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Abstract 

Background:  Survival from birth to slaughter is an important economic trait in commercial pig productions. Increas-
ing survival can improve both economic efficiency and animal welfare. The aim of this study is to explore the impact 
of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the 
total growing period from birth to slaughter. 

Results:  We simulated pig populations with different direct and maternal heritabilities and used a linear mixed 
model, a logit model, and a probit model to predict genomic breeding values of pig survival based on data of 
individual survival records with binary outcomes (0, 1). The results show that in the case of only alive animals having 
genotype data, unbiased genomic predictions can be achieved when using variances estimated from pedigree-
based model. Models using genomic information achieved up to 59.2% higher accuracy of estimated breeding value 
compared to pedigree-based model, dependent on genotyping scenarios. The scenario of genotyping all individuals, 
both dead and alive individuals, obtained the highest accuracy. When an equal number of individuals (80%) were 
genotyped, random sample of individuals with genotypes achieved higher accuracy than only alive individuals with 
genotypes. The linear model, logit model and probit model achieved similar accuracy.

Conclusions:  Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs 
have genotypes, but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06% 
to 6.04%.
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Background
Survival from birth to slaughter is an important economic 
trait in commercial pig productions. Increased survival 
also improves the welfare in pigs. According to produc-
tivity data, the cumulative survival rate from birth to 
slaughter is lower than 70% [1], and in addition there has 
been a downward trend for piglet pre-weaning survival in 
the past ten years [2]. Use of genomic information in the 

selection program will be a sustainable and effective way 
to reduce pig mortality. As a powerful genetic improve-
ment tool, genomic selection has been widely used in 
animal breeding, such as in cattle [3–5], pig [6–8], and 
chicken [9–11]. Genomic selection is especially beneficial 
for the traits with low heritability that have slow genetic 
progress when using traditional pedigree-based methods 
[12–14]. Guo et al. [15] studied the accuracy of estimated 
breeding values for piglet survival rate from birth to day 5 
and reported that the accuracy for the single-step method 
was higher than for pedigree-based method by 14.2% for 
Landrace, and by 7.2% for Yorkshire. In a crossbred pig 
population, Leite et  al. [16] compared the accuracies of 
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the estimated breeding values of mortality at five stages 
from birth to slaughter, and reported that the accuracy 
for the single-step method was 16.7%–78.9% higher than 
for pedigree-based method, with the largest improvement 
of accuracy for lactation mortality and smallest improve-
ment for postweaning mortality.

Usually, like litter size, piglet survival is recorded as a 
trait of the sow or the service sire [15, 16]. However, sur-
vival is a complex trait that is also affected by the pig’s 
own genotype. It may therefore be more appropriate to 
assess genetic merit of survival at individual level [17]. 
However, evaluating survival at individual level will 
introduce problems with genotyping strategies in the 
sense that, generally, dead individuals do not have geno-
types. Using only the genotype data of alive individuals 
may lead to biased genomic predictions. The influence of 
the genotype of the dead individuals on the accuracy and 
unbiasedness of genomic prediction needs to be studied.

Finally, survival at individual level is a binary trait 
which does not obey a normal distribution, and thus 
conventional statistical analysis methods may not be 
suitable [18]. Therefore, when estimating the breeding 
value, a logit model or a liability threshold model could 
be more appropriate. However, Koeck et  al. [19] evalu-
ated the performance of a linear model and a logit model 
for genetic analyses of clinical mastitis in Austrian Fleck-
vieh dual purpose cows and found that there was no dif-
ference in the predictive ability between the linear model 
and the logit model. In the Norwegian Red cows popula-
tion, Vazquez et al. [20] also compared the genetic evalu-
ation of a liability threshold model with a linear model for 
clinical mastitis, where the results also showed that there 
was no difference in the predictive capabilities of the two 
models. It is necessary to investigate if a logit or a liability 
threshold model is better than a linear model for predict-
ing breeding value of survival in pig populations.

We hypothesized that different genotyping strategies 
affect accuracy and unbiasedness in the breeding value 
estimation. Furthermore, we hypothesized that logit or 
liability threshold models are more suitable for predict-
ing threshold traits as well for genomic prediction as 
without genomic information. Therefore, this study has 
two objectives: (1) explore the impact of genotyping sce-
narios, especially no genotypes of dead individuals on 
genomic prediction of mortality; (2) assess linear ver-
sus logit and liability threshold models in estimation of 
breeding value.

Materials and methods
Data simulation
The data were simulated using QMSim software [21] 
mimicking a pig population. In this study, we simulated 

18 chromosomes, each chromosome was 100  cM, had 
3100 markers and 50 QTLs. It was assumed that the 
QTL effects had a normal distribution. The simulation 
started with a founder population of 200 males and 200 
females, and went through 300 non-overlapping his-
torical generations to generate linkage disequilibrium 
between markers and QTLs. In total, about 45,000 mark-
ers and 730 QTLs were segregating in the genome for the 
last historical population, with slight differences in the 
number of markers and QTLs of each repetition. After 
historical generations, 30 boars randomly selected from 
the last history generation and all 200 sows in the gen-
eration were used to create a base population. After this, 
the population went through eight non-overlapping gen-
erations. In each generation, 30 sires and 300 dams were 
randomly selected from alive animals (see below on how 
survival/death of animals was simulated), a sire mated 10 
dams randomly, and each dam produced one litter. The 
litter sizes were 10, 12, 14, 16, or 18 with the probabili-
ties 0.02, 0.14, 0.68, 0.14, 0.02, respectively, and sex ratio 
of piglets was 1:1. The data from generations 5 ~ 8 were 
used in the analysis.

The phenotypic liability of an individual to be alive 
was generated as the sum of direct additive genetic 
effect of the individual, maternal additive genetic effect 
of the dam, litter effect and random residual. Fixed 
effects (such as herd-year-month) were not considered. 
In this study, three survival traits with different vari-
ances and covariances were simulated, i.e., direct her-
itability and maternal heritability were set as 0.04 and 
0.04 (T4/4), 0.02 and 0.04 (T2/4), or 0.02 and 0.02 (T2/2), 
respectively. The genetic correlation between direct and 
maternal additive genetic effects was 0.30. The variance 
of the litter effect was the same as the maternal additive 
genetic variance. The direct and maternal QTL allele 
effects were sampled from a bivariate normal distribu-
tion with the specified correlation. The true breeding 
values (TBVs) of direct and maternal additive genetic 
effect were defined as the sum of the QTL allele effects, 
and these TBVs were scaled to have the variances as 
the designed values [22]. The other random effects 
were sampled from normal distributions with the cor-
responding variance. The phenotype in observed scale 
was scored as 1 if the liability to survival was the top 
80%, and otherwise 0, i.e., the mortality rate was 20%. 
Each of the three traits with different heritability was 
simulated with 40 replicates.

Four genotyping scenarios were studied: (1) all pigs 
were genotyped (G_all); (2) 80% of pigs randomly 
selected from the whole population were genotyped 
(G80_ran); (3) only alive pigs (80%) were genotyped (G_
alive); (4) no pig was genotyped (G_none).
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Statistical analysis
A linear, a logit and a probit model (i.e., a liability thresh-
old model) were used for estimation of genetic parame-
ters and breeding values. The models were as follows:

The linear model (LM) is,

where y is the vector of binary observations of pig sur-
vival with 0 and 1 representing dead and alive, respec-
tively; µ is the overall mean; 1 is the vector of ones; l is 
the vector of litter effects; a is the vector of direct addi-
tive genetic effects; m is the vector of maternal additive 
genetic effects; and e is the vector of residual effects. The 
matrices Wl, Za, Zm are incidence matrixes associating l, 
a, m with y. In the model, direct and maternal additive 
genetic effects are correlated, and the other effects are 
independent of each other. Thus, it is assumed that l, e, a 
and m have the following distributions:l ∼ N 0, Iσ 2
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direct additive genetic variance, maternal additive genetic 
variance, and covariance between direct and maternal 
additive genetic effects, respectively, and K is an additive 
genetic relationship matrix based on pedigree and/or 
genomic information. When using the pedigree-based 
method for the scenario of no genotyping, K was con-
structed from pedigree information [23]. When using the 
single-step GBLUP model (ssGBLUP), K represents the 
H matrix constructed from pedigree and genome infor-
mation [24]. The H matrix is as follows,

where A11 and A22 are the sub-matrixes of pedigree-
based relationship matrix (A) for relationships between 
genotyped individuals and between non-genotyped indi-
viduals, respectively, A12 or A21 are the sub-matrixes for 
relationships between genotyped and non-genotyped 
individuals and Gω = (1− ω)G∗

+ ωA11 . In this study, ω 
is set to 0.2. G was the marker-based genomic relation-
ship matrix [25], G* is the adjustment matrix of G, which 
is calculated by the following formula [8],

In the scenario where all animals are genotyped, 
K = G_ω.
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G∗
= Gβ + α

Avg.diag(G)β + α = Avg.diag(A11)

Avg.offdiag(G)β + α = Avg.offdiag(A11)

The logit model and probit model (also called liability 
threshold model) are described as,

For the logit model (LG), η is the vector of log-odds of 
the expected pig survival, ηi = loge

υi
1−υi

 , where υi is the 
expected value of yi. For the probit model (PM), η is the 
vector of expected liability, ηi = φ−1(υi) , where φ−1(.) 
is the inverse cumulative standard normal distribution 
function. The vectors µ, l, a, m, and the matrixes Wl, Za, 
Zm are defined similar to those in the linear model.

The variance components were estimated using AI-
REML method [26]. The AI-REML procedure for some 
ssGBLUP model did not converge. Therefore, variance 
components estimated from pedigree-based models were 
used in estimation of breeding values in all models. The 
estimation of variance components and breeding values 
was performed using the DMU software [27].

Validation of genomic predictions
To validate genomic prediction, the 5 ~ 7th generations were 
used as reference population, and the 8th generation was 
used as validation population. In this study, genomic predic-
tions were evaluated using the following criteria: 1) The cor-
relation between the estimated breeding value (EBV) and the 
true breeding value (TBV, i.e., a, m or a + m in liability scale 
in the simulation) to assess the accuracy of genomic predic-
tion; 2) Average true breeding value of the top 1%, 30% of all 
individuals in EBVs to assess the realized selection differen-
tial, where 1% can be considered as selection intensity for 
boars and 30% for sows; 3) Regression of EBV from whole 
data with genotypes of all animals on the EBV from reference 
data for each genotyping scenario, similar to Legarra  and 
Reverter’s study [28], to evaluate dispersion bias of a particu-
lar model and genotyping scenario. Note that dispersion bias 
was assessed by comparing the EBV using full data informa-
tion instead of true breeding value. The reason was that the 
true BV in the simulation was BV of liability, but the EBV 
from linear model was in observed scale and EBV from logit 
model was in logit scale. Even for probit model, the scale of 
EBV was also different from simulated TBV, before a restric-
tion of residual variance being 1 in the probit model. Thus, 
the expected regression of true BV on EBV was not equal to 
one even in the case of unbiased prediction. Paired t-test was 
used to test the difference between accuracies of EBV from 
the four genotyping strategies and from the three models.

Results
The variance components estimated from the model with 
pedigree-based relationship matrix were used for esti-
mation of breeding values. Heritabilities estimated using 
pedigree information are shown in Table 1. Proportions 

η = 1µ+Wll + Zaa + Zmm



Page 4 of 9Liu et al. Journal of Animal Science and Biotechnology            (2023) 14:1 

of variances and heritabilities were different among the 
three models due to different scales. For traits T4/4 and 
T2/2, when using the logit model and the probit model, 
the estimated direct heritability ranged from 0.011 to 0.22 
and was lower than the estimated maternal heritability, 
which ranged from 0.019 to 0.039. This was unexpected 

since direct and maternal heritabilities were the same 
in the simulation for the two traits. For the three mod-
els, the estimates of correlation coefficients between the 
direct and maternal additive effects ranged from 0.286 to 
0.523, and had large standard errors.

Accuracies of EBV were measured as correlation coef-
ficients between EBV and TBV. Accuracies of estimated 
direct (a), maternal (m) and total (a + m) breeding values 
are shown in Table  2. Models using genomic informa-
tion achieved up to 59.2% higher accuracy of estimated 
breeding value than models using pedigree information, 
dependent on genotyping scenarios. Accuracies of EBV 
for a from the three models using only pedigree-based 
relationship matrix (scenario G_none) ranged from 0.287 
to 0.288 for trait T4/4, 0.242 to 0.245 for T2/4 and 0.224 
to 0.226 for T2/2. When using genomic data across the 
three scenarios (G_all, G80_ran, G_alive), the accuracies 
ranged from 0.375 to 0.459 for T4/4, 0.293 to 0.352 for 
T2/4 and 0.286 to 0.340 for T2/2. Accuracies of EBV for the 
maternal effect, m using only pedigree-based relationship 
matrix ranged from 0.247 to 0.251 for trait T4/4, 0.264 to 
0.270 for T2/4 and 0.196 to 0.197 for T2/2. When using 
genomic data and across all scenarios, the accuracies of 
maternal effect ranged from 0.385 to 0.409 for T4/4, 0.397 
to 0.418 for T2/4 and 0.310 to 0.325 for T2/2. Accuracies 
of EBV for total genetic effect, a + m using pedigree-
based models without genomic information ranged from 
0.314 to 0.315 for trait T4/4, 0.310 to 0.311 for T2/4 and 
0.249 for T2/2. Across all scenarios with genomic data, the 

Table 1  Estimates of proportion of litter variance (lit2), direct 
heritability ( h2a ), maternal heritability ( h2m ), and correlation 
between direct and maternal additive genetic effects (ram) using 
models incorporating pedigree-based relationship matrix1

1 Mean and standard error
2 T4/4: trait with ha

2 = 0.04, hm
2 = 0.04 and lit2 = 0.04, T2/4: trait with ha

2 = 0.02, 
hm

2 = 0.04 and lit2 = 0.04; T2/2: trait with ha
2 = 0.02, hm

2 = 0.02 and lit2 = 0.02, in 
liability scale
3 LM linear model, LG logit model, PM probit model. For LM, the estimates were 
in observed scale

Trait2 Model3
lit

2   h
2

a   h
2

m   ram

T4/4 LM 0.020(0.001) 0.020(0.001) 0.019(0.001) 0.289(0.049)

LG 0.028(0.001) 0.022(0.001) 0.035(0.002) 0.436(0.050)

PM 0.031(0.002) 0.021(0.001) 0.039(0.002) 0.485(0.051)

T2/4 LM 0.020(0.001) 0.009(0.001) 0.022(0.001) 0.308(0.057)

LG 0.029(0.001) 0.011(0.001) 0.039(0.002) 0.429(0.060)

PM 0.032(0.002) 0.009(0.001) 0.042(0.002) 0.523(0.062)

T2/2 LM 0.010(0.001) 0.008(0.001) 0.011(0.001) 0.286(0.075)

LG 0.015(0.001) 0.011(0.001) 0.019(0.001) 0.362(0.077)

PM 0.017(0.001) 0.011(0.001) 0.020(0.001) 0.439(0.081)

Table 2  Correlation coefficient between estimated breeding values and true breeding values

1 T4/4: trait with ha
2 = 0.04, hm

2 = 0.04 and lit2 = 0.04, T2/4: ha
2 = 0.02, hm

2 = 0.04 and lit2 = 0.04; T2/2: ha
2 = 0.02, hm

2 = 0.02 and lit2 = 0.02, in liability scale
2 G_all: all pigs were genotyped; G80_ran: 80% of pigs randomly selected from the whole population were genotyped; G_alive: only alive pigs (80%) were genotyped; 
G_none: no pig was genotyped
3 LM linear model, LG logit model, PM probit model
4 a: direct additive genetic effect; m: maternal additive genetic effect
a,b,c,d Means in column for the same trait without a common superscript differ significantly (P < 0.05), according to paired t test

Trait1 Genotyping 
scenario2

a4 m4 a + m

LM3 LG PM LM LG PM LM LG PM

T4/4 G_all 0.459a 0.455a 0.451a 0.401a 0.408a 0.409a 0.500a 0.499a 0.498a

G80_ran 0.430b 0.426b 0.423b 0.385b 0.391b 0.391b 0.474b 0.474b 0.473b

G_alive 0.378c 0.378c 0.375c 0.386b 0.390b 0.390b 0.447c 0.449c 0.449c

G_none 0.288d 0.288d 0.287d 0.247c 0.251c 0.251c 0.314d 0.315d 0.315d

T2/4 G_all 0.352a 0.352a 0.344a 0.412a 0.416a 0.418a 0.458a 0.457a 0.457a

G80_ran 0.331b 0.332b 0.325b 0.400b 0.403b 0.404b 0.440b 0.439b 0.439b

G_alive 0.295c 0.299c 0.293c 0.397b 0.400b 0.401b 0.429c 0.428c 0.428c

G_none 0.244d 0.245d 0.242d 0.264c 0.269c 0.270c 0.311d 0.310d 0.310d

T2/2 G_all 0.340a 0.335a 0.333a 0.325a 0.325a 0.325a 0.391a 0.391a 0.391a

G80_ran 0.321b 0.317b 0.315b 0.311b 0.310b 0.310b 0.371b 0.371b 0.371b

G_alive 0.288c 0.287c 0.286c 0.314b 0.314b 0.313b 0.359c 0.360c 0.360c

G_none 0.226d 0.225d 0.224d 0.196c 0.197c 0.197c 0.249d 0.249d 0.249d
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accuracies ranged from 0.447 to 0.500 for T4/4, 0.428 to 
0.458 for T2/4 and 0.359 to 0.391 for T2/2.

As expected, for the three types of EBV (a, m, and 
a + m), the scenario of all individuals, including dead 
individuals, being genotyped (G_all) had the highest 
accuracy. The composition of genotyping individuals 
affected the accuracies of EBV for a and a + m, but not 
for m. In scenario of G_alive, the accuracies of EBV for 
a were 0.375 to 0.378 for trait T4/4, 0.293 to 0.299 for 
T2/4 and 0.286 to 0.288 for T2/2. With the same size of 
genotyped pigs, the accuracies of G80_ran were higher 
than those in G_alive by 12.70% ~ 13.76% for trait T4/4, 
10.92% ~ 12.20% for T2/4 and 10.14% ~ 11.46% for T2/2. 
The trend of accuracies for a + m was the same as that 
for a. Thus, the accuracies of EBV for a + m in G_alive 
were 0.447 to 0.449 for trait T4/4, 0.428 to 0.429 for T2/4 
and 0.359 to 0.360 for T2/2, and the accuracies of G80_
ran were higher than those in G_alive by 5.35% ~ 6.04% 
for trait T4/4, 2.56% ~ 2.57% for T2/4 and 3.06% ~ 3.34% for 
T2/2. However, the trend of accuracies for m was differ-
ent from those for a and a + m in terms of composition 
of genotyped individuals. The accuracies of EBV for m in 
G80_ran were similar to those in G_alive, and the differ-
ences among them were less than 0.01 for the three traits 
(P < 0.05).

As shown in Table  2, accuracies of the linear model 
were very similar to the logit and probit models for the 
three types of EBV, and the differences among them 
were less than 0.01 for the three traits. The differences of 
accuracies for a ranged from 0 to 0.008 for trait T4/4, 0 

to 0.008 for T2/4 and 0 to 0.007 for T2/2. The differences 
of accuracies for m ranged from 0 to 0.008 for trait T4/4, 
0.001 to 0.006 for T2/4 and 0 to 0.001 for T2/2. The differ-
ences of accuracies for a + m ranged from 0 to 0.002 for 
trait T4/4, 0 to 0.001 for T2/4 and 0 to 0.001 for T2/2.

In scenarios of G80_ran and G_alive, 20% animals did 
not have genotype data. Additional file 1: Table S1 shows 
that the accuracies of genotyped individuals were higher 
than those of non-genotyped pigs. The differences of 
accuracies for a ranged from 0.077 to 0.093 for trait T4/4, 
0.037 to 0.046 for T2/4 and 0.061 to 0.072 for T2/2. The dif-
ferences of accuracies for m ranged from 0.058 to 0.090 
for trait T4/4, 0.053 to 0.074 for T2/4 and 0.058 to 0.087 
for T2/2. The differences of accuracies for the total EBV 
ranged from 0.094 to 0.109 for trait T4/4, 0.068 to 0.086 
for T2/4 and 0.079 to 0.094 for T2/2. In addition, the accu-
racies of the three types of EBV for non-genotyped ani-
mals (Additional file 1: Table S1) were higher than those 
for animals in scenario of without any genotype informa-
tion (Table 2, G_none).

The regression coefficients of the EBV from the whole 
data with all animals having genotypes on the EBV 
from different reference data are presented in Table 3. 
The range of the regression coefficients of direct EBV 
were between 1.046 and 1.132 for T4/4, 1.001 and 
1.126 for T2/4, 0.944 and 1.019 for T2/2. The range of 
the regression coefficients of maternal (m) EBV were 
between 0.895 and 0.938 for T4/4, 1.057 and 1.085 for 
T2/4, 1.000 and 1.043 for T2/2. The range of the regres-
sion coefficients of the total EBV (a + m) were between 

Table 3  Regression coefficient of the EBV from whole data on the EBV from reference data

1 T4/4: trait with ha
2 = 0.04, hm

2 = 0.04 and lit2 = 0.04, T2/4: ha
2 = 0.02, hm

2 = 0.04 and lit2 = 0.04; T2/2: ha
2 = 0.02, hm

2 = 0.02 and lit2 = 0.02, in liability scale
2 G_all: all pigs were genotyped; G80_ran: 80% of pigs randomly selected from the whole population were genotyped; G_alive: only alive pigs (80%) were genotyped; 
G_none: no pig was genotyped
3 LM linear model, LG logit model, PM probit model
4 a: direct additive genetic effect; m: maternal additive genetic effect

Trait1 Genotyping 
scenario2

a4 m4 a + m

LM3 LG PM LM LG PM LM LG PM

T4/4 G_all 1.046 1.082 1.051 0.895 0.902 0.924 0.983 1.008 0.974

G80_ran 1.050 1.086 1.057 0.898 0.906 0.928 0.983 1.011 0.977

G_alive 1.120 1.132 1.107 0.908 0.909 0.938 1.017 1.026 1.000

G_none 1.052 1.075 1.047 0.866 0.870 0.898 0.985 1.008 0.966

T2/4 G_all 1.001 1.081 1.077 1.070 1.057 1.080 1.098 1.082 1.109

G80_ran 1.007 1.090 1.088 1.071 1.057 1.080 1.099 1.083 1.110

G_alive 1.037 1.126 1.118 1.079 1.061 1.085 1.117 1.094 1.122

G_none 1.049 1.133 1.115 1.073 1.077 1.054 1.122 1.122 1.101

T2/2 G_all 0.947 0.996 0.983 1.000 1.016 1.000 0.960 0.996 0.985

G80_ran 0.944 0.992 0.984 1.007 1.016 1.006 0.961 0.993 0.988

G_alive 0.974 1.019 1.009 1.034 1.043 1.028 0.983 1.013 1.004

G_none 0.991 1.006 0.997 1.003 0.982 0.970 0.989 0.984 0.977
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0.974 and 1.026 for T4/4, 1.082 and 1.122 for T2/4, 0.960 
and 1.013 for T2/2. The regression coefficients around 1 
indicated that dispersions of predictions were unbiased 
with respect to use of the different reference data. The 
regression coefficients for validation individuals with 
or without genotype are presented in Additional file 1: 
Table S2. The regression coefficients of genotyped indi-
viduals were similar to those of non-genotyped individ-
uals for all three traits.

Table 4 shows the mean total TBV of the top 1% indi-
viduals with highest total EBV. It was observed that 
the higher the accuracy of EBV for a + m (Table  2), the 
higher the TBV. For trait T4/4, the scenario of all individu-
als with genotypes obtained the highest TBV for a + m 
(4.498 to 4.553), followed by scenario G80_ran (4.297 to 
4.346), after then by scenario G_alive (4.221 to 4.308), 
and the lowest was scenario G_none (2.583 to 2.712). The 
order of TBV for a + m from the four scenarios was the 
same in the other two traits T4/4 and T2/4. The order of 
TBV for a is the same as that for a + m but not for m. The 
order of TBV for m between the scenarios G80_ran and 
G_alive was changed, G_alive was higher than G80_ran 
for T4/4 and T2/2. When using genomic data, TBVs for 
a from linear model were higher than those from logit 
model and probit model. However, using pedigree-based 
models without genomic information, TBVs for a from 
linear model were lower than the logit and probit models. 
With or without genomic information, TBVs for mater-
nal effect, (m) from linear model were lower than those 
from the logit and probit models for all traits.

Table 5 shows the mean total TBV of the top 30% indi-
viduals with highest total EBV. For all traits, the order of 
the four scenarios of total TBV of the top 30% individu-
als is consistent with that of the top 1% individuals, i.e., 
scenario G_all obtained the highest TBV, followed by 
scenario G80_ran, after then by scenario G_alive, and the 
lowest was scenario G_none. In the four scenarios, linear 
model outperformed the logit and probit models for a, 
but not for m.

Discussion
In this study, we compared four genotyping strategies 
and three prediction models when predicting breeding 
values for three pig survival traits with different direct 
and maternal heritabilities. When using variance com-
ponents estimated from pedigree-based model, genomic 
predictions were unbiased with respect to dispersion of 
predictions, even for the scenario with genotypes only 
from alive animals. Random genotyping individuals led 
to higher prediction accuracy than only genotyping alive 
individuals, given the same number of genotyped ani-
mals. The linear model can achieve similar genomic pre-
diction ability as the logit and probit models.

In the current study, variance components were esti-
mated from pedigree-based model and these estimates 
were used for predicting breeding values in all genotyp-
ing scenarios. It has been reported that when selection is 
based on genomic information, genetic parameters esti-
mated without this information can be biased [29]. Simi-
larly, when selection is based on pedigree information, 

Table 4  The mean of true breeding value of the top 1% of animals with the highest total estimated breeding value

1 T4/4: trait with ha
2 = 0.04, hm

2 = 0.04 and lit2 = 0.04, T2/4: ha
2 = 0.02, hm

2 = 0.04 and lit2 = 0.04; T2/2: ha
2 = 0.02, hm

2 = 0.02 and lit2 = 0.02, in liability scale
2 G_all: all pigs were genotyped; G80_ran: 80% of pigs randomly selected from the whole population were genotyped; G_alive: only alive pigs (80%) were genotyped; 
G_none: no pig was genotyped
3 LM linear model, LG logit model, PM probit model
4 a: direct additive genetic effect; m: maternal additive genetic effect

Trait1 Genotyping 
scenario2

a4 m4 a + m

LM3 LG PM LM LG PM LM LG PM

T4/4 G_all 2.355 2.297 2.263 2.143 2.255 2.290 4.498 4.553 4.553

G80_ran 2.236 2.174 2.165 2.061 2.153 2.181 4.297 4.327 4.346

G_alive 2.040 2.038 2.030 2.181 2.270 2.270 4.221 4.308 4.300

G_none 1.299 1.304 1.319 1.284 1.339 1.393 2.583 2.643 2.712

T2/4 G_all 1.138 1.076 1.068 1.982 1.988 1.989 3.121 3.064 3.057

G80_ran 1.094 1.040 1.024 1.892 1.905 1.922 2.985 2.945 2.945

G_alive 1.047 1.013 0.996 1.914 1.883 1.887 2.961 2.896 2.883

G_none 0.743 0.745 0.770 1.169 1.225 1.239 1.912 1.970 2.010

T2/2 G_all 1.263 1.238 1.237 1.184 1.202 1.206 2.447 2.439 2.443

G80_ran 1.181 1.149 1.160 1.134 1.129 1.137 2.315 2.278 2.297

G_alive 1.145 1.139 1.145 1.220 1.208 1.225 2.364 2.346 2.370

G_none 0.864 0.870 0.900 0.700 0.702 0.686 1.564 1.572 1.586
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genetic parameters estimated using ssGBLUP model 
can also be biased [30]. However, the impact of selec-
tion on variance components estimates was not an issue 
in the current study, because the simulated population 
was a random selection population. On the other hand, 
the current study involved the issue of selective genotyp-
ing. In a pig breeding program, dead animals are usu-
ally not genotyped, which may lead to biased estimation 
of variance components and genomic prediction when 
using a genomic model for parameter estimation. We 
carried out an extra simulation study using models with 
genomic data and found that parameter estimation using 
ssGBLUP model with genotypes only from alive animals 
severely overestimated additive genetic variance and led 
to a residual variance close to zero (Additional file  1: 
Table S3). Similarly, Wang et al. [31] reported that selec-
tive genotyping severely overestimated additive genetic 
variance using a ssGBLUP model. Due to problems with 
convergence and biased estimation of variance compo-
nents in some scenarios, variances estimated from ped-
igree-based models were used for predicting breeding 
values in the current study.

Due to the estimates from the three models are on 
different scales, they cannot be directly compared. By 
a transformation from observed scale heritability to 
liability scale heritability [32], the liability scale herit-
abilities estimated from the linear model were consistent 
with those used in simulating data. However, the logit 
and probit model underestimated direct heritabilities 
and overestimated the correlation between direct and 

maternal additive genetic effects. The possible reason 
could be that including maternal additive genetic effect 
in the model increase model complexity, and it is difficult 
to distinguish direct and maternal additive genetic effects 
as reflected by large standard error for the estimates of 
correlation between direct and maternal additive genetic 
effects in this study. The logit and probit animal model 
could be more sensitive to model complexity compared 
with the linear animal model. This could be also the rea-
son that the logit and probit models did not perform bet-
ter prediction than the linear model in the current study 
though the two models are more appropriate in theory.

In this study, we compared accuracies of total EBV of 
four genotyping strategies for three traits. Accuracies of 
total EBV of three strategies using genomic information 
outperformed that using only pedigree information, and 
the accuracies of genotyped individuals were higher than 
those of non-genotyped individuals in the same strat-
egy. Furthermore, since non-genotyped animal benefit 
from genomic information of other animals, the accura-
cies of non-genotyped individuals in scenarios G80_ran 
or G_alive were higher than the individuals in scenario 
G_none. Those results are consistent with previous study 
for piglet mortality using a ssGBLUP method in Danish 
Landrace and Yorkshire pigs [15]. Among the three strat-
egies using genomic information, accuracies of total EBV 
of the strategy genotyping all individuals in the refer-
ence population was superior to the strategy genotyping 
only some individuals, the result was also consistent with 
theoretical expectations [33]. However, with the same 

Table 5  The mean of true breeding value of the top 30% of animals with the total estimated breeding value

1 T4/4: trait with ha
2 = 0.04, hmm

2 = 0.04 and lit2 = 0.04, T2/4: ha
2 = 0.02, hm

2 = 0.04 and lit2 = 0.04; T2/2: ha
2 = 0.02, hm

2 = 0.02 and lit2 = 0.02, in liability scale
2 G_all: all pigs were genotyped; G80_ran: 80% of pigs randomly selected from the whole population were genotyped; G_alive: only alive pigs (80%) were genotyped; 
G_none: no pig was genotyped
3 LM linear model, LG logit model, PM probit model
4 a: direct additive genetic effect; m: maternal additive genetic effect

Trait1 Genotyping 
scenario2

a4 m4 a + m

LM3 LG PM LM LG PM LM LG PM

T4/4 G_all 0.963 0.938 0.916 0.931 0.955 0.963 1.894 1.892 1.879

G80_ran 0.898 0.879 0.870 0.891 0.914 0.919 1.788 1.792 1.789

G_alive 0.825 0.813 0.807 0.897 0.914 0.917 1.722 1.727 1.724

G_none 0.658 0.637 0.637 0.585 0.598 0.603 1.243 1.235 1.240

T2/4 G_all 0.561 0.540 0.534 0.944 0.957 0.963 1.505 1.496 1.497

G80_ran 0.533 0.517 0.512 0.912 0.929 0.934 1.445 1.445 1.446

G_alive 0.497 0.485 0.482 0.931 0.937 0.941 1.428 1.422 1.423

G_none 0.421 0.407 0.404 0.617 0.625 0.626 1.039 1.032 1.029

T2/2 G_all 0.493 0.484 0.481 0.526 0.536 0.537 1.019 1.020 1.018

G80_ran 0.461 0.454 0.451 0.501 0.510 0.512 0.962 0.964 0.963

G_alive 0.430 0.427 0.425 0.520 0.526 0.527 0.950 0.952 0.952

G_none 0.308 0.312 0.312 0.337 0.341 0.342 0.646 0.653 0.654
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size of genotyped individuals, genotyping both alive and 
dead pigs have a higher accuracy than genotyping only 
for alive pigs, indicating that the genotypes of dead pigs 
have an important influence on the accuracy of genomic 
prediction. Therefore, it could be a good strategy to gen-
otype dead animals. In the current study, genetic values 
were generated from 730 QTLs for which the direct and 
maternal additive genetic effects followed a bivariate 
distribution, since previous studies [34] have revealed 
that pig mortality is a complex trait and has a polygenic 
genetic architecture. In case of pig mortality is controlled 
by a small number of genes, the frequency of unfavorable 
genes would be largely different between dead animals 
and alive animals, implying greater need to genotype 
dead animals for genomic prediction of pig mortality. A 
study based on real data of pig mortality will be of great 
importance, however genotype data of dead pigs are not 
available currently in a pig breeding program.

As expected, the trait with higher heritability had 
higher prediction accuracy. Further, with the same her-
itability for direct and maternal additive genetic effect 
of traits T4/4 and T2/2, accuracies of direct EBV (a) were 
higher than those of maternal EBV (m) for scenarios of 
G_all, G80_ran, and G_none, indicating maternal genetic 
effect is more difficult to estimate in general (Table  1). 
However, accuracies of maternal EBV were higher than 
those of direct EBV in scenario of G_alive, achieving 
accuracies similar to those in scenario G80_ran, suggest-
ing selective genotyping for alive animal has small impact 
on prediction accuracy for maternal additive genetic 
effect, but large impact on predicting direct additive 
genetic effect.

We compared the accuracy of genomic prediction of a 
linear model, a logit model and a probit model for sur-
vival in pigs. Using pedigree information, accuracies of 
total EBV were very similar among the three models, the 
differences were less than 1% for all traits T4/4, T2/4 and 
T2/2. Previous studies have shown that linear, the logit 
and probit models have similar predictive capabilities for 
threshold traits [19, 20, 36]. In a simulation study, Car-
lén et al. [36] showed the prediction ability of linear and 
threshold models were very similar for mastitis which 
was defined as a binary trait in Dairy Cattle. Koeck et al. 
[19] evaluated the performance of a linear, a logit and a 
probit model for genetic analyses of clinical mastitis in 
Austrian Fleckvieh dual purpose cows and showed that 
there were very small differences in the predictive ability 
among the three models. In a Norwegian Red cows pop-
ulation, Vazquez et al. [20] also observed similar results 
when comparing the genetic predictive ability of thresh-
old and linear models for clinical mastitis. Using genomic 
information, accuracies of total EBV were higher than 

those only using pedigree information, but like pedigree-
based prediction, accuracies were very similar among 
linear, logit and threshold models for all the three traits 
in the current study. Although the logit and probit mod-
els were hypothesized to be more suitable for threshold 
traits, the results indicated that the predictive power 
of the linear, the logit and probit models are similar in 
genomic prediction for survival traits.

Conclusions
In this study, three survival traits with different heritabili-
ties were simulated to explore the impact of genotyping 
strategies and statistical models on genomic prediction. 
The results showed that genomic predictions with geno-
types only from alive animals were unbiased when using 
variance components estimated from pedigree-based 
model. Randomly genotyping individuals can obtain 
higher accuracy than only genotyping alive individuals, 
given the same number of genotyped individuals. The 
predictive powers of the linear model, the logit and pro-
bit models were similar. We conclude that the genomic 
information of dead individuals is very useful, and linear 
model is a good choice for genomic prediction of survival 
in pigs. It is recommended to use variances estimated 
from pedigree-based model for genomic prediction in 
the case of selective genotyping.
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