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Abstract 

Background:  Correctly identifying the driver genes that promote cell growth can 
significantly assist drug design, cancer diagnosis and treatment. The recent large-scale 
cancer genomics projects have revealed multi-omics data from thousands of cancer 
patients, which requires to design effective models to unlock the hidden knowledge 
within the valuable data and discover cancer drivers contributing to tumorigenesis.

Results:  In this work, we propose a graph convolution network-based method called 
MRNGCN that integrates multiple gene relationship networks to identify cancer driver 
genes. First, we constructed three gene relationship networks, including the gene–
gene, gene–outlying gene and gene–miRNA networks. Then, genes learnt feature 
presentations from the three networks through three sharing-parameter heterogene-
ous graph convolution network (HGCN) models with the self-attention mechanism. 
After that, these gene features pass a convolution layer to generate fused features. 
Finally, we utilized the fused features and the original feature to optimize the model 
by minimizing the node and link prediction losses. Meanwhile, we combined the 
fused features, the original features and the three features learned from every network 
through a logistic regression model to predict cancer driver genes.

Conclusions:  We applied the MRNGCN to predict pan-cancer and cancer type-
specific driver genes. Experimental results show that our model performs well in terms 
of the area under the ROC curve (AUC) and the area under the precision–recall curve 
(AUPRC) compared to state-of-the-art methods. Ablation experimental results show 
that our model successfully improved the cancer driver identification by integrating 
multiple gene relationship networks.
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Background
It is generally accepted that cancer arises due to the accumulation of genetic mutations 
[1]. However, not all mutations cause cancer to develop. Mutations essential for cancer 
development are known as driver mutations, and genes with driver mutations are known 
as driver genes. Correctly identifying the cancer driver genes can assist drug design, 
cancer diagnosis and treatment. The recent large-scale cancer genomics projects, such 
as The Cancer Genome Atlas (TCGA) [2], the International Cancer Genome Consor-
tium (ICGC) [3] and the Catalogue Of Somatic Mutations In Cancer (COSMIC) [4] have 
revealed multi-omics data from thousands of cancer patients. The multi-omics data, 
such as genomic, transcriptomic and proteomic data, has been widely applied by com-
putational methods to identify driver genes.

The early stage methods identify cancer drivers assuming that cancer drivers fre-
quently undergo genomic alterations across many samples. These methods, such 
as MuSiC [5] or ActiveDriver [6], identify cancer drivers by measuring the difference 
between the gene mutations compared to their predefined background mutation rates. 
However, the frequency-based methods often fail to correctly estimate background 
mutation rates and ignore the cancer drivers with low mutation frequencies. Other 
methods like HotNet2 [7] and MUFFINN [8] assume that cancer driver genes are often 
enriched in protein complexes or pathways. They project the mutated genes onto a pro-
tein–protein interaction (PPI) network and detect driver genes by finding the highly sig-
nificant mutated gene modules or essential genes that strongly influence other genes. 
However, these network-based methods are limited by the reliability of the PPI network. 
To improve PPI reliability and to fully use the valuable multi-omics data, some methods 
use multi-omics data to weight PPI and filter out the noisy connections under the con-
straint of co-expression, co-subcellular and co-tissue [9, 10] among the molecules. How-
ever, these methods do not efficiently exploit the relationships between multi-omics data 
to boost the accuracy of the driver gene prediction.

The recent network representation techniques become popular for learning low-dimen-
sional vectors for the network nodes. This technique can screen network noise and has 
been successfully applied to detect cancer drivers. RLAG [11] runs node2vec [12] on the 
attribute network and PPI network simultaneously to learn gene feature representations 
and predict the cancer driver genes. DeepDriver [13] concatenates the features of the gene 
and its k nearest co-expression neighbours to generate a feature matrix for every gene. 
Then, it adopts a convolution neural network model to learn gene features for driver gene 
prediction. The emerging Graph Convolutional Networks (GCN) models [14], i.e., EMOGI 
[15] and MTGCN [16], can learn features of network nodes by naturally combining the 
network structure with node features and achieve good performance in cancer driver pre-
diction. Nevertheless, these GCN-based methods only aggregate features from the homo-
geneous neighbours in the gene–gene network. Tumorigenesis usually involves complex 
interactions between genes and other molecules. For example, the cancer driver genes 
cause dysregulation of their downstream gene expression. MiRNAs regulate the expression 
of their target genes, and the dysfunctions of genes can trigger cancers. Hence, it is crucial 
to employ multi-omics data to construct multiple heterogeneous networks describing the 
relationships between genes and other molecules and design effective models to integrate 
these networks to discover cancer drivers. Early methods construct multiple homogeneous 
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networks from multi-omics data and integrate the networks to classify cancer subtypes [17, 
18]. Some multi-relational GCN-based and random walk-based methods predict drug tar-
gets and miRNA-disease associations from the heterogeneous networks [19]. However, few 
approaches integrate multiple heterogeneous networks to predict cancer driver genes. With 
the advancement of deep learning in various tasks, some methods leverage the power of 
multi-layer neural networks for multi-omics data integration and feature learning. How-
ever, few exploit the correlations between different omics data.

Hence, we proposed a novel method to predict cancer driver genes based on multiple 
gene relationship networks and heterogeneous graph convolution models (MRNGCN). We 
first constructed three gene relationship networks: a gene–gene network, a gene–outlying 
gene network and a gene–miRNA network. These networks describe gene features related 
to cancer development and progression from different views. Then, genes learn feature 
presentations from the three networks through three sharing-parameter HGCN models 
with the self-attention mechanism. After that, the three gene features pass a 2D-convolu-
tion layer to generate fused features. We leverage the fused and original features to optimize 
the model. Finally, a logistic regression (LR) model combines the fused features, the original 
features and the three features learned from every network for cancer driver genes predic-
tion. To our knowledge, MRNGCN is the first algorithm that integrates the relationships 
between gene and gene, gene and outlying gene, gene and miRNAs to predict cancer driv-
ers. Compared with previous methods, our main contributions are summarized as follows:

(1)	 Besides the gene–gene network, we introduced the gene–outlying network and 
gene–miRNA network to identify cancer driver genes. These networks describe 
gene features related to cancer development and progression from different views. 
Moreover, we prepared multi-omics data features for the genes, outlying genes and 
miRNAs in the three networks, considering the corresponding biological charac-
teristics.

(2)	 We proposed a novel method to predict cancer drivers by integrating three gene-
related networks based on the heterogeneous graph convolution network (HGCN) 
model and the self-attention mechanism. These HGCN models sharing parameters 
can extract common features of the three networks, and the self-attention mecha-
nism can consider the relationships between network nodes with long distances.

(3)	 We leveraged a logistic regression (LR) model to combine the fused features, origi-
nal features and three features learned from networks to predict cancer driver 
genes. The coefficients in the LR model interpret every part’s contribution (see 
Additional file 1).

(4)	 We conducted extensive experiments to test our model. The results show that our 
method performs better than state-of-the-art methods in cancer driver prediction 
on the pan-cancer, most cancer types and the independent datasets.

Methods
Figure  1 illustrates the framework of our approach MRNGCN. First, MRNGCN 
builds three gene relationship networks: a gene–gene network, a gene–outlying gene 
network and a gene–miRNA network. Then, it learns gene features from the three 
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networks through three parameter-sharing heterogeneous graph convolution net-
work models and a shared self-attention layer. Next, our model jointly utilizes 1D and 
2D convolution operations to fuse the gene features learned from the three networks. 
Finally, we leverage the fused gene features, the original gene features and the gene 
features learned from the gene–gene network to optimize the model by minimizing 

Fig. 1  The framework of MRNGCN. Our model is divided into four parts: a constructing three relational 
networks and preparing node attributes, b learning the features of gene nodes in each network, c fusing the 
gene features learned fromthe three networks, and d optimize model parameters and predict cancer drivers
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the node and link prediction. Meanwhile, a logistic regression model combines these 
features to predict cancer driver genes.

Experimental data

We downloaded gene mutation, DNA methylation data, and miRNA expression data 
from TCGA [2], containing more than 8,000 samples for 16 cancer types. Gene expres-
sion data were obtained from Wang et al. [20], which were collected from TCGA and 
were further normalized and batch corrected by ComBat [21]. Like MTGCN [16], we 
only focused on cancer types for which gene expression data and DNA methylation 
information are available in both tumor and normal tissues. Hence, this work involves 
16 cancer types. We constructed the gene–gene network based on PPI data from the 
Consensus Path DB (CPDB) [22] database. We got 13,627 genes and 504,378 gene–gene 
edges with interaction scores above 0.5. We used the genes in the PPI networks for can-
cer driver prediction. The miRNA-gene associations from the mirTarbase V8.0 database 
[23] contain 2,599 miRNAs, 15,064 genes, and 380,639 miRNA-gene associations. The 
miRNA-disease associations were from the HMDD database version 3.0 (http://​www.​
cuilab.​cn/​hmdd). The benchmark driver gene of pan-cancer was from MTGCN [16] 
Additional file 1. They were 796 high confidence driver genes in NGC 6.0. To obtain a 
negative sample list, we started with all genes and recursively removed genes from the 
NCG, COSMIC, OMIM databases and KEGG cancer pathways. Hence, our pan-cancer 
dataset consists of 796 positive and 2,187 negative samples. Cancer type-specific positive 
samples were from NCG 6.0 tagged with that cancer type and shared the same negative 
samples with pan-cancer.

Building multiple gene relationship networks

Gene–gene network

We used the PPI network to construct the gene–gene network. Let APP ∈ {0, 1}n×n be 
the adjacency matrix of the gene–gene network with the number n of genes. If two genes 
connect through an edge in the PPI network, the corresponding value in the matrix 
APP is 1. Otherwise, it is 0. We used MTGCN [16] to prepare initial attributes for gene 
nodes in the network (See Additional file 1 for details). Let XP ∈ Rn×F1 denote the initial 
gene attributes consisting of biological and topological features. For each cancer type, 
we calculated gene mutation rate, differential DNA methylation rate, and gene differ-
ential expression rate as the biological features of the genes. Since we only focused on 
16 cancer types, each gene had a 48-dimensional biological feature vector, including 16 
mutation rates, 16 methylation values, and 16 differential expression rates, which were 
min–max normalized. The 16-dimensional topological features of genes resulted from 
the note2Vec on the gene–gene network. We concatenated the biological and topologi-
cal features to get the 64-dimensional initial attributes of genes.

Gene–outlying gene network

We considered that a driver gene usually affects the expression of genes linked to it in 
a biological network, so we constructed a gene–outlying gene network. A gene is con-
sidered to be outlying if the absolute value of its z-score is above the threshold (this 
work sets the threshold to 2) [10]. We collected all outlying genes at least expressed 

http://www.cuilab.cn/hmdd
http://www.cuilab.cn/hmdd
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abnormally in one sample of the 16 cancer types. Let APO ∈ {0, 1}n×m be the adjacency 
matrix of the gene–outlying network with the number n of genes and m of outlying 
genes. We connected a gene and an outlying gene and set the corresponding value of 
APO as 1 if the gene mutates in at least one cancer sample and links to the outlying 
gene in the PPI network. Hence, the gene–outlying gene network of pan-cancer con-
tains 13,627 genes, 12,248 outlying genes and 469,078 edges. We initialized the attrib-
utes of the gene nodes in the gene–outlying network as XP , the same attributes of the 
gene nodes in the gene–gene network. The initial attributes of the outlying genes con-
sist of the average z-scores across all samples of a cancer type and the frequencies of 
being outlying among the samples of the cancer type. Let XO ∈ Rm×F2 be the vector of 
the initial attributes of the outlying genes, which would consist of 16 z-score features 
and 16 frequency features in the pan-cancer dataset. For convenience, the outlying 
gene initial features underwent linearly transformation from 32 dimensions to 64, the 
dimension of initial gene features.

Gene–miRNA network

We constructed a gene–miRNA network considering the regulatory relationship of 
miRNAs on gene expression. The known associations between miRNAs and their 
targeted genes were from mirTarbase V8.0 [23]. Let APR ∈ {0, 1}n×t be the adjacency 
matrix of the gene–miRNA network with n genes and t miRNAs. The genes were 
the mutated gene of TCGA samples. The miRNAs were those that both appeared in 
the mirTarbase database and the TCGA samples. Hence, the gene–miRNA network 
involves 1390 miRNAs and 153,913 edges connected with the 13,627 genes. The value 
of APR is 1 if a gene is associated with a miRNA. Otherwise, it is 0. We also initialized 
the attributes of the gene nodes in the gene–miRNA network as XP . The initial attrib-
utes of miRNAs denoted by XR ∈ Rt×F3 include the average z-scores and the average 
different expression values across all samples of every cancer type and the similari-
ties with other miRNAs. Since miRNAs link to the pathologies of cancers by regu-
lating the expression of their targeted genes and the dysfunction of similar miRNAs 
would lead to a similar phenotype, we introduced the miRNA similarities as part of 
initial miRNA attributes. Similar to previous works [19], the miRNA similarity was 
measured by the miRNA GIP (Gaussian Interaction Profile) kernel based on known 
miRNA-disease associations. We linearly transform the miRNA GIP similarity matrix 
and obtained 16-dimensional miRNA similarity features to avoid bias. Finally, for 
the pan-cancer with 16 cancer types, XR would have 16 z-scores and 16 differential 
expression values and the miRNA similarities of length 16 and the number of genes 
connected to each miRNA. Similarly, for convenience, we linearly transformed the 
miRNA initial features to the same dimension as initial gene features. To fully use the 
valuable gene–miRNA associations, we input XP and XR into a two-layer heteroge-
neous graph convlutional network (HGCN) model the same as the model in section 
"the heterogeneous graph convolutional network" to implement pre-training on the 
gene–miRNA network and learn new features for genes and miRNA, called XPpre and 
XRpre . Hence, we used XPpre and XRpre as the gene and miRNA initial features of the 
gene–miRNA network for following feature learning (See Additional file 1 for details).
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Learning node features from multiple networks

The heterogeneous graph convolutional network

We employed three two-layer heterogeneous graph convolutional network (HGCN) 
modules to learn feature representations for the nodes of the three relationship net-
works. The HGCN modules update the node features by aggregating both neighbour-
hood features and neighbourhood interactions. To extract the common features of the 
three relationship networks, we input the three networks and their initial node attributes 
into three parameter-sharing HGCN models.

Aggregating neighbourhood feature captures the interaction pattern of the node in the 
network. We started the aggregation by normalizing the adjacency matrix of the three 
networks. Let Aij ∈ {APP ,APO,APR} be one of the adjacent matrices of the three net-

works. Pij ∈ {PPP ,PPO,PPR} is its normalized matrix. Pij = D
− 1

2

i AijD
− 1

2

j  , Di =
j

Aij + 1 

and Dj =
∑
i

Aji + 1 . Since Aji = AT
ij  , then Pji = PT

ij  . We took Eqs.  (1)–(3) to aggregate 

neighbourhood features for the nodes in the gene–gene, gene–outlying gene and gene–
miRNA networks, respectively. Here, θk ∈ RF1×F2 are shared by the three networks.

To further capture the interaction patterns of the network nodes, we considered the 
neighbourhood interactions, which were measured by the element-wise dot product 
between the node features and its neighbours’ features. Equations  (4)–(6) aggregate 
neighbourhood interactions for nodes of the gene–gene, gene–outlying and gene–
miRNA networks, respectively. Here W1 ∈ RF1×F2 , b1 ∈ RF1×F2 are shared by the three 
networks. ⊙ denotes the element-wise product.

Finally, the HGCN models learned features for nodes of the three networks by aggre-
gating neighbourhood features and interactions. Mathematically, the process can be 
defined as follows.

where V ∈ {P1,P2,P3,O,R} denotes the target node, H(X)V  denotes the features of the 
node V  learned from the corresponding network through the HGCN model. H(X)i is 
features of the neighbores of the target node, and N (V ) denotes neighbor set of the node 
V  in one of the three networks, and σ denotes the activation function, e.g. ReLU.

(1)AGGNFP1
= PPPXPθk

(2)AGGNFP2 = PPOXOθk , AGGNFO = POPXPθk

(3)AGGNFP3 = PPRXRpreθk , AGGNFR = PRPXPpreθk

(4)AGGNIP1 = PPPXP ⊙ XPW1 + b1

(5)AGGNIP2 = PPOXO ⊙ XPW1 + b1, AGGNIO = POPXP ⊙ XOW1 + b1

(6)AGGNIP3 = PPRXRpre ⊙ XPpreW1 + b1, AGGNIR = PRPXPpre ⊙ XRpreW1 + b1

(7)H(X)V = HGCNV ({H(X)i}i∈N (V )) = σ(AGGNFV + AGGNIV )
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Our graph convolution module contains multiple graph convolution layers. Setting 
the number L of graph convolution layers, H(X)P1 , H(X)P2 and H(X)P3 denote the final 
gene features learned by the HGCN models from the gene–gene, gene–outlying gene 
and gene–miRNA networks, respectively. Equation (8) express the process. Here, L = 2.

Bilinear aggregation layer

Since the cancer driver genes cause abnormal expression of their downstream genes and 
lead to cancer development, we constructed the gene–outlying gene network to learn 
gene features that help detect cancer driver genes. The outlying genes working together 
contribute to cancer progression [9, 10]. To take advantage of the interactions between 
the outlying genes, we introduced a bilinear graph neural network (BGNN) [24] layer 
to learn feature representations for the nodes of the gene–outlying network. In Eq. (9), 
genes in the gene–outlying network can also aggregate the interaction features between 
their neighbors. Here, we considered the gene nodes themselves and merge them into 
the neighbor set to obtain the extended neighbourhood Ñ (P) . Moreover, we ignored 
self-interactions in the neighbourhood to avoid introducing additional noise. The bilin-
ear aggregation features of genes in the gene–outlying gene network defined as follows.

where W  and b denote the learnable parameters, ⊙ is the product of elements. and are 
two different node indices from Ñ (P) . X ∈ {XP ,XO} is the initial features of genes or 

outlying genes. bP = 1
2
d̃p

(
d̃p − 1

)
 denotes the number of node interactions.

Hence, the genes in the gene–outlying gene network can learn two features from the 
network. The one is H(X)P2 , learned by a two-layer HGCN. The other is H(X)BAP  , learned 
by a BGNN layer. We summarized the two features and balanced their weights using a 
parameter to get the final gene features, H̃(X)P2 , from the gene–outlying network.

Self‑attention layer

After running HGCN models on the three relational networks, we learnt gene fea-
tures H(X)P1 , H̃(X)P2 and H(X)P3 from the gene–gene, gene–outlying gene and 
gene–miRNA networks, respectively. Previous studies observed that driver genes 
often work together to form protein complexes or are enriched in some signal path-
ways. To use the interactions between genes and pay more attention to the crucial 

(8)






H(X)P1 = HGCNL
P

��
HGCNL−1

P · · ·HGCN 1
P

�
{XP}P∈N (P)

��

P∈N (P)

�

H(X)P2 = HGCNL
P

��
HGCNL−1

P · · ·HGCN 1
P

�
{XO}O∈N (P)

��

O∈N (P)

�

H(X)P3 = HGCNL
P

��
HGCNL−1

P · · ·HGCN 1
P

��
XRpre

�
R∈N (P)

��

R∈N (P)

�

(9)H(X)BAP = 1

bP

∑

i∈Ñ (P)

∑

j∈Ñ (P)&i<j

(X(i)W + b)⊙
(
X
(
j
)
W + b

)

(10)H̃(X)P2 = (1− α) ∗H(X)P2 + α ∗H(X)BAP
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interactions when learning features for genes, we took the three features as inputs 
of a self-attention layer seperately. The self-attention module can naturally combine 
all gene features from a network as inputs, allowing the inputs to interact with each 
other and find out who they should pay more attention to. For example, we took 
the gene features from the gene–gene network as inputs of the self-attention model 
(See Eq.  (11)). The self-attention model multiplies every input with WQ , WK  and 
WV  to obtain its query(Q1 ), key(K1 ) and value(V1 ) representations. The genes in the 
gene–gene network(Attention(Q1 , K1 , V1 ) generated their contextual representations 
through multiplication between the weighted attention-score matrix and all inputs’ 
values. The weighed attention-score matrix was calculated by applying a softmax on a 
dot product between the queries with all inputs’ keys, divided each by 

√
d.

where i = 1,2,3, which represents self-attention layer for three networks, d is the dimen-
sionality of Q and K  . KT

∗  is the matrix transpose. To preserve the uniqueness of the 
gene features learned for every network, we added the gene features before the self-
attention layer with the gene features after the self-attention to obtain the gene features 
H(X)iatt , i = 1, 2, 3 for the gene–gene, gene–outlying gene and gene–miRNA networks, 
respectively (see Eq. (12)).

Feature fusion

After passing the initial gene features through the HGCN model and self-attention layer, 
we obtained three gene features from the three networks, denoted by H(X)1att , H(X)2att , 
H(X)3att . Then, we employed three 1D-convolution modules to reduce the dimensions of 
the three gene features and a 2D-convolution module to fuse the gene features.

Every 1D-convolution module consists of two convolution layers. The size of the 
convolution kernel for both convolution layers is 1. The number of input channels of 
the module is the dimension of the feature matrix and the number of output channels 
is 1. The learned gene features are denoted as H(X)11D , H(X)21D , H(X)31D for the gene–
gene, gene–outlying gene and gene–miRNA networks, respectively.

We integrated the three gene features from the output of the 1D-convolution module to 
generate fused gene features (denoted as H(X)2D ) through a 2D-convolution module. The 
2D-convolution module consists of a two-dimensional convolutional layer (see Additional 
file 1: Figure S1). Firstly, we stack the three gene features from the output of the 1D-convolu-
tion module (i.e., H(X)11D , H(X)21D , H(X)31D ) to obtain a feature matrix H(X)stack ∈ R3×n×1 , 
with n denoting the number of gene nodes. Then we padded out a circle of zeros around the 
H(X)stack and implemented two-dimensional convolutional operations on the H(X)stack . 
The convolution kernel size is (wc × hc) and the perceptual field of H(X)stack is 3× wc × hc . 
Here, we set wc = hc = 3 . The input channel is 3, and the output channel is 1. We summed 
the feature maps on each channel to form the fused gene features, H(X)2D ∈ Rn×1.

(11)
{
[Qi,Ki,Vi] = H(X)Pi

[
WQ,WK ,WV

]

Attention(Qi,Ki,Vi) = softmax(QiK
T
i /

√
d)Vi

(12)H(X)iatt = Attention(Qi,Ki,Vi)+H(X)Pi.
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Model optimization and driver gene prediction

Model optimization

After passing the initial input gene features through the HGCN modules, the self-atten-
tion layer and the feature fusion module, we obtained the gene feature representations 
containing the network context information ( H(X)2D ). The original gene features char-
acterizing the gene themselves also play an important role in driver gene identification. 
Hence we pass the initial gene features through a three-layer multi-layer perceptron 
(MLP) to get another gene feature representations, called H(X)mlp , defined in Eq. (13).

where XP stores initial gene features. We added H(X)mlp with H(X)2D to generate syn-
thesis gene feature representations denoted by H(X)syn and used the synthesis gene 
features to predict cancer driver genes after passing the sigmoid function. A binary 
cross-entropy was employed to quantify the node prediction loss.

where ŷi is the predicted score of the gene i , and yi is its real label whose value is 0 or 1, 
n is the number of genes in the training dataset. To ensure the reliability of the gene fea-
tures learned in the network context and their independent predictive power, we applied 
the sigmoid function on the H(X)2D for cancer gene predictions. The node prediction 
loss was calculated as follows.

The HGCN model updates the representation of the gene nodes in the networks by 
aggregating their neighbors’ features and interactions with their neighbors. However, 
this model does not ensure that the learned gene features maintain the original net-
work structure. Moreover, the model parameters are optimized on the limited number 
of known driver gene labels. To solve this problem, we implemented an inner product 
between the gene features learned from the gene–gene network, (i.e. H(X)11D ) to predict 
the network links [16]. The reconstructed adjacency matrix is ÂPP.

where σ is the sigmoid function. We then calculated the binary cross-entropy loss of the 
link prediction (see Eq. 17)).

where E is the edge set of the gene–gene network, and n is the size of E . Neg is the set of 
negative samples with size n , obtained by negative sampling, and âi,j is the value of the 
reconstructed adjacency matrix.

(13)H(X)mlp = Linear3
(
σ

(
Linear2

(
σ

(
Linear1(XP)

))))

(14)Ln_loss
{
H(X)syn

}
= −1

n

n∑

i=1

[
yilog

(
ŷi
)
+

(
1− yi

)
log

(
1− ŷi

)]

(15)Ln_loss1{H(X)2D} = −1

n

n∑

i=1

[
yilog

(
ŷi
)
+

(
1− yi

)
log

(
1− ŷi

)]

(16)ÂPP = σ({H(X)11D}{H(X)11D
T })

(17)Lr_loss

�
H(X)11D

�
= −1

n





�

i,j∈E

�
logâi,j

�
+

�

i,j∈Neg

�
1− logâi,j

�




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Our final loss function consists of two node-prediction losses and a link-prediction 
loss, defined in Eq. (18). ω1 and ω2 are hyper-parameters, regulating the weight of each 
loss term in training.

Predicting cancer driver genes

Our MRNGCN approach is composed of several modules. Every modules encodes 
different kinds of gene features. These features character genes’ roles in cell life from 
different views. For example, the gene features from the 1D-convolution modules (i.e. 
H(X)11D , H(X)21D , H(X)31D ) represent gene characteristics in the three networks. The 
2D-convolution module produces the fused gene features H(X)2D , and H(X)mlp repre-
sents the original gene features. We leveraged a logistic regression (LR) model to com-
bine these gene features to predict cancer driver genes in the test set. The definition of 
the LR model is as follows.

where w1 , w2 , w3 , w4 , w5 are weights of the LR model, illustrating the contribution of 
each feature to the driver gene identification. See Additional file 1 for the pseudo-code of 
MRNGCN.

Experiments
Baselines

To evaluate the performance of our model, we compared it with MTGCN [16], EMOGI 
[15], GCN [25], GAT [25], RGCN [25], Multi-omics fusion and MOGONET [17]. 
MTGCN and EMOGI are the most advanced GCN-based methods for cancer driver 
predictions. GCN and GAT are two typical GCN models. MTGCN, EMOGI, GCN and 
GAT all run on the gene–gene network. RGCN integrates the gene–gene, gene–outly-
ing gene and gene–miRNA networks into a heterogeneous network. It runs a relational 
GCN model on the network and assigns suitable weights to different types of relation-
ships when aggregating neighbor features. MOGONET was originally proposed to inte-
grate multi-omics data for cancer subtype classification. To evaluate the effectiveness of 
our model, we input the gene features learned from the three networks by our model 
into the feature fusion module of MOGONET to predict cancer driver genes (See Addi-
tional file 1: Figure S3). Multi-omics fusion concatenates the gene features learned from 
the three networks (i.e., H(X)1att , H(X)2att , H(X)3att ) and the original gene features, XP 
and then passes them through three fully connected layers with 256, 64, and 1 units to 
acquire gene fused features. It utilizes the fused features and H(X)1att to minimizing the 
node prediction loss and the link predict loss, respectively. (See Additional file 1: Figure 
S2).

(18)Ltotal = Ln_loss + ω1 ∗ Ln_loss1 + ω2 ∗ Lr_loss.

x = w1H(X)11D + w2H(X)21D + w3H(X)31D + w4H(X)2D + w5H(X)mlp + ε

(19)f (x) = 1

1+ e−x
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Parameters setting

Our model was implemented based on the PyTorch framework. The optimizer for our 
model was Adam. The optimal combination of hyper-parameters was as follows: the 
dropout rate was set to 0.5 by default, except for the self-attention layer, which was set 
to 0.2. Our model, multi-omics fusion and MOGONET all had two graph convolution 
layers with 256 and 128 filters, respectively. The RGCN had two graph convolution lay-
ers, and the filters were 256 and 128. The weighting factors, and were 0.2, 0.1, and 0.01, 
respectively. Our model’s learning rate, weight decay and epoch count were set to 0.002, 
0.0005 and 1065, respectively in the pan-cancer dataset and were fixed to 0.002, 0.0005 
and 1000, respectively in the individual cancer datasets. The learning rate, weight decay 
and epoch count were set to 0.0001, 0.0005 and 1200, respectively for the baseline, multi-
omics fusion method and were set to 0.0005, 0.0005 and 1500 for MOGONET, and 
0.0005, 0 and 1000 for RGCN. MTGCN, EMOGI, GCN and GAT have the same number 
of convolution layers and the same filter size per layer. They had three graph convolution 
layers. The filters were set to 300, 100 and 1 for the pan-cancer dataset, and were set to 
150, 50 and 1 for the sing cancer type dataset. Their learning rate is 0.001 and the epoch 
number is 2500. In predicting the two independent test sets, we adjusted our model’s 
learning rate, weight decay and epoch number to 0.0005, 0.0005 and 1300, respectively 
for the OncoKB dataset and 0.00008, 0.0005, 700, respectively for the ONGene dataset. 
We set the weight decay of baselines to 0.005 according to the recommendation in [16].

Experimental results

Prediction performance of pan‑cancer driver genes

We applied our method and baselines to predict pan-cancer driver genes. Table 1 reports 
the average AUC and AUPRC values of each method under ten-fold cross-validation. 
Our MRNGCN controls the best performance in the AUC and AUPRC values. The 
AUC and AUPRC values of our model achieve 0.9192 and 0.8446, respectively, which are 
0.72% and 1.14% higher than the second best method, MTGCN. The results demonstrate 
that multiple gene relationship networks help predict cancer driver genes. Although the 
baselines, like MOGNET, Multi-omics fusion and RGCN, also integrate the gene–gene, 
gene–outlying gene and gene–miRNA data to predict pan-caner driver genes, they even 
perform worse than MTGCN, which indicates cancer drivers based on the gene–gene 

Table 1  Performance comparison of pan-cancer driver genes prediction

Bold values indicates the best performance

AUC value and AUPRC comparison of our method MRNGCN and other comparison methods on pan-cancer dataset

Methods AUC​ AUPRC

MOGONET 0.8903 ± 0.0003 0.7922 ± 0.0010

Multi-omics fusion 0.9088 ± 0.0002 0.8246 ± 0.0007

RGCN 0.8973 ± 0.0002 0.8103 ± 0.0007

GCN 0.8855 ± 0.0002 0.7709 ± 0.0009

GAT​ 0.8576 ± 0.0003 0.6801 ± 0.0014

EMOGI 0.9044 ± 0.0003 0.8169 ± 0.0008

MTGCN 0.9116 ± 0.0002 0.8332 ± 0.0006

MRNGCN 0.9192 ± 0.0002 0.8446 ± 0.0006
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network. The observed improvement in the performance of MRNGCN can be partially 
attributed to its successful integration of multi-omics data for cancer driver prediction.

Performance of cancer type‑specific driver gene prediction

We also investigated the effectiveness of MRNGCN in detecting driver genes of a sin-
gle cancer type, including breast cancer (BRCA), lung adenocarcinoma (LUAD), bladder 
cancer (BLCA) driver genes and hepatocellular carcinoma (LIHC). The positive sam-
ples of a single cancer type were from NCG6.0 labelled with that cancer type. There are 
202, 179, 95, and 82 cancer driver genes in BRCA, LUAD, BLCA and LIHC, respectively. 
Their negative sample consisted of the same 2,187 genes as the pan-cancer data. For a 
single cancer type, we reorganized initial attributes for the nodes of the three networks. 
The initial gene attributes of a cancer type have 19 elements, consisting of three bio-
logical features of that cancer type and the structural features of length 16. The initial 
miRNA attributes consist of 4 elements, including the average miRNA expression value, 
average miRNA differential expression value, the number of connective genes and the 
miRNA-miRNA similarity feature of reduction to 1 dimension. The initial outlying gene 
attributes consist of an average z-score of the gene expression value and a frequency 
of the gene expression abnormal in the samples of the cancer type. We used the same 
method in subsection "Gene–outlying gene network" to get the outlying genes from the 
samples in every cancer type, involving 9691, 10,607, 9812 and 8593 outlying genes for 
LUAD, BRCA, BLCA and LIHC, respectively. Hence, our model constructed different 
gene–outlying gene networks for every cancer type and used the same gene–gene and 
gene–miRNA networks with the pan-cancer.

Table 2 reports the performance comparison between our model and baselines for sin-
gle cancer-type driver gene prediction. As can be seen, MRNGCN has the highest AUC 
and AUPRC values compared to all baselines on the LUAD, BRCA, BLCA and LIHC data-
sets. For LUAD and BRCA with large positive sample sizes, our model’s AUC and AUPRC 
values are 4% and 0.1%, 1% and 4% higher than the second best method MTGCN, respec-
tively. For BLCA and LIHC with medium positive sample sizes, our model’s AUC and 
AUPRC values are 1% and 7%, 3% and 8% higher than the second best method MTGCN, 
respectively. In Additional file 1: Table S1, we compared the performance of our model 
and other methods based on the 11 cancer type-specific driver gene predictions. We 
observed that our model outperforms baselines on most cancer-type datasets. It controls 
the highest AUPRC values on the 11 cancer type except in CESC and LUSC. As for the 
AUC value, our model performs better than baselines on 6 of 11 cancer-type datasets.

Performance of the independent test set

We also compared the performance of MRNGCN and baselines on two independ-
ent datasets to investigate whether their performance is biased towards a particu-
lar dataset. We trained MRNGCN and baselines with all pan-cancer positive and 
negative samples, and then applied the trained models to predict genes in each inde-
pendent test set. We defined the positive samples of the two independent test sets 
as those genes in the OncoKB [26] database or ONGene [27] database but not in the 
training set. After removing the training samples and the positive samples from the 
independent test set, the negative samples are all remaining genes. Figure 2 shows 
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the AUPRC values for MRNGCN and baselines on the two independent test sets. 
The AUPRC values are low for all methods due to the more negative samples than 
the number of positive ones. However, we observed that MRNGCN performs better 
than baseline on both independent test sets.

Ablation experiments

The MRNGCN model learns gene features from the gene–gene, gene–outlying gene, 
and gene–miRNA networks conjunctively using some sub-modules, i.e., the HGCN 

Table 2  Performance of cancer type-specific driver gene prediction

Bold values indicates the best performance

AUC value and AUPRC comparison of our method MRNGCN and other comparison methods on specific cancer data sets, 
namely LUAD, BRCA, BLCA and LIHC

Types of cancer AUC​ AUPRC

LUAD

MOGONET 0.8960 ± 0.0016 0.6106 ± 0.0074

Multi-omics fusion 0.8904 ± 0.0007 0.6221 ± 0.0039

RGCN 0.8720 ± 0.0017 0.4419 ± 0.0095

GCN 0.8042 ± 0.0014 0.4187 ± 0.0065

GAT​ 0.8180 ± 0.0018 0.3398 ± 0.0055

EMOGI 0.8709 ± 0.0019 0.5591 ± 0.0105

MTGCN 0.9019 ± 0.0012 0.6279 ± 0.0099

MRNGCN 0.9427 ± 0.0011 0.6287 ± 0.0117
BRCA​

MOGONET 0.8944 ± 0.0008 0.6350 ± 0.0032

Multi-omics fusion 0.9050 ± 0.0006 0.6714 ± 0.0030

RGCN 0.8557 ± 0.0029 0.3983 ± 0.0148

GCN 0.8813 ± 0.0009 0.5866 ± 0.0058

GAT​ 0.8673 ± 0.0044 0.4387 ± 0.0136

EMOGI 0.8989 ± 0.0007 0.6482 ± 0.0045

MTGCN 0.9061 ± 0.0006 0.6583 ± 0.0040

MRNGCN 0.9120 ± 0.0008 0.6920 ± 0.0041
BLCA

MOGONET 0.9368 ± 0.0005 0.5884 ± 0.0111

Multi-omics fusion 0.9482 ± 0.0008 0.6539 ± 0.0153

RGCN 0.8420 ± 0.0023 0.4404 ± 0.0095

GCN 0.8712 ± 0.0013 0.3191 ± 0.0091

GAT​ 0.8929 ± 0.0007 0.2892 ± 0.0068

EMOGI 0.9359 ± 0.0005 0.5485 ± 0.0101

MTGCN 0.9495 ± 0.0005 0.6568 ± 0.0077

MRNGCN 0.9544 ± 0.0005 0.7248 ± 0.0052
LIHC

MOGONET 0.8739 ± 0.0023 0.4306 ± 0.0198

Multi-omics fusion 0.8900 ± 0.0017 0.5220 ± 0.0082

RGCN 0.8648 ± 0.0024 0.5016 ± 0.0133

GCN 0.8098 ± 0.0019 0.3017 ± 0.0090

GAT​ 0.8472 ± 0.0014 0.2340 ± 0.0042

EMOGI 0.8753 ± 0.0023 0.3845 ± 0.0193

MTGCN 0.8937 ± 0.0016 0.4645 ± 0.0195

MRNGCN 0.9109 ± 0.0012 0.5468 ± 0.0149
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models, self-attention layer, LR model, pre-training on the gene–miRNA network and 
the bilinear aggregation layer on the gene–gene network. We set up some model vari-
ants by inputting one or two networks or removing some sub-models to investigate 
which features or sub-modules are helpful for the MRNGCN model in predicting cancer 
driver genes. When removing the LR model, we applied a sigmoid function on the syn-
thesis gene features(H(X)syn ) to predict cancer driver genes. We also replaced the LR 
model with other popular classifiers, such as Random Forest and XGBoost, to verify the 
necessity of the LR model. The model did not consider the link prediction loss when we 
did not input the gene–gene network.

Table 3 demonstrates the performance comparison between the MRNGCN model and 
its variants in pan-cancer driver gene prediction. We observed that using one network 
performs worse than using two or three networks. The results of the three networks were 
the best (the AUC and AUPRC were 0.9192 and 0.8446), indicating that we successfully 
integrated the three networks for cancer driver identification. Especially the best results 
for a single network were achieved using the gene–miRNA network, whose AUC and 
AUPRC were 0.9128 and 0.8346, respectively. Moreover, combining the gene–miRNA 
network with the gene–gene (AUC = 0.9174 and AUPRC = 0.8428) or gene–outly-
ing gene network (AUC = 0.9187 and AUPRC = 0.8440) performs better than integrat-
ing gene–gene or gene–outlying gene network (AUC = 0.9158 and AUPRC = 0.8407). 
It suggests the helpfulness of the gene–miRNA network in cancer driver predictions. 
We noticed removing the pre-training module decreased our model’s prediction per-
formance, which dropped 0.15% in the AUC value and 0.2% in the AUPRC value. If we 
applied a sigmoid function on the synthesis gene features to predict cancer driver genes 
instead of the LR model, the prediction performance drops 0.14% in the AUC value and 
0.2% in the AUPRC value. If we replaced the LR model with random forest and XGBoost 

Fig. 2  Performance comparison of different methods on two independent sets of cancer driver genes. The 
X-axis represents predicted AUPRC value of genes of oncoKB dataset and the Y-axis represents predicted 
AUPRC value of genes of ONGene dataset
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as the downstream classifier, the RF or XGBoost classifier models were 1.37% or 2.02% 
lower in AUC and 1.96% or 3.68% lower in AUPRC than our original model. These 
results suggest that the LR model may effectively combine different gene features to out-
put the probability of a gene being a cancer driver. We also noticed that removing the 
bilinear aggregation layer when learning gene features from the gene–outlying gene net-
work or removing the self-attention layer will slightly reduce the prediction performance 
(at most, reducing 0.07% in the AUC value and 0.08% in AUPRC value). Overall, the 
MRNGCN model had higher AUC and AUPRC values than all variants, suggesting that 
our model successfully improved the identification of cancer driver genes by integrating 
multiple gene relationship networks.

Predicting new pan‑cancer driver genes

To investigate the ability of MRNGCN to identify new pan-cancer driver genes, we 
trained our model with all positive and negative samples, and applied it to predict the 
unlabeled gene. Table 4 shows the top 30 candidate pan-cancer driver genes ranked by 
the MRNGCN, and their ranking positions in other methods (i.e. #MTGCN indicates 
the ranking position in MTGCN). We performed a co-citation analysis of these genes 
and listed the number of co-citations between genes and the keywords "cancer", "driver", 
"tumor" and "biomark", "drug target". We observed that all 30 genes are co-cited with the 
keyword "cancer" and 29 genes are associated with the keyword "driver". We also checked 
whether these genes were in the NCG 6.0 list and listed the tissues where the genes were 
located. 18 of 30 genes are recorded in the NCG database as driver genes of a cancer type. 
We also calculated the ratio of edges connected to known pan-cancer driver genes over 
all connective edges in the PPI network, and found that all genes except HCN1 connect to 
driver genes in the gene–gene network, consistent with the observation that driver genes 
tend to relate to each other performing functions. The Additional file 1 recorded the GO 
and pathway enrichment analysis for the 30 predicted cancer driver genes. All of these 
suggest that the top 30 genes can potentially be cancer-driver genes.

Table 3  Ablation experiments

Bold values indicates the best performance

Comparison of AUC and AUPRC values of MRNGCN and its variants on pan-cancer dataset

Methods AUC​ AUPRC

Gene–gene network 0.9101 ± 0.0002 0.8312 ± 0.0006

Gene–outlying gene network 0.9093 ± 0.0002 0.8325 ± 0.0006

Gene–miRNA network 0.9128 ± 0.0003 0.8346 ± 0.0007

Gene–gene and gene–outlying gene networks 0.9158 ± 0.0002 0.8407 ± 0.0006

Gene–gene and gene–miRNA networks 0.9174 ± 0.0002 0.8428 ± 0.0006

Gene–outlying gene and gene–miRNA networks 0.9187 ± 0.0002 0.8440 ± 0.0006

No pre-training on the gene–miRNA network 0.9177 ± 0.0002 0.8426 ± 0.0007

Removal of bilinear aggregation layer 0.9185 ± 0.0002 0.8440 ± 0.0006

Removal of the self-attention layer 0.9180 ± 0.0002 0.8438 ± 0.0006

Removal of logistic regression model 0.9178 ± 0.0002 0.8426 ± 0.0006

Using Random Forest as classifier 0.9055 ± 0.0003 0.8250 ± 0.0007

Using XGBoost as classifier 0.8990 ± 0.0003 0.8078 ± 0.0010

MRNGCN 0.9192 ± 0.0002 0.8446 ± 0.0006
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Figure  3 illustrates the GO and pathway enrichment analysis for the 30 predicted 
cancer driver genes. In terms of biological process, the top 30 genes play more roles 
in regulation of EPR1 and ERK2 cascade, EPR1 and ERK2 cascade, peptidyl-tyrosine 
phosphorylation, peptidyl-tyrosine modification, positive regulation of MAPK cascade, 
regulation of angiogenesis, regulation of vasculature development, endothelial cell pro-
liferation, ephrin receptor signaling pathway, lipopolysaccharide-mediated signaling 
pathway, etc. For cellular components, the 30 genes are considerably enriched in tran-
scription regulator complex, early endosome, focal adhesion, cell-substrate junction, 
ruffle, ruffle membrane, lysosomal lumen, vacuolar lumen, leading-edge membrane and 
endocytic vesicle membrane, etc. For molecular functions, the 30 genes have the crucial 
functions of RNA polymerase II sequence-specific DNA binding transcription activator 
activity, DNA binding transcription activator activity, DNA binding transcription fac-
tor binding, protein tyrosine kinase activity, transmembrane receptor protein tyrosine 
kinase activity, transmembrane receptor protein kinase activity, phosphoprotein bind-
ing, ephrin receptor binding, lipoprotein particle receptor binding, bHLH transcription 
factor binding, etc. These 30 genes are enriched in the pathway of chemokine signaling 
pathway, Axon guidance, Lipid and atherosclerosis, coronavirus disease -covid-19, Ras 
signaling pathway, Toll-like receptor signaling pathway, parathyroid hormone synthesis, 
secretion and action, growth hormone synthesis, secretion and action, breast cancer, 
prolactin signaling pathway, etc. Thus, our model can find novel cancer driver genes for 
further experimental validation.

Fig. 3  GO & pathway enrichment analysis for the 30 predicted cancer driver genes. This figure includes GO 
enrichment analysis from BP, CC and MF and KEGG enrichment analysis
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Conclusion
In this study, we proposed a new approach called MRNGCN to identify cancer driver 
genes. It constructed three gene-related networks, including the gene–gene network, 
gene–outlying gene network and gene–miRNA network, and then ran three parameter–
shared heterogeneous graph convolution network models on the three networks to learn 
node features. Moreover, we considered the relationship between genes with long dis-
tances and introduced the self-attentionon layer. The three gene features learned from 
the three networks are transformed to feature vectors of length 1 through the 1-dimen-
sional convolutional modules and were fused by a 2-dimensional convolutional module. 
The cancer driver genes are predicted based on the probability scores of the combination 
of the gene features learned from the three networks, the fused gene features and the 
original gene features through an LR model. The model was optimized by minimizing 
the node and edge prediction loss. We implemented extensive experiments to test our 
model. The results show that: (1) Building multi-relational networks allows gene nodes 
to learn the features of neighbouring nodes, improving prediction performance. (2) 
MRNGCN performs significantly better than the baseline in a pan-cancer dataset, some 
single cancer type datasets and two independent test sets, demonstrating our approach’s 
integration of multiple networks contributing to predicting cancer driver genes. (3) The 
ablation study showed that our model successfully improved the identification of cancer 
driver genes by integrating multiple gene relationship networks. Moreover, we observed 
that the gene–miRNA network helped to identify cancer driver genes.

Hence, MRNGCN is an effective feature-learning approach that employ multi-omics 
data to construct multiple gene relationship networks and integrate these networks to 
learn gene features for cancer driver identification. This model can be applied to other 
biological prediction problems, such as drug-drug association prediction [28] and PPI 
prediction [29]. We updated the node features by aggregating the features from its 
neighbors. However due to the modularity of the network, the nodes in the same mod-
ules may share features. In the future work, we consider using clustering methods [30–
32] to partition the network and filter features to improve the model performance.
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