theory is PT-symmetric, z̄ can be taken to be the complex conjugate of z.
Alternatively, we observe that for a QNM with frequency z, there is an anti-QNM with
frequency −z. Therefore, we can replace z̄ → −z in (2.8) and (2.9), and we have simply

ZPI(m2) =
∏
z

∞∏
k=−∞

(
|k|+ iz

2πTH

)−Nz/2
(2.10)

2This is a very strong assumption; in fact, from the scattering point of view discussed in the next section,
there is a natural proposal for how this should be modified.

3Generally there is a holomorphic function eP (m2) multiplying (2.8), which is related to its UV-divergence
and can be determined by comparing m2 →∞ asymptotics of (2.8) and the heat kernel coefficients [12].
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for a scalar and

ZPI(m2) =
∏
z

∞∏
k=0

(
|k|+ 1

2 + iz

2πTH

)Nz
(2.11)

for a Dirac spinor. We will focus on this case from now on.

2.1 The quasinormal mode character

Using log x = −
∫∞

0
dt
t e
−xt (ignoring the issue of UV-divergence), we can formally write (2.10)

as

logZPI =
∫ ∞

0

dt

2t
∑
z

∞∑
k=−∞

Nz e
−
(
|k|+ iz

2πTH

)
t

=
∫ ∞

0

dt

2t
1 + e−2πt/βH

1− e−2πt/βH
χQNM(t) . (2.12)

In the second equality we performed the sum over k and scaled t→ 2πt/βH . Here we have
defined a “QNM character”

χQNM(t) ≡
∑
z

Nz e
−izt . (2.13)

The formula (2.11) for a Dirac spinor can be similarly manipulated. To summarize, the
DHS formula for scalars and spinors in an arbitrary static background takes the form

logZPI =
∫ ∞

0

dt

2t

(
1 + e−2πt/βH

1− e−2πt/βH
χscalarQNM(t)− 2 e−πt/βH

1− e−2πt/βH
χspinorQNM (t)

)
. (2.14)

Note that the sums over k ∈ Z give the integration kernels capturing bosonic or fermionic
statistics. Formula (2.14) takes the same form as (1.6) derived in the context of de Sitter
space [10], where the QNM character χ(t) is the Harish-Chandra character for a unitary
irreducible representation of the de Sitter group. For a generic black hole, the QNM
character (2.13) might not have such a group theoretic interpretation; however, we will
abuse the terminology and call it a “character”.

Integrals like (2.14) are UV-divergent at t ≈ 0 and require regularization, such as heat
kernel [20] or zeta function [21] regularization. We will comment more on this when we
discuss explicit examples in section 4 and 5.

3 Black hole scattering and partition functions

In this section we explain the physics of the QNM character and thus formula (2.14) from
a purely Lorentzian point of view. To that end we will recast our problem into that
of 1D scattering; the subsequent discussion is largely inspired by what is known as the
Krein-Friedel-Lloyd formula in condensed matter literature. For concreteness we focus on
the case of asymptotically AdS black holes, but our discussion is easily generalized to cases
with zero or positive cosmological constants.

– 6 –
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3.1 Scattering phase shifts and density of states

To start with, we separate

φωl(t, r,Ω) = e−iωt
ψl(r)
r
d−1

2
Yl(Ω) . (3.1)

Here Yl are the (d−1)-dimensional spherical harmonics with degeneracy Dd
l = 2l+d−2

d−2
(l+d−3
d−3

)
satisfying −∇2

Sd−1Yl = l(l+d−2)Yl. With (3.1) the Klein-Gordon equation
(
−∇2+m2)φ= 0

on the background (2.1) is cast into a 1D Schrödinger form for each SO(d) quantum number
l≥ 0:4 (

−∂2
x + Vl(x)

)
ψl(x) = ω2ψl(x) , (3.2)

with the effective potential

Vl(x) = F (r)
[
d− 1
2r

d−1
2
∂r
(
r
d−3

2 F (r)
)

+
(
l(l + d− 2)

r2 +m2
)]

. (3.3)

Here we have introduced the tortoise coordinate

x ≡
∫ r

∞

dr′

F (r′) . (3.4)

We have x→ −∞ as r → rH , and the integration constant is chosen such that x→ 0 as
r →∞. For example, a static BTZ black hole with mass M has F (r) = r2−r2

H

`2AdS
where `AdS

is the AdS length and rH ≡M`2AdS, and we have x = `2AdS
2rH log

(
r−rH
r+rH

)
. See figure 1. We set

`AdS = 1 from now on.

Scattering states. For asymptotically AdS black holes, the general solution to (3.2) is a
linear combination of a normalizable and a non-normalizable mode at spatial infinity:

ψl(x→ 0) ∼ Cn.
l (−x)∆ + Cn.n.

l (−x)d−∆ , ∆ ≡ d

2 +

√
d2

4 +m2 . (3.5)

We impose standard quantization where we set Cn.n.
l = 0. This picks out the unique solution

with no wave transmitted to spatial infinity. This reflects the intuition that the negative
cosmological constant creates an infinite gravitational well at spatial infinity (r →∞), from
which any wave must bounce back. Near the horizon, we have a mixture of incoming and
outgoing waves:

ψl(x→ −∞) ∼ Aout
l (ω) e−iωx +Ain

l (ω) eiωx . (3.6)

Here by “in” (“out”) we mean the waves travel away from (towards) the horizon, as opposed
to the common terminology in studies of QNMs. See figure 1. Since (3.2) is invariant under
ω → −ω, we have Ain

l (ω) = Aout
l (−ω). For real ω, Ain

l (ω) = Aout
l
∗(ω), and the ratio

Sl(ω) = Aout
l (ω)
Ain
l (ω)

≡ e2iθl(ω) (3.7)

4This is for d≥ 3. The d= 1 case is trivial; when d= 2, the SO(2)'U(1) harmonics are 1√
2π e
−ilθ

and l∈Z.
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Figure 1. (a) The Penrose diagram for the full two-sided static BTZ black hole geometry. The
arrows point in the direction of increasing t. (b) The Penrose diagram for the 1-sided geometry,
where the t-translation generator is interpreted as the Hamiltonian. (c) We plot the scattering
potential (3.3) (black) for a scalar with ∆ = 2.1 and |l| = 3 on a static BTZ black hole with rH = 1,
which is hardly distinguishable from the Rindler potential (red) for x� 0. The brown lines in (a)
and (b) indicate the brick wall regulator [7] at x = −R, which we will remove at the end. In these
figures R = 8, corresponding to r ≈ 1.13.

is a pure phase, or a rank-1 unitary S-matrix. In terms of the phase shift θl(ω), (3.6)
becomes

ψl(x→ −∞) ∼ e−i(ωx−θl) + ei(ωx−θl) ∝ cos (ωx− θl) . (3.8)

Single-particle density of states. For every ω > 0, there is a unique solution to (3.2)
subject to the standard boundary condition. In other words, within any interval ∆ω,
the number ρl(ω)∆ω of normalizable solutions is infinite, implying in particular that the
single-particle density of states (DOS) ρl(ω) is infinite. More explicitly, we can cut off the
scattering problem (3.2) at a large distance x = −R, and impose a Dirichlet-type boundary
condition, i.e. set cos (ωR+ θl(ω)) = ψ0 for some constant ψ0. See (b) and (c) in figure 1.
This implies the quantization condition

ωnR+ θl(ωn) = 2nπ ± ξ0 , ξ0 ≡ cos−1 ψ0 , n = 0, 1, 2, · · · . (3.9)

In figure 2, we obtain the discrete spectra for various potentials by directly solving (3.9).
For large R, the spacing ∆ωn = ωn+1 − ωn between consecutive levels become small, and
we have θl(ωn+1) ≈ θl(ωn) + ∆ωnθ′l(ωn). We can then compute the smoothed-out DOS

ρRl (ω) ≡ 1
∆ω = R+ θ′l(ω)

π
+O

( 1
R

)
. (3.10)

We took into account contributions from both ± towers (3.9).
So far, working with a finite cutoff at x = −R is no different from the brick wall

model [7]. Because of the leading “brick wall term” R
π , (3.10) diverges as R→∞.5 However,

notice that this universal Rπ term contains no information at all about the potential Vl(x):
5This leading behavior is an example of what is known as the Weyl Law in spectral theory.
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ω

Figure 2. Left: the black lines mark the discrete spectrum obtained by numerically solving (3.9)
for a scalar with ∆ = 2.1 and |l| = 3 on a static BTZ black hole with rH = 1. We compare this with
the cases of flat (V̄ (x) = 0) (red) and Rindler (V̄l(x) = 4 e2x) (blue) potential. For each case we
have arranged the ±-towers (3.9) on the left (right). For the left and right figures we have chosen
R = 100 and R = 300 respectively. Observe that the energy level spacing scales roughly as 2π

R , and
we will have a continuum of energies as R → ∞. In both figures we choose ξ0 = 0.9, which only
shifts the relative heights of the ±-towers but not the spacing within the individual tower.

it is present for any system in a box with width R large compared to the range of Vl(x). In
contrast, the subleading term θ′l(ω)

π does depend on the shape of Vl(x). In the context of
black hole physics, Vl(x) contains information about the black hole geometry (2.1), as well
as the mass m2 and angular momentum l of the matter field.

A common strategy of sending the cutoff R to infinity while extracting the interesting
information about the spectrum encoded in the scattering phase θl(ω) is the following. We
consider a reference problem with potential V̄l(x) which we assume falls off fast enough
such that the solution ψ̄l(x) is still a linear combination of plane waves e±iωx near x = −R.
Reasoning as above, we obtain another regulated DOS:

ρ̄Rl (ω) = R+ θ̄′l(ω)
π

+O

( 1
R

)
. (3.11)

The key point is that the difference ρRl (ω)− ρ̄Rl (ω) remains finite as we take R→∞ and is
proportional to the derivative of the difference of the phase shifts

∆ρl(ω) ≡ lim
R→∞

(
ρRl (ω)− ρ̄Rl (ω)

)
= 1
π
∂ω∆θl(ω) , ∆θl(ω) ≡ θl(ω)− θ̄l(ω) . (3.12)

There is still a question of what reference potential V̄ (x) we should choose; in fact, without
any other input, there is no canonical choice of V̄ (x). See figure 3 for an example. Quite
amazingly, the Euclidean path integral uniquely picks out a natural one. We turn to this in
the next section, before which two more comments are in order.

First, the relation (3.12) does not depend on the choice of boundary conditions at
x = −R in either regulated problems; one can even relax the boundary conditions by
allowing ω-dependent values ψ0(ω) at the cutoff x = −R, as long as we take them to be the

– 9 –
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Figure 3. Plots of ∆ρl(ω) for ω ∈ R for a scalar with ∆ = 2.1 on a static BTZ black hole with
rH = 1 when l = 0 (left) and |l| = 3 (right). The red and blue line correspond to the minimal (with
V̄l(x) = 0) and the Rindler (with V̄l(x) = 4 e2x) references respectively.

same for both problems. It is also clear from (3.12) that the right hand side only depends
on the asymptotic form of the solutions as x→ −∞ but not their values at x = −R.

Second, we have focused on a fixed angular momentum l. At each l ≥ 0, ∆ρl(ω) is
finite. For the full theory we need to sum over all l ≥ 0:

∆ρ(ω) =
∞∑
l=0

Dd
l ∆ρl(ω) = 1

2πi∂ω
∞∑
l=0

Dd
l

(
logSl(ω)− log S̄l(ω)

)
. (3.13)

We have expressed the last equality in terms of the S-matrices Sl(ω) and S̄l(ω). As usual in
QFT, this sum is typically UV-divergent and requires regularization.

3.2 Black hole, Rindler, and Euclidean partition functions

We consider the thermal canonical partition function for the free scalar living on (2.1) at
the black hole temperature

Zbulk ≡ Tr e−βHĤ . (3.14)

We use the label “bulk” since the ideal thermal gas comprises excitations of scalar quanta
in the bulk of the spacetime. Ĥ is the Hamiltonian generating t translations. The trace Tr
is formally tracing over the Fock space constructed by acting with the creation operators
associated with the normal modes (3.1). Following the standard procedure of canonical
quantization and summing over bosonic occupation numbers in the trace (3.14), we have

logZbulk = −
∫ ∞

0
dω ρ(ω) log

(
eβHω/2 − e−βHω/2

)
. (3.15)

There are two kinds of divergences in this expression. We have the usual UV-divergences
coming from summing over all angular momenta l ≥ 0 and integrating over all energies
ω > 0. Within the framework of low-energy effective theory of gravity plus matter, these
divergences can be absorbed into the cosmological constant, Newton’s constant and local
couplings to higher curvature terms in the gravity sector [13, 14].

The second type of divergence is that of the single-particle DOS ρ(ω) =
∑
l≥0 ρl(ω)

originating from the fact that the normal mode spectrum is continuous, for which we
extensively discussed in section 3.1. We do not commit to interpreting this divergence as
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either UV or IR; in fact, at each angular momentum l ≥ 0, ρl(ω) is infinite for all energies
ω > 0. Through the procedure described in section 3.1, for each l ≥ 0 we can obtain a finite
difference ∆ρl(ω) (understood in the limiting sense (3.12)) between ρl(ω) and ρ̄l(ω), the
DOS for a reference system.

Euclidean path integral and the renormalized canonical partition function. In-
spired by the discussion in section 3.1, instead of (3.15) we are led to consider a quantity

logZbulk − log Z̄bulk = −
∫ ∞

0
dω∆ρ(ω) log

(
eβHω/2 − e−βHω/2

)
. (3.16)

Here Z̄bulk is a thermal canonical partition function for a system with a reference DOS ρ̄(ω).
This proposal of considering a difference logZbulk − log Z̄bulk instead of logZbulk itself is
similar to that of considering relative entropy rather than entanglement entropy [22]. A
priori any reference Z̄bulk (for example one for a system with a strictly flat potential V̄ = 0)
would lead to a finite difference ∆ρl(ω) for each l ≥ 0. Therefore, we have a “renormalized”
partition function Zbulk/Z̄bulk, understood in the limiting sense (3.12), defined up to an
arbitrary choice of Z̄bulk.

What fixes an answer is the Euclidean path integral (2.6). Our key observation is
that choosing Z̄bulk to be the canonical partition function for the free scalar living on the
Rindler-like wedge

ds2 = e
4π
βH

x
(
−dt2 + dx2

)
+ r2

HdΩ2
d−1 , −∞ < x <∞ , (3.17)

the quantity (3.16) is exactly equal to logZPI. In other words, we claim that

Z̃bulk ≡
Zbulk

ZRindler
bulk (βH)

= ZPI , ZRindler
bulk ≡ Tr e−βHĤ0 (3.18)

where Ĥ0 is the Hamiltonian generating t-translation in (3.17) and Tr is formally tracing
over the Fock space. We support the relation (3.18) with the examples of BTZ and Nariai
in section 4 and 5; one can also check that it holds for the case of static patch in de Sitter
space (noting that our Z̃bulk is called Zbulk in [10]).

The Rindler-like region near horizon. The relation (3.18) means that logZPI has
the following Lorentzian interpretation. We start by observing that the region near horizon
takes the form of a product of a 2D Rindler space and a (d− 1)-dimensional sphere with
radius rH :

ds2 ≈ e
4π
βH

x
(
−dt2 + dx2

)
+ r2

HdΩ2
d−1 as x→ −∞ . (3.19)

The scattering problem (3.2) in this region reduces to

(
−∂2

x +M2
l e

4π
βH

x
)
ψ(x) = ω2ψ(x) , Ml ≡

√
l(l + d− 2)

r2
H

+m2 . (3.20)
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Defining xl ≡ βH
2π log βHMl

4π , this is equivalent to

[
−∂2

x′ + V Rindler(βH , x′)
]
ψ̃(x′) = ω2ψ̃(x′) , V Rindler(β, x) ≡

(4π
β

)2
e

4π
β
x
, (3.21)

where x′ ≡ x+ xl and ψ̃(x′) ≡ ψ(x′ − xl). This Schrödinger equation is same as that of the
spacelike Liouville quantum mechanics.6 Notice that the information about the black hole
geometry (except for its temperature TH) and the scalar (its mass and angular momentum)
becomes completely invisible. A near-horizon observer studying (3.21) would not be able to
distinguish the black hole spacetime (2.1) and the Rindler-like wedge (3.17) (see figure 1);
they would obtain an S-matrix (see appendix A for details)

SRindler(βH , ω) =
Γ
(
iβHω

2π

)
Γ
(
− iβHω

2π

) , (3.22)

and the associated regularized DOS. If they probe much further so that they detect the
non-trivial features of Vl(x), they would then detect a change in the DOS ∆ρ(ω) and
thus the free energies logZbulk − logZRindler

bulk (βH). The relation (3.18) means that logZPI
measures this change.

Connection with DHS formula. From (3.13), we observe that ∆ρ(ω) hits a pole z
whenever Ain

l (z) = 0. These are precisely the QNM frequencies. Since Ain
l (ω) = Aout

l (−ω)
for any l, ∆ρ(ω) must hit another pole at the anti-QNM frequency ω = −z. These poles
contribute to ∆ρ(ω) as

∆ρQNM(ω) = 1
2πi

∑
z

Nz

( 1
ω + z

− 1
ω − z

)
=
∫ ∞

0

dt

2π
(
eiωt + e−iωt

)
χQNM(t) (3.23)

where in the last equality we have formally written in terms of the QNM character (2.13).
While in principle there could be a holomorphic part contributing to ∆ρ(ω), in all the explicit
examples we have checked, ∆ρ(ω) does not receive such a contribution and ∆ρQNM(ω) gives
the complete answer. In such case, substituting (3.23) into (3.16) and doing the ω-integral,7

we have

log Z̃bulk =
∫ ∞

0

dt

2t
1 + e−2πt/βH

1− e−2πt/βH
χQNM(t) . (3.24)

The right hand side is precisely the bosonic part of (2.12).
Generically, Aout/in(ω) have poles, which potentially leads to more poles of ∆ρ(ω).

The statement (3.18) predicts that these would-be poles are canceled by the Rindler S-
matrix (3.22). We confirm this and thus (3.18) for scalars on static BTZ (section 4), Nariai
(section 5) and de Sitter static patch (appendix C). In figure 4, with an example of a scalar
on static BTZ, we show a comparison of ∆ρl(ω) on the complex ω-plane for two different
choices of reference.

6We thank Daniel Kapec for pointing this out.
7We resolve the t−2 pole in the factors multiplying χQNM(t) by t−2 → 1

2

(
(t+ iε)2 + (t− iε)2).
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Figure 4. Plots of |∆ρ|l|=3(ω)| on the complex ω-plane for a scalar with ∆ = 2.1 on a static BTZ
black hole with rH = 1. Lighter is larger with plot range 0 (black) < ∆ρ < 4 (white). When the
minimal (with V̄l(x) = 0) reference is chosen (left), there are poles lying on the imaginary axis; these
poles are completely absent when the Rindler (with V̄l(x) = 4 e2x) reference is taken instead (right).
The common poles for these two plots are the QNM frequencies (4.7).

While we have focused on the case of scalars, it is straightforward to generalize our
arguments to a Dirac spinor. Instead of (3.16) we have

logZbulk − log Z̄bulk =
∫ ∞

0
dω∆ρ(ω) log

(
eβHω/2 + e−βHω/2

)
. (3.25)

Substituting (3.23) into this gives the fermionic part of (2.12).

Retarded Green functions. Instead of S-matrices and phase shifts, we could have
phrased our discussions in terms of retarded Green functions for the scattering problems:

∆ρ(ω) = − 1
π

Im
(
G(ω + iε)− Ḡ(ω + iε)

)
, (3.26)

which could provide a link between this work with previous studies in Lorentzian
AdS/CFT [23] or the de Sitter static patch [24], for example. If the effective potential (3.2)
falls off exponentially, the retarded Green function and thus ∆ρ(ω) only has poles on the
complex ω-plane [25, 26]. The potentials for the exactly computable examples of BTZ, Nariai,
static patch of de Sitter are all of the Pöschl-Teller type and thus satisfy this condition.

For generic black holes, ∆ρ(ω) could have more complicated analytic structures on the
complex ω-plane such as branch cuts (which in the case of asymptotically flat black holes
lead to the so-called Price’s tail [27], a long-time power-law fall-off of the retarded Green
function). Nonetheless, a black hole character can be defined as the Fourier transform (up
to regularization of UV-divergences)

χBH(t) ≡
∫ ∞
−∞

dω eiωt∆ρ(ω) (3.27)

– 13 –



J
H
E
P
1
0
(
2
0
2
2
)
0
3
9

Provided we have PT-symmetry so that χBH(t) = χBH(−t), (3.24) is generalized to

log Z̃bulk =
∫ ∞

0

dt

2t
1 + e−2πt/βH

1− e−2πt/βH
χBH(t) . (3.28)

In principle one could write down a spectral representation for the black hole character (3.27)
through deforming the integration contour (3.27) on the complex ω-plane, so that the
contributions from the different singularity structures can be separated.

Going back to the comment in footnote 2, DHS made a strong assumption about the
analytic structure of logZPI. Granting the equality (3.18), we expect generally the correct
answer for logZPI would be given by (3.28). It would be interesting to check this.

4 Example: scalar on static BTZ

As a first demonstration, we consider a scalar with mass m2 = ∆(∆− 2) living on a static
BTZ background (setting `AdS = 1):

ds2 = −
(
r2 − r2

H

)
dt2 + dr2

r2 − r2
H

+ r2dφ2 , rH ≡M = 2πTH . (4.1)

Since Euclidean BTZ (EBTZ) is related to thermal AdS3 (TAdS3) by a large diffeomorphism,
their path integrals are equal upon the modular transformation

τ → −1
τ

τ = 2πiTH . (4.2)

The 1-loop free energy of a scalar on (4.1) was first computed in [28].

Scattering and DOS. Solving (−∇2 +m2)φ = 0 on (4.1) while imposing the standard
boundary condition at spatial infinity, one finds the near-horizon behavior (3.6) with

Ain
l (ω) = Aout

l (−ω) ∝
Γ
(
− iω
rH

)
Γ
(
− i

2rH (ω + l) + ∆
2

)
Γ
(
− i

2rH (ω − l) + ∆
2

) (4.3)

where l = 0,±1,±2, . . . is the U(1) angular momentum along the spatial circle. Therefore
we have

Sl(ω) ≡ Aout
l (ω)
Ain
l (ω)

= SBTZl (ω)SRindler
( 2π
rH
, ω

)
(4.4)

SBTZl (ω) ≡
Γ
(
− i

2rH (ω + l) + ∆
2

)
Γ
(
− i

2rH (ω − l) + ∆
2

)
Γ
(

i
2rH (ω − l) + ∆

2

)
Γ
(

i
2rH (ω + l) + ∆

2

) . (4.5)

Here SRindler (β, ω) is the Rindler S-matrix (3.22). Using these we plot ∆ρl(ω) for real ω
in figure 3 and |∆ρl(ω)| on the complex ω-plane in figure 4. Now, choosing the reference
S-matrix S̄ in (3.13) to be SRindler

(
2π
rH
, ω
)
for each l ∈ Z, the renormalized DOS

∆ρ(ω) = 1
2πi∂ω log detSBTZ(ω) , detSBTZ(ω) =

∏
l∈Z
SBTZl (ω) (4.6)

has poles only at the QNM frequencies for the scalar.
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BTZ character and partition functions. Our discussion in section 3.2 guarantees that
the renormalized partition function Z̃BTZ

bulk is equal to the Euclidean path integral ZEBTZ
PI ,

but let us see how it works explicitly. The scalar in question has the QNM spectrum [29]

zn,l,± = ±l − 2πTHi(∆ + 2n) , (4.7)

where n = 0, 1, 2, · · · is the overtone number and l ∈ Z is the U(1) angular momentum
quantum number. These are the poles of (4.6). With (4.7) we obtain the character

χBTZ(t) =
∑
n,l,±

e−izn,l,±t = 4πe−2πTH∆t

1− e−4πTH t

∑
k∈Z

δ(t− 2πk) . (4.8)

Here the sum of delta functions comes from the sum over l ∈ Z. Plugging (4.8) into the
character formula with a UV-cutoff at t = ε, the integral is localized to a sum

log Z̃BTZ
bulk =

∞∑
k=1

1
k

q∆
k

(1− qk)2 , qk ≡ e−(2π)2THk . (4.9)

This agrees exactly with the TAdS3 result (B.4) upon the modular transformation (4.2) as
expected.

5 Example: scalar on Nariai spacetime

To illustrate that our considerations extend to more general spacetimes than asymptotically
AdS ones, we study in this section a free scalar on the Nariai spacetime, whose metric
is [30]:

ds2 = −
(
1− y2

)
dt2 + `2N

1− y2 dy
2 + r2

NdΩ2
d−1 , −1 < y < 1 . (5.1)

Here `N and rN are related to the dS length `dS through

`N ≡
`dS√
d
, rN ≡

√
d− 2
d

`dS , `dS ≡

√
d(d− 1)

2Λ . (5.2)

This geometry is locally dS2 × Sd−1, with isometry group SO(1, 2)× SO(d). There are two
horizons (cosmological and black hole) at y = ±1 with the same Hawking temperature
TN = 1

2π`N . Note that this temperature is higher than the temperature TdS = 1
2π`dS

for
pure de Sitter. A possible microscopic realization of the Nariai geometry in matrix theory
is recently discussed in [31].

Scattering and DOS. Separating φωl(t, y,Ω) = e−iωtψ(y)Yl(Ω), the Klein-Gordon equa-
tion (−∇2 +m2)φ = 0 on (5.1) in terms of x = `N

∫ y
0

dy′

1−y′2 = `N
2 log 1+y

1−y reads

(
−∂2

x + m2
l

cosh2 x
`N

)
ψ(x) = ω2ψ(x) , −∞ < x <∞ . (5.3)
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Therefore, the problem is decomposed into a tower of Kaluza-Klein (KK) modes living on
dS2 labeled by the SO(d) angular momenta l ≥ 0, each with an effective mass

m2
l = m2 + l(l + d− 2)

r2
N

(5.4)

and an associated conformal dimension ∆l on dS2

∆l = 1
2 + iνl , ν2

l = m2
l `

2
N −

1
4 , ∆̄l ≡ 1−∆l . (5.5)

Notice that there are two asymptotic regions (x→ ±∞) in the scattering problem (5.3),
as opposed to the asymptotically AdS case discussed in section 3. Also, the two linearly
independent solutions ψ(1) and ψ(2) to (5.3) are both regular at the origin y = 0, and thus
perfectly good solutions. Near the horizons, these solutions become

ψ(1)(|x|→∞)∝ Γ(i`Nω)
Γ
(

∆l+i`Nω
2

)
Γ
(

∆̄l+i`Nω
2

)eiω|x|+ Γ(−i`Nω)
Γ
(

∆l−i`Nω
2

)
Γ
(

∆̄l−i`Nω
2

)e−iω|x| ,
ψ(2)(|x|→∞)∝ Γ(i`Nω)

Γ
(

1+∆l+i`Nω
2

)
Γ
(

1+∆̄l+i`Nω
2

)eiω|x|+ Γ(−i`Nω)
Γ
(

1+∆l−i`Nω
2

)
Γ
(

1+∆̄l−i`Nω
2

)e−iω|x| .
(5.6)

From this we see that these modes have exactly equal amounts of incoming and outgoing
fluxes from either horizons. We have a diagonal S-matrix

Sl(ω) = SNl (ω)SRindler(2π`N , ω) , SNl (ω) ≡
(
S(1)
l (ω) 0

0 S(2)
l (ω)

)
(5.7)

S(1)
l (ω) =

Γ
(

∆l−i`Nω
2

)
Γ
(

∆̄l−i`Nω
2

)
Γ
(

∆l+i`Nω
2

)
Γ
(

∆̄l+i`Nω
2

) , S(2)
l (ω) =

Γ
(

1+∆l−i`Nω
2

)
Γ
(

1+∆̄l−i`Nω
2

)
Γ
(

1+∆l+i`Nω
2

)
Γ
(

1+∆̄l+i`Nω
2

) . (5.8)

Again, choosing the reference S-matrix to be SRindler(2π`N , ω) for each l, the renormalized
DOS

∆ρ(ω) = 1
2πi∂ω log detSN(ω) , detSN(ω) =

∞∏
l=0

(
S(1)
l (ω)S(2)

l (ω)
)Ddl (5.9)

has poles only at the QNM frequencies for the scalar.

Nariai character. The QNM spectrum for the scalar in question is [32, 33]

izn,l,+`N = ∆l + n , izn,l,−`N = ∆̄l + n , n = 0, 1, 2, · · · (5.10)

for each l ≥ 0. These are the poles of (5.9). The QNM character takes the form of a sum
of SO(1, 2) characters over the KK tower

χN (t) ≡
∑
n,l,±

Dd
l e
−izn,l,±t =

∞∑
l=0

Dd
l

q∆l + q∆̄l

1− q (5.11)

where q ≡ e−t/`N . Therefore,

log Z̃Nariai
bulk =

∫ ∞
0

dt

2t
1 + q

1− q

∞∑
l=0

Dd
l

q∆l + q∆̄l

1− q . (5.12)
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1-loop partition function. In Euclidean signature, (5.1) is Wick-rotated to S2 × Sd−1

where S2 and Sd−1 have radii `N and rN respectively. We would like to compute the 1-loop
determinant for a scalar with mass m2 living on S2 × Sd−1

ZN
PI = det

(
−∇2

N +m2
)−1/2

. (5.13)

Here the Laplacian −∇2 is simply a sum

−∇2
N = − 1

`2N
∇2
S2 −

1
r2
N

∇2
Sd−1 , (5.14)

with eigenvalues and degeneracies

λNp,l = λS
2

p + λS
d−1

l = p(p+ 1)
`2N

+ l(l + d− 2)
r2
N

, DN
p,l = D3

pD
d
l . (5.15)

The path integral (5.13) has been computed in [34] to obtain the semiclassical rate of
nucleation of black holes in de Sitter spacetime.

While our discussion in section 3.2 guarantees that logZN
PI must formally agree with

the renormalized partition function (5.12), we would like to demonstrate how to make the
UV-regularization more rigorous. To that end, we write (5.13) in the heat kernel form [20]

logZN
PI =

∫ ∞
0

dτ

2τ e
−ε2/4τ

∞∑
p,l=0

Dp,l e
−(λp,l+m2)τ . (5.16)

Here we have inserted a regulator e−ε2/4τ . To proceed, we substitute (5.15) and use the
Hubbard-Stratonovich trick (following the approach in [10]) for the sum over p to write

∞∑
p=0

D3
p e
−τ(p+ 1

2)2
`−2
N =

∫
A
du

e−u
2/4τ

√
4πτ

f(u) , (5.17)

with the integration contour A = R + iδ, δ > 0 (see figure 5). Here we have defined

f(u) ≡
∞∑
p=0

D3
p e

iu(p+ 1
2)/`N =

(
1 + eiu/`N

1− eiu/`N

)
ei
u
2 /`N

1− eiu/`N
. (5.18)

We can then perform the τ -integral in (5.16) (keeping Im u = δ < ε). Finally, after deforming
the contour A as in figure 5 and changing variables to u = it, we arrive at the regularized
formula

logZN
PI,ε =

∫ ∞
ε

dt

2
√
t2 − ε2

1 + q

1− q

∞∑
l=0

Dd
l

e
− t

2`N
+ i
`N

νl
√
t2−ε2 + e

− t
2`N
− i
`N

νl
√
t2−ε2

1− q . (5.19)

As anticipated, this agrees exactly with (5.12) upon putting ε = 0. The evaluation of
regularized integrals of this form is discussed in [10].
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(a) original contour (b) folded contour (c) rotated folded contour

Figure 5. We fold the contour A (red) along the branch cut around the branch point +iε (green
dot), and then rotate u = it. The blue dots represent the poles of f(u).

6 Black holes in asymptotically flat space and the greybody factor

In contrast to asymptotically AdS black holes, Hawking radiation emitted by black holes in
asymptotically flat space can escape to spatial infinity. Unless the black hole is enclosed by
an isolated box, it is not in equilibrium with the radiation gas around it and eventually
evaporates.

Nonetheless, let us comment on some features of the associated scattering problem for
free scalars on a fixed black hole background. In this case, we have F (r) → 1 as r → ∞
in (2.1). For example, a (d + 1)-dimensional Schwarzschild has F (r) = 1 − C

rd−2 . The
Klein-Gordon equation can still be rewritten in the form (3.2), except that there will be
two asymptotic regions:

Spatial infinity: x→∞ Horizon: x→ −∞ . (6.1)

In other words, this is a two-channel scattering problem, in sharp contrast with the AdS
case. Moreover, a mass term m2 would lead to a finite gap: Vl(+∞)−Vl(−∞) = m2; waves
sent from the horizon with energy ω2 < m2 are totally reflected back to the black hole.
To avoid such complications we focus on the massless case. A solution to (3.2) has the
asymptotic behavior

ψl(x) =

Ain
l (ω) eiωx +Aout

l (ω) e−iωx , x→ −∞
Bout
l (ω) eiωx +Bin

l (ω) e−iωx , x→∞
. (6.2)

The S-matrix maps the incoming coefficients to the outgoing coefficients, i.e.(
Aout
l (ω)

Bout
l (ω)

)
= Sl(ω)

(
Ain
l (ω)

Bin
l (ω)

)
, Sl(ω) =

(
Rl(ω) Tl(ω)
T ′l (ω) R′l(ω)

)
. (6.3)

Here we have introduced the reflection (R,R′) and transmission (T, T ′) coefficients. These
coefficients are not independent. First, since (3.2) is invariant upon ω → −ω, we have
Ain
l (ω) = Aout

l (−ω) and Bin
l (ω) = Bout

l (−ω). Sending ω → −ω in (6.3), we deduce

Sl(−ω)Sl(ω) = Sl(ω)Sl(−ω) = I . (6.4)
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Second, using (3.2) one can check that the current

Jωl(x) = ψ−ωl∂xψωl − ψωl∂xψ−ωl (6.5)

is conserved: ∂xJωl(x) = 0, which leads to another constraint

STl (−ω)Sl(ω) = Sl(ω)STl (−ω) = I . (6.6)

Conditions (6.4) and (6.6) together imply

T ′l (ω) = Tl(ω) and Rl(−ω)Tl(ω) +R′l(ω)Tl(−ω) = 0 . (6.7)

When ω is real, we have
(
Ain
l (ω)

)∗ = Aout
l (ω) and

(
Bin
l (ω)

)∗ = Bout
l (ω); the conserved

current (6.5) is same as the probability current; the condition (6.6) is same as saying S
is unitary.

The phase and magnitude of the transmission coefficient. Similar to the single-
channel scattering discussed in section 3, the DOS ρl(ω) is infinite but its change ∆ρl(ω)
relative to some reference problem is finite. The relation (3.12) is generalized to [35]

∆ρl(ω) = ρl(ω)− ρ̄l(ω) = 1
2πi∂ω tr

(
logSl(ω)− log S̄l(ω)

)
. (6.8)

Here tr is the trace over the 2 by 2 matrix (6.3). For a flat reference potential V̄ (x) = 0, S̄l is
simply the identity matrix. Using (6.7), one can show that for real ω, tr log Sl is essentially
the phase θT of the transmission coefficient T = |T |eiθT . This establishes a pleasing
connection with another quantity of interest in the study of black hole thermodynamics:
the greybody factor [36]

γgreybodyl (ω) ≡ Tl(ω)Tl(−ω) = |Tl(ω)|2 . (6.9)

Therefore, for real ω, the magnitude of Tl measures the absorption/transmission probability,
while its phase captures information about the DOS.

7 Discussion and outlook

To conclude, we have provided evidence for the Lorentzian interpretation of the Euclidean
path integral through the manifestly covariant relation (3.18). With the switch of perspective
to that of 1D scattering, it is natural to expect more insights could be imported from
scattering theory in open quantum systems (see for instance [11]) into understanding the
quantum structures of black holes. On the Lorentzian side, the discussion in section 3
may indicate a (non-perturbative) scattering formulation generalizing (3.18) to interacting
QFTs on a fixed black hole background, perhaps along the lines of [37]. Establishing the
equality (3.18) rigorously will likely involve carefully cutting and gluing the Euclidean path
integral around the origin.

From the point of view of the global two-sided geometry (see figure 1), the starting
point (3.15) of our Lorentzian calculation can be viewed as computing the normalization of
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the reduced density matrix obtained by tracing out the Hartle-Hawking state along half of
the spatial slice. This assumes that the global Hilbert space factorizes. From an algebraic
viewpoint (reviewed in [15]), such a factorization does not actually exist; the algebra of
observables for the scalar QFT in the outside-horizon region is a Type III von Neumann
algebra, which does not admit a trace. The infinity of the single-particle DOS ρ(ω) in (3.15)
can be viewed as a manifestation of this non-factorization of Hilbert space. As explained
in [38], Type III algebras also arise when describing the thermodynamic or large volume
limit of a system directly in terms of operators acting on a Hilbert space; indeed, with the
scattering picture in section 3.1, we are viewing the free scalar QFT as an infinite-volume
quantum statistical system, and ρ(ω) diverges precisely due to the infinite size of the box.

As pointed out recently in [16, 17], including 1-loop corrections from gravity, the algebra
for the scalar QFT outside the horizon turns from Type III to Type II, for which a trace
can be defined up to an arbitrary (infinite) normalization. In our field theory calculation,
extracting non-trivial information from logZbulk involves an arbitrary choice of reference
log Z̄bulk as well. Even though we have not discussed in detail, gravity is indeed crucial for
eventually making physical quantities UV-finite in the framework of low-energy effective
theory of gravity plus matter. Integrals such as (2.14) are typically UV-divergent and require
regularization. An example regulated by the heat kernel method is given in (5.19); such an
integral will have the structure logZPI,ε = logZUV

PI,ε + logZfinite
PI , where the UV-divergent

part takes the form

logZUV
PI,ε =

d∑
k=0

Bk
εd+1−k +Bd+1 log L

ε
, (7.1)

where L is a parameter with a dimension of length. Here Bk are related to heat kernel
coefficients [20], which can be expressed in terms of curvature invariants on the manifold.8

Coupling the theory to gravity, all the UV-divergences (7.1) will be absorbed into the
renormalization of the cosmological constant, Newton’s constant and higher-curvature
couplings in the effective gravitational action, after which we are left with a UV-finite
quantity logZfinite

PI . In light of these suggestive observations, it would be extremely in-
teresting to investigate the precise connection between the direct field theory and formal
algebraic approaches.

The central role of QNMs in the DHS formula raises another interesting prospect of
studying the thermal or entanglement properties of astrophysical black holes by probing
their QNMs, for instance through gravitational-wave ringdown [39] or photon ring [40]
measurements. QNM frequencies are in general difficult to compute exactly; however, their
asymptotic forms in certain regimes, for instance high-overtone (n→∞) or eikonal (l→∞),
are often analytically computable (reviewed in [39, 41]). One may be able to extract useful
information about black holes by combining these approximations with our formula (2.14).

As far as microscopic models are concerned, in AdS/CFT it is known that QNMs
describe the decay of perturbations in the dual CFT and appear as poles of the boundary
retarded Green’s functions [23, 42, 43]; in the context of string theory, given the success

8For manifolds without a boundary, Bk = 0 for odd k.
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of the Euclidean gravity method in reproducing the microscopic counting of black hole
entropies [2, 3, 5, 6], it seems possible through the DHS formula (2.14) to identify a
description of QNMs in terms of microscopic degrees of freedom. Formulas of the form (2.14)
have proved useful for theories with an infinite tower of fields. Instead of calculating
the 1-loop determinant one by one before summing over the spectrum, one could sum
the QNM characters first before computing the integral. For example, as demonstrated
in [10, 44], 1-loop tests for Higher Spin AdS/CFT [45–48] can be performed in a much more
compact manner.

Finally, for some of the above-mentioned and other applications one needs to generalize
our considerations to more general black hole backgrounds (ones with spins or other charges,
for example incorporating a background electric field along the lines of [49]). We leave this
to future work.
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A Scattering in the Rindler-like region

In this appendix we study the scattering problem (3.21) (with all the primes dropped)[
−∂2

x +
(4π
β

)2
e

4π
β
x

]
ψ(x) = ω2ψ(x) . (A.1)

As explained in section 3.2, this is relevant to an observer probing the region near a black
hole horizon of temperature β. The general solution to (A.1) is a linear combination of
modified Bessel functions

ψ(x) = Cn.K iβω
2π

(
2e

2πx
β

)
+ Cn.n.I iβω

2π

(
2e

2πx
β

)
. (A.2)

Here n. and n.n. means the solutions are respectively normalizable and non-normalizable,
in the sense that they are exponentially decaying/growing as x → ∞.9 Intuitively, the
problem (A.1) is similar to that in the asymptotically AdS case: there is a infinite potential
well at spatial infinity, except that the potential well here is due to the acceleration of the
observer. We impose a Dirichlet boundary condition: Cn.n. = 0. Near the Rindler horizon,
the normalizable solution behaves as

ψ(x→ −∞) ∝ Γ
(
iβω

2π

)
e−iωx + Γ

(
− iβω2π

)
eiωx . (A.3)

9As z →∞, Kα (z) ∝ 1√
z
e−z and Iα (z) ∝ 1√

z
ez.
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The ratio between the coefficients of the outgoing and incoming waves defines a unitary
S-matrix:

SRindler(β, ω) =
Γ
(
iβω
2π

)
Γ
(
− iβω

2π

) . (A.4)

Notice that the S-matrix hits a pole or zero whenever ω meets the Matsubara frequencies

ω = ω±,n = ±i2πn
β

, n = 1, 2, 3, · · · , (A.5)

at which the mode function behaves like

K∓n
(
2e

2πx
β

)
∝ e−

2πn
β
x
, x→ −∞ . (A.6)

Therefore, the ± (quasinormal) modes (A.5) are purely incoming (outgoing).

B Scalar on global AdS3

Even though global AdS3 (setting `AdS = 1)

ds2 = −
(
1 + r2

)
dt2 + dr2

1 + r2 + r2dφ2 (B.1)

does not have a horizon and the considerations in this paper do not apply, this example
is closely related to the BTZ case. Moreover, it is instructive to highlight the difference
between the two computations.

The normal mode spectrum for a scalar with mass m2 = ∆(∆ − 2) on (B.1) is well-
known:

ωn,p = 2n+ |l|+ ∆ (B.2)

where n = 0, 1, 2, . . . is the “overtone” number and l = 0,±1,±2, . . . labels the U(1) angular
momentum quantum number. The DOS is simply a sum of delta functions over the discrete
spectrum (B.2). The thermal canonical partition function is

logZAdS3
bulk ≡ log Tr e−βĤ = −

∑
n,l

(
log
(
1− e−βωn,l

)
+ βωn,l

2

)
. (B.3)

The second term in the bracket is an infinite contribution from zero point energies, which
renormalizes the cosmological constant. We will drop this from now on. Expanding the
logarithm as a series and performing the sums over n and l, we have

logZAdS3
bulk =

∞∑
k=1

1
k

e−∆kβ

(1− e−kβ)2 =
∞∑
k=1

χAdS3(kβ)
k

, χAdS3(t) = e−∆t

(1− e−t)2 . (B.4)

In the last equality we have expressed the result in terms of the SO(2, 2) character χAdS3(t)
(see for example [50]). This result has been computed in [51] using the Euclidean path
integral on TAdS3.
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C Example: scalar on de Sitter static patch

We consider a scalar with mass m2`2dS = ∆∆̄ ≡ ∆(d−∆) living on a static patch in dSd+1

ds2 =−
(

1− r2

`2dS

)
dt2+ dr2

1− r2

`2dS

+r2dφ2 , 0≤ r < `dS , `dS≡

√
d(d−1)

2Λ . (C.1)

The de Sitter horizon is at r = `dS, with temperature TdS = 1
2π`dS

. This is the context
where the relevance of the scattering picture in understanding the Euclidean path integral
was first pointed out (see appendix B.3 of [10]), which directly inspired the current work. In
terms of the tortoise coordinate x =

∫ r
0

dr′

1−r′2/`2dS
= `dS tanh−1 r

`dS
, solving (−∇2 +m2)φ = 0

on (C.1) with the ansatz (3.1) while imposing the regularity condition at the location of
the observer (r = 0), one finds the near-horizon behavior

ψl(x→∞) ∝ Γ (i`dSω)
Γ
(

∆+l+i`dSω
2

)
Γ
(

∆̄+l+i`dSω
2

)eiωx + Γ (−i`dSω)
Γ
(

∆+l−i`dSω
2

)
Γ
(

∆̄+l−i`dSω
2

)e−iωx .
(C.2)

Therefore, the S-matrix Sl(ω) has the same general structure as (4.4) and (5.7), that is,
Sl(ω) = SdSl (ω)SRindler (2π`dS, ω), where SRindler (β, ω) is the Rindler S-matrix (3.22) and

SdSl (ω) ≡
Γ
(

∆+l−i`dSω
2

)
Γ
(

∆̄+l−i`dSω
2

)
Γ
(

∆+l+i`dSω
2

)
Γ
(

∆̄+l+i`dSω
2

) (C.3)

captures all the QNMs. We refer the readers to [10] for an elaborate discussion (including a
careful treatment of UV-regularization) on the Lorentzian and Euclidean (sphere) partition
functions in this context.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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