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1 Introduction

Pure CFTs are a sub-class of conformal field theories (CFTs). CFTs main characteristic
is a vanishing beta-function and can be found at critical parameter values within a larger
parent theory. However, pure CFTs maintain conformal invariance for all values of a
parameter, such as the coupling λ. Further, some CFTs in the large N-limit give exact
analytic results for all λ. A well know example of pure CFT is a N = 4 Super-Yang-Mills
theory in 3+1 dimensions whose free energy at finite temperature and infinite coupling, via
its conjectured gravity dual [1], is 3/4 of the Stefan-Boltzmann free theory [2, 3]. However,
the entropy density s of the N = 4 SYM theory in four dimensions is not solvable for
all λ [4, 13]. Nonetheless, in the large N limit, I find a large class of field theories, in
d = 3 + 4n for any n ∈ Z+, that are exactly solvable for all couplings. It is no secret that
purely solvable models for all couplings are rare, and as with quantum mechanics more
broadly, analytically solvable models often bring new insight.

In the large N limit ref. [4] shows a φ4 finite-temperature O(N) model in 2 + 1 di-
mensions on flat space is solvable for all λ, and has a weak-to-strong entropy density ratio
of 4/5. This result was then extended to large N supersymmetric Wess-Zumino model in
2 + 1 dimension where the weak-to-strong entropy density ratio was found to be 31

35 [2].
In this spirit I continue to investigate large N pure CFT’s in higher odd dimensions.

I start by presenting a generalized marginal vector model in arbitrary odd dimensions. All
theories under this generalization lack logarithmic divergences, and theories in d = 3 + 4n
yield gap equations with non-trivial finite solutions. This results in a new class of interact-
ing pure CFTs. Further, applying this generalized theory to 2 + 1d produces a strong-to-
weak thermal entropy density ratio of 4

5 , matching the results of quartic and sextic theories
in refs. [4, 9] and [10].
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In refs. [6] and [7] it was shown that the vacuum entanglement entropy on a spherical
region in Rd−1 × S1 maps to the thermal entropy in Sd. Further, it was shown that the
non-universal piece of the vacuum entanglement entropy on the boundary of a spherical
region is positively divergent. Removing the non-universal piece via regularization leaves a
finite universal piece which can be either positive or negative depending on dimensionality.
With this, I show in the large N limit that the entanglement entropy on Sd−2 defined
as sdEE, is constant for all d, further implying the free propagator is vanishing in all such
theories. Finally, sdEE in the large N limit is shown to match N copies of the thermal
entropy of a free theory on Sd for any odd d, given by ref. [8].

The contrast between results of various geometries prompts further discussion on large
N theories on curved spacetime, particularly on how the d-sphere acts as a local minimum
of entanglement entropy among all shapes [12], and the possibility of conformally deforming
the minimized entanglement entropy SdEE to other topologies in the large N limit. Further,
investigation can be extended to Fermionic large N theories, and to fully solvable higher-
spin gravity duals of large N theories.

2 The model

2.1 A marginal theory on flat space in odd dimensions

Consider a marginal O(N) bosonic scalar theory in odd dimensions where ~φ=(φ1, φ2 . . . φN )
in the limit N →∞, with the Euclidean action

A(d) = 1
2

∫
x

[
∂µ~φ∂µ~φ+m2

0
~φ2 +

(
λ

N

) 2
d−2 (~φ · ~φ) d

d−2

]
. (2.1)

As standard practice, let the Euclidean dimension of time be compactified to a thermal
circle of radius β [5]. Next the partition function Z(d)(T ) =

∫
D~φe−A(d) is multiplied by

the identity [4]

1 =
∫
DξDσe

i
∫
x

1
2 ξ

(
σ− ~φ·~φ

N

)
, (2.2)

and for simplicity bare mass term m0 is tuned to zero. Further let ξ → Nξ and σ → σ
λ to

evenly distribute the coupling in Z(T ). Next saddle point integrals are taken around the
mean-field values of ξ and σ, ξ̄ and σ̄, which are exact in the large N limit. Applying the
saddle point condition for the σ field I keep only the positive solution in terms of ξ̄, which
is equivalent to keeping only positive effective mass terms. Now Z(T ) is

Z(d)(T ) =
∫
Dφdξ̄ exp

[
−N

∫
x

(
1
2φ
(
∂µ∂µ + iξ̄

)
φ− (iξ̄)d/2

λ

(2
d

)(
d− 2
d

) d−2
2
)]
, (2.3)

giving a marginally coupled theory for any d, however, this paper is specifically investigating
theories in odd dimensions. Letting īξ → m2 in noting īξ acts as the effective mass, up to
an overall constant the partition function is

Z(d)(T ) = exp
[
NβV

(
P

(d)
free
(
T,m

)
+ md

λ

(2
d

)(
d− 2
d

) d−2
2
)]
, (2.4)
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where P (d)
free
(
T,m

)
, the pressure of a free scalar field theory at temperature T in d dimen-

sions, is given by

P
(d)
free(T,m) = −

∫
dd−1k

(2π)d−1

[
Ek
2 + T ln(1− e−βEk)

]
. (2.5)

Using dimensional regularization P (d)
free evaluates to an exact analytic result of the form:

P
(d)
free = −1

2
mdΓ

(
−d

2

)
(4π)

d−1
2 Γ

(
−1

2

) + TΩd−1
(2π)d−1

∞∑
n=1

∫ ∞
m

1
n

(k2 −m2)
d−3

2 ke−nβkdk, (2.6)

where Ωd = 2πd/2

Γ( d2 ) is the solid angle, and d still holds as the dimensionality of theory. The
integral in equation (2.6) can be evaluated for any d and m > 0 to give,

P
(d)
free =

mdΓ
(
−d
2

)
2d+1π

d
2

+ 21− d2md

(πmβ)
d
2

∞∑
n=1

( 1
n

) d
2
K d

2

(
mnβ

)
, (2.7)

One can see that the dimensionally regulated piece of (2.7) has no logarithmic divergence
in odd dimensions. To apply (2.7) consider d = 2+1 resulting in a φ6 theory with marginal
coupling, the free pressure evaluates to

P
(3)
free = T 3

2π

[
Li3(e−βm) + m

T
Li2(e−βm) + m3

6T 3

]
. (2.8)

The saddle condition of the ξ-field is given in terms of the effective mass as

2m√
3λ

= m

4π + 1
2πT ln(1− e−βm). (2.9)

Applying the saddle point condition (2.9) to (2.4) gives

P (3)(T, λ) = N

[
T 3

2π

[
Li3(e−βm) + m

T
Li2(e−βm)− m2

3T 2 ln(1− e−βm)
]]
. (2.10)

The thermal entropy density is found via stherm = ∂P
∂T , resulting in

s
(3)
therm(T, λ) = N

[
3T 2

2π

[
Li3(e−mβ) + m

T
Li2(e−mβ)− m2

3T 2 ln(1− e−mβ)
]]
. (2.11)

s
(3)
therm(T, λ) matches the bosonic contribution of the entropy density of a Nambu-Jona-
Lasinio-Yukawa model given in ref. [10]. Considering equation (2.9), the gap equation at
infinite coupling is

− βm = 2 ln(1− e−βm). (2.12)

This gap equation is solved in terms of the golden ratio φ = 1+
√

5
2 giving

βm = 2 ln(φ), (2.13)
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which matches the infinite coupling gap equation of ref. [4]. In the zero coupling limit, we
have βm = 0. Then evaluating (2.11) with (2.13) and βm = 0, s(3)

therm(T, 0) and s(3)
therm(T,∞)

are given as

s
(3)
therm(T, 0) = 3NT 2ζ(3)

2π = sfree(3)
therm ,

s
(3)
therm(T,∞) = 6NT 2ζ(3)

5π = s∞
(3)

therm.

(2.14)

These coupling limits match refs. [4, 10], and [9], and the strong coupling limit was rec-
ognized earlier in refs. [17, 18]. Together the equations of (2.14) give a strong-to-weak
coupling ration of,

s∞
(3)

therm

sfree(3)
therm

= 4
5 . (2.15)

This strong-to-weak entropy density ratio matches the results of a φ4 theory in R2 × S1

and has further been shown to be universal in a large class of pure CFTs with only bosonic
degrees of freedom in R2 × S1 [4].

2.2 Higher dimensions on flat space

To find the gap equations for higher dimensions I will start at d = 3 and move up in
increments of 4 dimensions. We can call this “the rule of fours.” The reasoning for this
strategy goes as follows: in the λ→∞ limit the finite temperature piece of equation (2.7)
gives a series of polylogarithms of the form Lin(e−mβ). Now, for all finite m, n, and d:

∂

∂m2Lin(e−mβ) = −Lin−1(e−mβ) < 0, (2.16)

and,
lim
m→∞

−Lin−1(e−mβ) = 0. (2.17)

Further, the mass derivative of the zero temperature piece of the equation (2.7) is propor-
tional to Γ(−d

2)
∂

∂m2
mdΓ(−d

2)
2d+1π

d
2
∼ Γ

(
− d

2

)
. (2.18)

Finally, Γ
(
− d

2
)
> 0 for d = 3, 7, 11, 15 . . ., for all d = 3 + 4n with n ∈ N. Thus, the gap

equations in dimensions d = 3 + 4n are satisfied by some non-trivial finite mass value for
any n ∈ N at any finite temperature T . This analysis can be extended to finite λ to include
the coupling term in equation (2.4) which is overall positive for d > 2. For example, the
gap equation in the limit λ→∞ for d = 7 is given as

β5m5 = 30β2m2Li3
(
e−mβ

)
+ 90βmLi4

(
e−mβ

)
+ 90Li5

(
e−mβ

)
, (2.19)

which is numerically solved around βm ≈ 2.178. Likewise, the gap equation in the zero
temperature limit is 25

√
5
7

49λ + 1
480π3

m5 = 0 (2.20)
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Thermal Entropy Relations
Dimensions sfree

therm s∞therm/s
free
therm

d = 3 3NT 2ζ(3)
2π = 0.800

d = 7 15NT 7ζ(7)
8π3 ≈ 0.649

d = 11 945T 11ζ(11)
32π5 ≈ 0.578

d = 15 135135T 15ζ(15)
128π7 ≈ 0.466

Table 1. sfree
therm and s∞therm/s

free
therm values for d = 3, 7, 11, 15.

Figure 1. The thermal entropy density of stherm/s
free
therm are shown above for all tempera-

tures/couplings ranging in order from d = 3 at the bottom to d = 15.

which satisfied at m = 0 for all λ > 0. Given that the gap equations for dimensions
d = 3 + 4n can be solved at finite temperature for all couplings λ, and the corresponding
theories contain no logarithmic divergences; in the large N limit, marginal theories in
d = 3 + 4n generate a large class of interacting pure CFTs. Figure 1 shows P (d)(T,m) for
d = 3, 7, 11, 15. Likewise table 1 gives sfree

therm and s∞therm/s
free
therm values for d = 3, 7, 11, 15.

However, Γ
(
− d

2
)
< 0 for all d = 1+4n with n ∈ N. Thus, gap equations for dimensions

d = 1 + 4n in the λ → ∞ limit are overall negative, giving only trivial solutions at finite
temperature. Consider the λ→∞ limit for d = 5, the gap equation is given as

m3β3

6 + βmLi2
(
e−mβ

)
+ Li3

(
e−mβ

)
= 0. (2.21)

By physical demands m > 0 and β > 0 and because Li2
(
e−mβ

)
> 0 this gap equation

is only trivially solved by m = 0 as β → ∞. We can also note that for d = 1 + 4n in the
zero temperature limit there is a critical coupling λcrit which satisfies the saddle condition
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Rd−1 × S1

Sd−1

Sd−2

Figure 2. The entanglement entropy of a spherical region in Sd−1 embedded in Rd−1×S1 is found
on the boundary in Sd−2.

for all in medium mass giving a constant zero pressure for all m. For d = 5 in the T → 0
limit, the saddle condition is

m3

3
√

3
5

5λ −
1

48π2

 = 0, (2.22)

which is satisfied for all m at λcrit = 144
5

√
3
5π

2 giving P (0,m, λcrit) = 0 ∀ m. The physical
implications of this critical phenomenon can be explored in future work.

3 Entanglement entropy on a d-sphere

The action for a vector model marginally and conformally coupled on Sd is given by [4, 8] as:

A(d) = 1
2

∫
sd
dx
√
−g
[
∇µ~φ∇µ~φ+ R(d− 2)

4(d− 1)
~φ2 +

( λ
N

) 2
d−2 (~φ · ~φ) d

d−2

]
, (3.1)

where g ≡ det gνµ is the determinant of the metric tensor of Sd, R is the Ricci scalar term
defined as R = d(d−1)

r2 with r being the radius of the d-sphere. Again, the mass has been
tuned to zero, resulting in a critical O(N) theory with conformal invariance on an odd d-
dimensional Euclidean manifold under all couplings λ. Further the entanglement entropy
of a spherical region in Sd−1 embedded in Rd−1 × S1 lives on the boundary in Sd−2, as
shown in figure 2, and maps directly to the thermal entropy of a theory on Sd [7, 8].

I will refer to the vacuum entanglement entropy of a region Sd−1 which lives on Sd−2,
as s(d)

EE, and
s

(d)
EE = log |Z(d)| = −1

2 log
(

detO(d)), (3.2)

refs. [6, 8], with, O(d) ≡ −∇2 + R(d−2)
4(d−1) , and Z(d) being the partition function on S(d).

Eigenvalues of minus the Laplacian on a d-sphere for d ≥ 2 are given by [8, 15] as

λn = n(n+ d− 1)r−2, (3.3)

– 6 –
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with multiplicities,
mn = (2n+ d− 1)(n+ d− 2)!

(d− 1)!n! , n ≥ 0. (3.4)

In odd dimension Z(d) has no dependence on r giving a vanishing β-function. Thus, for
simplicity, the dependence of r in O is manipulated by letting r = 1. However, with hind-
sight of the effective mass m (associated with the auxiliary field ξ) being in the argument
of logarithmic functions, I will keep the dimensionful quantity of r associated with m.

3.1 Entanglement entropy for d=3

Considering d = 3 equation (2.3) can be modified so the integrals are now over S3 give
three-dimensional hypersphere volumes. Then,

s
(3)
EE = N

[1
2 log

(
det[O + (rm)2]

)
− 4πr3

( 2m3

9
√

3λ

)]
. (3.5)

Now the entanglement entropy of the free theory with the added auxiliary mass field is

s
(3)
EEfree

= 1
2

∞∑
n=0

(n+ 1)2 log
[
(n+ 1)2 − 1

4 + (rm)2
]
. (3.6)

Taking the derivative of S(3)
EEfree

w.r.t. m2 and applying zeta-function regularization [19]
enables the saddle point of m to be evaluated:

∂

∂m2 s
(3)
EEfree

= 1
2

∞∑
n=0

(n+ 1)2

(n+ 1)2 − 1
4 + (rm)2 ,

= 1
2

[
ζ(0) + 1

4

(
2−

√
1− (2rm)2π cot

(1
2

√
1− (2rm)2π

))]
.

(3.7)

Finally, utilizing equation (3.5) the saddle point condition for m is

1
8

√
1− (2rm)2π cot

(1
2

√
1− (2rm)2π

)
− 4πr3m

3
√

3λ
= 0. (3.8)

Equation (3.8) is satisfied for all couplings λ when m = 0. In evaluating (3.8), the sad-
dle condition of m, call it C

(
m(λ)

)
, is a functional of m which is a function of λ, and

C(m = 0) = 0 for all λ. Therefore, m(λ) cannot be inverted into λ(m). Thus, the in-
medium mass is vanishing, s(3)

EE is invariant to coupling variations in the large N limit, and
s

(3)
EEfree

/s
(3)
EE∞=1. Further, note satisfying (3.8) at m = 0 is effectively the same as setting

the free propagator of the theory to zero. Recovering a functional form of equation (3.5)
is achieved by; integrating equation (3.7), evaluating for m = 0, and finally keeping the
real parts of the result as demanded by the physical nature of the entanglement entropy.
Likewise, removing the pure imaginary of integral result of (3.7) can be seen as removing
an unspecified integration constant, then,

s
(3)
EE = −N16

(
2 log(2)− 3ζ(3)

π2

)
. (3.9)
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Figure 3. For d = 3 the thermal entropy density of stherm/s
free
therm is shown along with the entan-

glement entropy for a circular region that lives in R2 × S1. Results are shown in the compactified
domain of 1

1+
√
λ
∈ [0, 1] starting at from the left at λ =∞.

The entanglement entropy is negative, however, this is since in regularization we dropped
the positively divergent non-universal contribution. This result matches N copies of the
thermal entropy of a free massless theory on S3 given by [8]. It has further been shown
by refs. [12, 14] that the d-sphere entanglement entropy represents a minimum among all
shapes. Thus, the entanglement entropy on S3 in the large N limit is constant w.r.t. all
couplings λ and minimized for all conformal geometries. Thus, while the thermal entropy
in 2+1d decreases monotonically with λ, the entanglement entropy on a circular boundary
in 2 + 1d is strictly constant as shown in figure 3.

3.2 Generalizations to arbitrary d

In order to generalize our theory to Sd first we can generalize the eigenvalues on Sd, let
them be λ(d)

n , and their associated multiplicities m(d)
n . The eigenvalues take the form

λ(d)
n =

(
n+ d− 1

2

)2
− 1

4 + (rm)2, (3.10)

and the multiplicities generalize to,

m(d)
n = 2

(d− 1)!

d−3
2∏
j=0

[(
n+ d− 1

2

)2
− j2

]
. (3.11)

Together equations (3.2), (3.10), and (3.11) give a general form for the saddle condition
in (3.7) as

∂

∂m2 s
(d)
EE = −1

(d− 1)!

∞∑
n=0

d−3
2∏
j=0

[ (
n+ d−1

2

)2
− j2

]
(
n+ d−1

2

)2
− 1

4 + (rm)2
= 0. (3.12)
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In anticipation of the gap equation being solved by m = 0, the auxiliary field term can be
ignored. This is effectively the same as working in the infinite coupling regime. In the case
of d = 5, evaluating (3.12) at m = 0 gives

∂

∂m2S
(5)
EE

∣∣∣∣
m=0

= −1
(4)!

∞∑
n=0

(n+ 2)2[(n+ 2)2 − 1
]

(n+ 2)2 − 1
4 + (rm)2

∣∣∣∣
m=0

= −1
(4)!

[
ζ(−2)− 1− ζ(0)3

4 + 3
4 −

1
8

]
= 0.

(3.13)

The integral of (3.13) evaluated at m = 0 further produces s(5)
EE as

s
(5)
EE = N

28

(
2 log(2) + 2ζ(3)

π2 − 15ζ(5)
π4

)
, (3.14)

matching N copies of the thermal entropy of a free theory in S5 given by ref. [8]. This
recipe can be repeated for d = 7 giving

s
(7)
EE = −N212

(
4 log(2) + 82ζ(3)

15π2 −
10ζ(5)
π4 − 63ζ(7)

π6

)
(3.15)

Note when evaluating s(d)
EE for d = 3, d = 5, and d = 7 the process of zeta-function

regularization produced a rational number which canceled when we setm = 0. For example,
in equation (3.7) we have

1
2

[
ζ(0) + 1

4(2−
√

1− (2rm)2π cot
(1

2

√
1− (2rm)2π

)]∣∣∣∣∣
m=0

= 1
2

[
ζ(0) + 1

4(2)
]

= 0.
(3.16)

This was likewise the case for d = 5 and d = 7. It is reasonable to ask if the effective mass
is vanishing in the saddle condition for all odd dimensions d, which is equivalent to asking
if all rational terms produced in zeta function regularization will always perfectly cancel
when setting m = 0. To explore this, modifying equation (3.12), the derivative of the sdEE
for arbitrary d can be expressed as

∂

∂m2
(
S

(d)
EE
)

= −1
2

∞∑
n=0

Γ(n+ d− 1)
Γ(d)Γ(1 + n)

2n+ d− 1
n(n+ d− 1) + d/2(d/2− 1) + (rm)2 , (3.17)

which evaluates analytically to

∂

∂m2
(
S

(d)
EE) =−

8 cos(dπ/2) cos
(
1/2

√
1− 4(rm)2π

)
π(d(d− 2) + 4(rm)2)) Γ(1− d)

× Γ
[
1/2(1 + d−

√
1− 4(rm)2)

]
Γ
[
1/2(1 + d+

√
1− 4(rm)2)

]
.

(3.18)
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Prior to regularization, it can be shown that for all odd positive integer values of d the
saddle condition of (3.11) is satisfied in the limit m→ 0, and likewise in the limits where
d→∞ and m→ 0;

lim
m→0

∂

∂m2
(
S

(d)
EE
)

= 0 ∀d ∈ {2n− 1|n ∈ N}

&

lim
m→0

∂

∂m2
(
S∞EE) = 0.

(3.19)

Further, note that the integrating equation (3.8) and keeping the real parts gives a
function that is monotonically decreasing for all m > 0 and that all sdEE will likewise
take the form of (3.8) before applying saddle conditions. Thus, there is only one global
minimum for any sdEE, and together with (3.19) this implies m = 0 is the only solution
to the saddle point condition for odd d on Sd. This also implies that all rational terms
generated via zeta-function regularization will perfectly cancel for all odd d, such as in the
cases of d = 3, d = 5, and d = 7. Thus, via iteratively applying zeta-function regularization
the entanglement entropy can be expressed as the real part of the integral form:

s
(d)
EE

= lim
m→0

N

(d− 1)!(−1)(
d+1

2 )
[ ∫ d−3

2∏
j=0

[
(rm)2 − 1

4 + j2
] ∞∑
n=1

1
n2 − 1

4 + (rm)2dm
2 − C

]
,
(3.20)

where C is simply the rational term that is generated from the integral which will cancel
with all rational terms generated via zeta-function regularization. Altogether, taking the
limit and the integral in equation (3.20), and then removing the rational and imaginary
pieces will generate sdEE values that match the list of F-coefficients for free theories on Sd

in ref. [8] up a factor of −N . Further, in this form, it can be shown that the entanglement
entropy goes to zero in the limit d→∞ with letting C = 0.

4 Conclusions

In section 2 I derived previously known results for marginal coupling in the large N limit
on R2 × S1, via a generalized method which was then applied to higher dimensions. This
resulted in a large class of CFTs, with non-polynomial potentials, which are solvable and
monotonically decreasing for all couplings λ in d = 3 + 4n. In section 3 I further extended
large N methods to S3 and showed the vacuum entanglement entropy s(3)

EE is both solvable
and constant for all couplings. This was then shown to hold for all s(d)

EE given odd d. The
results of s(3)

EE could be experimentally verified given a Bose-gas with a vanishing effective
mass in 2+1 dimensions. Further, O(N) models are conjectured to have a high spin gravity
dual by ref. [16]. Thus this work introduces the possibility of arbitrary even dimensional
high spin gravity models which are solvable for all couplings.

Generally, this work prompts further questions on how coupling behaves on other
novel manifolds in the Large N limit. Likewise, what are the physical motivations of this
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coupling invariant behavior, and is it unique to the hypersphere or is it found to exist on
other manifolds more generally such as on a hyperbolic geometry? In refs. [14] and [12]
perturbative and computational methods were used to generate entanglement entropy via
small deformations of a sphere, however, no computational or analytic method has been
provided to calculate the entanglement entropy of generally deformed spheres. Such as one
can imagine deforming a sphere into flat space by letting the major axis of the deformed
sphere go to infinity. Such methods could potentially conformally map the flat to the
spherical theories presented in this paper, and further, bolster a general theory between field
theory geometry and entanglement entropy. Further, this investigation of scalar theories
could be extended to consider supersymmetric behavior in a large N Wess-Zumino model
in Sd via methods similar to those used in [2], or consider numerical calculations of a φ4

theory on S3 to better understand the conformal coupling invariance phenomena. In the
extension to Fermionic theories, if it likewise holds that the effective mass is vanishing for
all odd dimensional theories on Sd, graphene could be used to experimentally test these
theories. Likewise, one could extend this generalization of large N models to theories with
even dimensions where the β-function is non-vanishing, and perhaps, likewise extend this
large class of fully solvable models with non-polynomial potentials to even dimensional
theories.
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