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Abstract 

Background:  Due to the high cost and high failure rate of Phase III trials where a classical group sequential design 
(GSD) is usually used, seamless Phase II/III designs are more and more popular to improve trial efficiency. A potential 
attraction of Phase II/III design is to allow a randomized proof-of-concept stage prior to committing to the full cost of 
a Phase III trial. Population selection during the trial allows a trial to adapt and focus investment where it is most likely 
to provide patient benefit. Previous methods have been developed for this problem when there is a single primary 
endpoint and two possible populations.

Methods:  To find the population that potentially benefits with one or two primary endpoints (e.g., progression free 
survival (PFS), overall survival (OS)), we propose a gated group sequential design for a seamless Phase II/III trial design 
with adaptive population selection.

Results:  The investigated design controls the familywise error rate and allows multiple interim analyses to enable 
early stopping for efficacy or futility. Simulations and an illustrative example suggest that the proposed gated group 
sequential design has more power and requires less time and resources compared to the group sequential design 
and adaptive design.

Conclusions:  Combining the group sequential design and adaptive design, the gated group sequential design has 
more power and higher efficiency while controlling for the familywise error rate. It has the potential to save drug 
development cost and more quickly fulfill unmet medical needs.

Keywords:  Gated group sequential design, Seamless Phase II/III, Subpopulation selection, Power, Type I error

Background
The high failure rate of phase III trials combined with 
their substantial cost makes selecting an appropriate 
treatment and population for evaluation of paramount 
importance in drug development [1]. Seamless Phase II/
III multi-arm clinical trials use the initial part of the trial 
(Phase II) to investigate all treatments and/or popula-
tions and an in-depth evaluation on the promising one(s) 

in the second part (Phase III). Using data accumulated 
across both phases of a single Phase II/III trial for infer-
ence enable more efficient and effective development of a 
treatment for an appropriate indication than separate tri-
als for Phases II and III.

Considering a second line small cell lung cancer clini-
cal trial, a platinum-sensitive sub-group yields a much 
greater treatment benefit. Even if the treatment benefit 
in the platinum-resistant sub-group is less certain, from a 
marketing perspective, the all-comer population with the 
inclusion of the platinum-resistant sub-group can give 
maximum patient benefit, followed by market value if the 
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platinum-resistant sub-group also receives benefit from 
the experimental treatment. Under this circumstance, a 
direct Phase III trial with a broad population can be risky. 
A more efficient approach could be a seamless Phase II/
III design with population selection in the Phase II por-
tion of the trial followed by a potentially targeted Phase 
III enrollment with focused patient population to con-
firm the benefit. Benefit for either progression free sur-
vival (PFS) or overall survival (OS) could justify a new 
treatment paradigm. This is an extension of method for a 
single primary endpoint by Jenkins et al. [2].

In clinical trials, the clinical benefit of an intervention 
is often characterized by multiple outcomes. For multi-
ple hypothesis testing problems, the familywise error rate 
(FWER), the probability of erroneously rejecting at least 
one null hypothesis, needs to be bounded by a pre-spec-
ified significance level α. A sequence of methods derived 
from weighted Bonferroni-based closed test procedures 
have been proposed to control the FWER for multiple 
testing. Examples of such methods include Bonferroni-
Holm procedure [3], gatekeeping procedures based on 
Bonferroni adjustments [4] and the graphical approach 
[5, 6]. As group sequential designs are widely used and 
commonly employed in order to facilitate early efficacy 
testing, the application of group sequential designs to 
multiple endpoints becomes popular and has been widely 
studied recently [6–16].

Adaptive seamless Phase II/III designs allow Phase II 
assessment of whether within-trial extension to Phase III 
is justified. Here we consider that the adaptation includes 
choosing a meaningful population for an effective invest-
ment with high probability of success. A pre-defined, 
targeted sub-group and the full population are both stud-
ied in the first stage of the adaptive Phase II/III design. 
Investment in the second stage of the adaptive Phase II/
III design is then focused on the population(s) most likely 
to provide patient benefit after the futility analysis at the 
end of Phase II. Due to the multiple sources potentially 
contributing to the decision error in this type of design, 
the FWER control should be studied carefully. The closed 
testing procedure [17] is usually applied to test multiple 
hypotheses in the setting of population selection. The 
FWER control strategies using multiple testing method 
[18, 19], combination test method [20, 21], the marginal 
p-value combinational approach [22], and a conditional 
error function approach [23] have been proposed. The 
application of adaptive Phase II/III designs to multiple 
endpoints has been investigated using different methods 
[2, 24–26].

To improve the trial efficiency in the adaptive phase 
II/III design, we propose a method to combine group 
sequential design (GSD) with the adaptive design. With 
the implement of GSD, the trial can stop early to save 

time and resources. However, the closed testing princi-
ple between the sub-group and the full population could 
dramatically decrease the power of an adaptive Phase II/
III design when only one group has meaningful efficacy. 
To improve the power while controlling FWER, we pro-
pose a gated group sequential design (gGSD) combining 
the group sequential design and the adaptive design. The 
endpoints in the sub-group and full population are tested 
with a pre-specified order using the hierarchical testing 
[9]. Methods  section illustrates the details of the pro-
posed design. The performance of gGSD is evaluated by 
simulations, and an illustrative example is used to illus-
trate the design and its efficiency in Results section. The 
Summary section summarizes the proposed study design.

Methods
We consider a randomized, parallel group clinical trial 
with two treatment arms – experimental and control, 
and dual primary endpoints – arbitrarily OS and PFS as 
a prototypical example. There is an interest to investigate 
the efficacy of the experimental treatment in both the full 
population (F) and a targeted sub-group (S). Four null 
hypotheses below are of interest:

1)	 H {F ,OS}
0  : no difference in OS between arms in the full 

population;
2)	 H {F ,PFS}

0  : no difference in PFS between arms in the 
full population;

3)	 H {S,OS}
0  : no difference in OS between arms in the tar-

geted sub-group;
4)	 H {S,PFS}

0  : no difference in PFS between arms in the 
targeted sub-group.

Let α1 , α2 , α3 and α4 be the initial significance level for 
the hypotheses H {F ,OS}

0  , H {F ,PFS}
0  ,  H {S,OS}

0  and H {S,PFS}
0  , 

respectively, and α be the overall significance level. Jen-
kins, et  al. [2] proposed a method for population selec-
tion in the seamless adaptive design framework with only 
one analysis in stage 2 after population selection in stage 
1. In this paper, we extend their method for population 
selection to control FWER for all four of the aforemen-
tioned hypotheses. We further add a group sequential 
design strategy in stage 2 for flexible early efficacy test-
ing. The design consists of an initial learning stage (stage 
1) analogous to a randomized Phase II trial and a second 
confirmatory phase (stage 2) analogous to a randomized 
Phase III trial. The selection between populations F and 
S is based on the PFS results at the end of stage 1. Based 
on that, the trial can either stop for futility, or continue to 
stage 2 in both populations F and S, or the sub-group S 
only, or the full population F only without analyzing the 
sub-group S in stage 2. Note that there is no hypothesis 
testing at the end of stage 1. In stage 2, we consider group 
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sequential setting with  K − 1 interim analyses and one 
final analysis, where PFS and OS in populations F and/or 
S are tested by using group sequential approaches, with 
alpha allocation following the graphical approach [6]. 
Figure 1 shows the analysis flowchart for K = 3.

According to the FDA guidance for adaptive design 
[27], the design, conduct, and analysis of an adaptive 
clinical trial intended to provide substantial evidence of 
effectiveness should satisfy four key principles: 1) the 
chance of erroneous conclusions should be adequately 
controlled, 2) estimation of treatment effects should be 
sufficiently reliable, 3) details of the design should be 
completely pre-specified, and 4) trial integrity should be 
appropriately maintained. There are three potential rea-
sons for inflation of Type I error: 1) early rejection of null 
hypothesis at interim analysis; 2) adaptation of design 
features and combination of information across trial 
stages; and 3) multiple hypothesis testing. To control the 
type I error rate, the following strategies are proposed: 
group sequential plans for early rejection; the combi-
nation of p-values using methods such as the inverse 
normal method for adaptation; multiple testing method-
ologies such as the closed testing procedures for multiple 
hypothesis. If needed, all three approaches can be com-
bined to control the FWER.

For subjects recruited in stage 1, the nominal one-sided 
observed p-values of H {F ,·}

0  and H {S,·}
0  at the kth analy-

sis ( k = 1, 2, . . . ,K  ) will be denoted by p{F ,·}
1k  and p{S,·}

1k  , 
respectively. For subjects recruited in stage 2, the nomi-
nal one-sided observed p-values of H {F ,·}

0  and H {S,·}
0  at the 

kth analysis ( k = 1, 2, . . . ,K  ) will be denoted by p{F ,·}
2k  and 

p
{S,·}
2k .  The goal is to control the FWER (i.e., the proba-

bility of rejecting at least one of the true null hypotheses 
H

{F ,OS}
0  , H {S,OS}

0  , H {F ,PFS}
0  and H {S,PFS}

0  ) at a nominal level 
α. We consider all potential reasons of type I error infla-
tion, with the closed testing principle applied for multiple 
testing, inverse combination testing used to analyze the 
data from two stages, and the graphical approach applied 
for group sequential analyses with different hypotheses. 
Combining these strategies, the FWER of the proposed 
design is strictly controlled [2, 6].

At the end of stage 1, the non-binding futility analy-
sis for PFS in the sub-group S and full population F are 

performed. This determines whether the trial can con-
tinue to stage 2 with one or two populations, or just stop 
at the end of stage 1. No testing for rejection is done at 
the end of stage 1. Only one futility analysis is conducted 
no matter how many interim analyses might follow in 
the second stage, although additional futility analyses 
could be added as they only decrease Type I error. Let 
HRF and HRS be the estimated hazard ratio (HR) of the 
full population and the sub-group, and θF and θS be the 
pre-specified hazard ratio threshold for the full popula-
tion and the sub-group, respectively. Table  1 provides 
the decision rule for population selection. We choose 
θx ( x = F , S ) to ensure that P HR > θx|trueHR = γ x 
where γ x is a pre-specified threshold that the trial does 
not pass the futility gate under the true alternative HR. 
Under equal randomization, log(HR) approximately fol-
lows a normal distribution with mean log(true HR) and 
variance 4/(number of events). This gives a way to calcu-
late the aforementioned thresholds.

Stage 2
Once the futility boundary at the end of stage 1 is passed, 
the trial will continue to stage 2 with one or two popu-
lations. As described above, there are three possible sce-
narios in stage 2.

Scenario 1: continue to stage 2 in the sub-group S only 
with the planned sample size in S, allocating addi-
tional alpha to S; i.e., α1 = α2 = 0;
Scenario 2: continue to stage 2 in the full population 
F with the planned sample size in F without further 
analysis of S, allowing additional allocation of alpha 
to F; i.e., α3 = α4 = 0;

Fig. 1  Analysis flowchart for the seamless Phase II/III design. IA: interim analysis; FA: final analysis

Table 1  Population selection rule at the end of stage 1

HR
F < θ F HR

F ≥ θ F

HR
S < θ S continue for F and S continue for S only

HR
S ≥ θ S continue for F only stop for futility
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Scenario 3: continue to stage 2 in both populations F 
and S with the planned sample size, continuing testing 
in both populations.

The gated group sequential design (gGSD) incorporates 
the hierarchical testing strategy and the group sequential 
design. The hierarchical testing strategy was proposed 
by Glimm et al. [9] for the ordered testing of endpoints 
such as PFS and OS with FWER controlled. In our study 
design, we modify their strategy to accommodate mul-
tiple testing scenarios with FWER controlled between 
populations; i.e., the hierarchical testing strategy is used 
for the ordered testing of populations.

In scenario 1, only PFS and OS in the sub-group S 
will be tested according to the alpha allocated using the 
graphical approach. An arbitrary alternative graphical 
approach could also be used: e.g., H {S,PFS}

0  is first tested 
with the full significance level α , and the full α will be 
passed to test H {S,OS}

0  if and when  H {S,PFS}
0  is rejected 

using the overall hierarchical method of Glimm, et  al. 
[9]. Note that the patients for the F minus S population 
enrolled in stage 1 will be followed continuously since 
the information from those patients is used in the closed 
testing procedure.

In scenario 2, only PFS and OS in the full population F 
will be tested according to the alpha allocated using the 
graphical approach; analogous to Scenario 1, an alternate 
graphical approach could also be used: e.g.,H {F ,OS}

0  will 
be tested at level α only if  H {F ,PFS}

0  is rejected (a hierar-
chical approach).

In scenario 3, the sub-group S and the full popula-
tion F are tested hierarchically, i.e., the hypotheses in 
F will not be tested until at least one hypothesis in S 
is rejected. For the hypotheses within the same popula-
tion F or S, the graphical approach of Maurer and Bretz 
[6] is applied. More specifically, the hypotheses in the 
sub-group S is tested based on the graphical approach 

with α3 + α4 = α . Under the hierarchical rule, the 
hypotheses in the full population F will be tested by 
using graphical approach with α1 + α2 = α if at least 
one hypothesis in the sub-group S is rejected. The 
graphical approach ensures that α reallocation occurs 
only between PFS and OS within the same group, and 
does not occur between different groups (i.e., between 
F and S). Note that the sequential testing rules and the 
timing of analyses is independent between the sub-
group and the full population. Figure  2 illustrates the 
gGSD testing procedures in stage 2 for the efficacy 
analyses with K = 3. The design is event-driven and will 
continue to the final analysis unless all the hypotheses 
are rejected.

The inverse-normal combination test is applied to 
control the FWER regardless of the decision at the 
futility analysis at the end of stage 1. For the k-th anal-
ysis in stage 2, weights w1k and w2k are pre-specified 
to combine the p-values from stage 1 ( p1k ) and stage 
2 ( p2k ), where w2

1k + w2
2k = 1 . The null hypothesis is 

rejected if w1k�
−1(1− p1k)+ w2k�

−1(1− p2k) ≥ ck , 
where ck is the z-statistic boundary using the allocated 
alpha. It has been pointed out that the test statistics 
may not have the desired null distribution for time-to-
event endpoints in a two-stage adaptive design [28, 29]. 
The violation of the independent increments assump-
tion can lead to type I error inflation. To ensure that the 
hypothesis is tested with proper protection of the fam-
ily-wise Type I error, we follow the method in previous 
adaptive design study [2]. Specifically, the p-values are 
calculated separately for subjects recruited to stage 1 
(i.e., p1k ) and those recruited to stage 2 (i.e., p2k ). The 
additional follow-up of stage 1 subjects during stage 
2 contributes to the stage 1 p-value ( p1k ). The closed 
testing procedures are applied to control the FWER. 
The Hochberg correction [30] with equal weighting, 
pFSi = min

[

2min
{

pFi , p
S
i

}

,max
{

pFi , p
S
i

}]

 , is used to 

Fig. 2  The testing procedures based on the gated group sequential design with K = 3 for Scenario 3 with both populations studied in stage 2. E: 
endpoint; IA: interim analysis; FA: final analysis
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compute the p-values of the intersection hypotheses 
between populations. The minimum z-statistic bound-
ary of hypotheses with the allocated alpha in the inter-
section testing is used as ck.

The weights and p-values to be used in combination 
tests are provided below, where the PFS endpoint is 
used as an example; the OS endpoint can be performed 
in a similar manner. Note that the weights w1k and w2k 
need to be pre-specified for controlling the FWER, and 
can be different for PFS and OS endpoints.

1.	 S only scenario – when considering H {S,PFS}
0  only.

	 Testing H
{FS,PFS}
0

:w1k�
−1

(

1− p
{FS,PFS}
1k

)

+ w2k�
−1

(

1− p
{S,PFS}
2k

)

;

	 Testing H
{S,PFS}
0  : 

w1k�
−1

(

1− p
{S,PFS}
1k

)

+ w2k�
−1

(

1− p
{S,PFS}
2k

)

.
2.	 F only scenario—when considering H {F ,PFS}

0  only.
	 Testing H

{FS,PFS}
0

:w1k�
−1

(

1− p
{FS,PFS}
1k

)

+ w2k�
−1

(

1− p
{F ,PFS}
2k

)

;
	 Testing H

{F ,PFS}
0  : 

w1k�
−1

(

1− p
{F ,PFS}
1k

)

+ w2k�
−1

(

1− p
{F ,PFS}
2k

)

.
3.	 F and S scenario – when considering both H {F ,PFS}

0  
and H {S,PFS}

0 .
	 Testing H

{FS,PFS}
0

:w1k�
−1

(

1− p
{FS,PFS}
1k

)

+ w2k�
−1

(

1− p
{FS,PFS}
2k

)

;
	 Testing H

{F ,PFS}
0  : 

w1k�
−1

(

1− p
{F ,PFS}
1k

)

+ w2k�
−1

(

1− p
{F ,PFS}
2k

)

;
	 Testing H

{S,PFS}
0  : 

w1k�
−1

(

1− p
{S,PFS}
1k

)

+ w2k�
−1

(

1− p
{S,PFS}
2k

)

.

Results
Simulations
To illustrate the performance of the proposed design 
in terms of type I error and power, we conduct simula-
tions and compare the performance with the other two 
well-established approaches:

•	 Group sequential design (GSD): group sequential 
design for the 4 hypotheses of interest using the 
graphical approach of Maurer and Bretz [6] without 
any population or hypothesis adaptation.

•	 Adaptive design (AD): subpopulation selection is 
performed in the futility analysis. The overall sig-
nificance level is set to be α to test all 4 hypotheses 
rather than setting the overall significance level to 
be α to test only 2 hypotheses in each population (S 
and F) in gGSD. The same alpha reallocation strat-
egy [6] is used to control the FWER.

The gGSD is a seamless phase II/III trial integrating 
AD and GSD into one study design. Briefly, AD is imple-
mented in the subgroup selection stage (futility analysis), 
followed by GSD in the second stage (i.e., two interim 
analyses and one final analysis). Three simulation settings 
are considered. Table 2 gives the detailed information for 
these three settings. In each setting, two interim analyses 
and one final analysis are planned in stage 2. Specifically, 
PFS testing is planned at IA1 and IA2 (which is also the 
final for PFS), while OS testing is planned at IA1, IA2 and 
FA. Some parameters are set to be the same for all three 
settings: 1) for the control arm, the median PFS (OS) is 
assumed to be 4 (10.5) months and 3 (5.7) months both 
in the sub-group and the complement of the sub-group, 
respectively; 2) the yearly dropout rates for PFS and OS 
are 10% and 1%, respectively. In settings 1 and 2, the haz-
ard ratio (experimental/control) for PFS and OS are 0.7 
for both the sub-group and the full population. In setting 
3, the hazard ratios of PFS and OS are 0.7 for the sub-
group, but 1 for the full population. For the full popula-
tion: at the design stage, the information fractions for 
PFS are approximately 90% for IA1 and IA2 is the final 
analysis; the information fractions for OS are approxi-
mately 69% for IA1 and 92% for IA2. For the sub-group 
population: at the design stage, the information fraction 
for PFS is approximately 89% for IA1 and IA2 is the final 
analysis; the information fractions for OS are approxi-
mately 66% for IA1 and 91% for IA2. Some other param-
eters used in the simulations are provided in Table  2 
below where the sample size is calculated based on the 
group sequential design with a power of at least 85% for 
all four hypotheses. The alpha boundaries are computed 
using the Lan-DeMets spending function approximating 
O’Brien-Fleming bounds with a total of 1-sided α=0.025.

For each setting, the performance of GSD is provided 
as a reference for comparison. For AD and gGSD, the 
futility analyses for PFS are performed at the end of stage 
1. This determines whether the trial continues to stage 2 
with one or two populations, or the trial stops. Let the 
futility threshold ( γ ), the probability of the trial not pass-
ing the futility gate under the alternate hypothesis, be 5%. 
This results in θF = 0.85 and θS = 0.9 for setting 1, and  
θF = 0.83 and θS = 0.85 for settings 2 and 3.

The time-to-event data were generated using an 
R-package “simtrial” [31] with settings specified in 
Table  2. The “simtrial” package generates independent 
time-to-event datasets according to a user-specified trial 
design. Information of the enrollment, dropout, and 
infection processes are prespecified in each treatment 
arm. A total of 10,000 replications were performed for 
each setting. For AD and gGSD, eight different sets of 
weights were evaluated for the inverse-normal combina-
tion tests. Ideally, weights w1k and w2k would be chosen 



Page 6 of 11Miao et al. BMC Medical Research Methodology            (2023) 23:2 

Ta
bl

e 
2 

Pa
ra

m
et

er
s 

fo
r t

hr
ee

 s
im

ul
at

io
n 

se
tt

in
gs

a  S
G

 S
ub

gr
ou

p,
 F

G
 F

ul
l g

ro
up

, N
SG

 C
om

pl
em

en
ta

ry
 o

fs
ub

-g
ro

up
b  H

az
ar

d 
ra

tio
 (H

R)
 is

 s
et

 to
 b

e 
th

e 
sa

m
e 

fo
r P

FS
, O

S 
an

d 
su

b-
gr

ou
p,

 c
om

pl
em

en
ta

ry
 o

f s
ub

-g
ro

up
c  H

R 
=

 1
 fo

r f
ul

l g
ro

up
 in

 s
et

tin
g 

3.
 C

om
pl

em
en

ta
ry

 o
f s

ub
-g

ro
up

 is
 d

efi
ne

d 
as

 th
e 

fu
ll 

gr
ou

p 
ex

cl
ud

in
g 

th
e 

su
b-

gr
ou

p

Se
tt

in
g

Sa
m

pl
e

Si
ze

Su
bg

ro
up

 
Pr

op
or

tio
n

En
ro

llm
en

t D
ur

at
io

n
Fu

til
it

y 
bo

un
da

ry
D

ro
po

ut
 ra

te
 (y

ea
rl

y)
M

ed
ia

n 
su

rv
iv

al
 ti

m
e

H
Rb

D
es

ig
n

Fu
ll 

G
ro

up
Su

b-
G

ro
up

α
1 (O

S)
α
2 (P
FS

)
α
3 (O

S)
α
4
(P

FS
)

1
55

4
0.

75
28

 m
on

th
s

0.
9 

(S
G

a )
10

%
 (P

FS
)

4 
(P

FS
 S

G
)

3 
(P

FS
 N

SG
a )

0.
7

G
SD

 &
 A

D
0.

22
%

0.
16

5%
1.

28
%

0.
83

5%

0.
85

 (F
G

a )
1%

 (O
S)

10
.5

 (O
S 

SG
)

5.
7 

(O
S 

N
SG

)
gG

SD
1.

42
9%

1.
07

1%
1.

51
3%

0.
98

7%

2 
& 

3
92

4
0.

5
33

 m
on

th
s

0.
85

 (S
G

a )
10

%
 (P

FS
)

4 
(P

FS
 S

G
)

3 
(P

FS
 N

SG
)

0.
7c

G
SD

 &
 A

D
0.

02
5%

0.
01

7%
1.

45
8%

1.
00

%

0.
83

 (F
G

a )
1%

 (O
S)

10
.5

 (O
S 

SG
)

5.
7 

(O
S 

N
SG

)
gG

SD
1.

48
8%

1.
01

2%
1.

48
%

1.
02

%



Page 7 of 11Miao et al. BMC Medical Research Methodology            (2023) 23:2 	

to be proportional to the square root of the number of 
events in each stage for the k-th analysis. As an example, 
set 

(

wPFS
1k ,wPFS

2k

)

 = 
(
√

n1k ,PFS
n1k ,PFS+n2k ,PFS

,

√

n2k ,PFS
n1k ,PFS+n2k ,PFS

)

 for 

PFS hypothesis where nik ,PFS is the number of PFS events 
from stage i subjects (i = 1,2) 
and 

(

wOS
1k ,w

OS
2k

)

 = 
(
√

n1k ,OS
n1k ,OS+n2k ,OS

,

√

n2k ,OS
n1k ,OS+n2k ,OS

)

  for OS 
hypothesis where nik ,OS is the number of OS events from 
stage i subjects (i = 1,2). w1k and w2k need to be pre-spec-
ified in order to control the Type-I error rate. Since it is 
impossible to know the decision at futility analysis and 
the number of events from stage 1 and 2 for each efficacy 
analysis, we use pre-specified weights to compute 
p-values.

The proposed gGSD is FWER controlled and the simu-
lations showed that it is conservative: e.g., the type I error 
is less than the specified 0.025 level as shown in Table 3. 
Table 4 shows the power of rejecting the sub-group (S), 
or both sub-group and full population (S&F). The per-
formance of the proposed gGSD depends on the choice 
of the weights w1k and w2k . The first set of weights are 
computed using the number of PFS/OS events in the 
simulation and are used as a reference. When w1k < w2k , 
AD and gGSD have lower power to detect treatment effi-
cacy compared with GSD. When w1k ≥ w2k , gGSD has 
higher power than GSD and AD. Table  4 indicates that 
the events driven weight or more weights for stage 1 data 
lead to a better gGSD performance. The performance of 
gGSD is robust for the weights as long as more weight is 
assigned to stage 1 data. Thus, assigning more weights for 
data from stage 1 is recommended in order to utilize the 

Table 3  Family-wise error rate for three simulation settings

a Weights defined in Simulations section (4th paragraph) based on observed 
interim events and planned final events

Weight(w1k ,w2k) Design Setting 1 Setting 2/3

PFS OS GSD 0.014 0.017

(wPFS

1k
,wPFS

2k
)a (wOS

1k
,wOS

2k
)a AD 0.009 0.011

gGSD 0.011 0.012

(
√
0.2,

√
0.8) (

√
0.2,

√
0.8) AD 0.007 0.009

gGSD 0.010 0.011

(
√
0.3,

√
0.7) (

√
0.3,

√
0.7) AD 0.008 0.010

gGSD 0.010 0.012

(
√
0.5,

√
0.5) (

√
0.5,

√
0.5) AD 0.009 0.011

gGSD 0.011 0.013

(
√
0.5,

√
0.5) (

√
0.7,

√
0.3) AD 0.009 0.011

gGSD 0.012 0.013

(
√
0.7,

√
0.3) (

√
0.7,

√
0.3) AD 0.009 0.011

gGSD 0.011 0.012

(
√
0.8,

√
0.2) (

√
0.8,

√
0.2) AD 0.009 0.011

gGSD 0.011 0.012

(
√
0.6,

√
0.4) (

√
0.6,

√
0.4) AD 0.009 0.011

gGSD 0.011 0.013

Table 4  Power for three simulation settings

a Weights defined in early text based on observed interim events and planned final events

The power for sub-group (S) is calculated among 10,000 simulations with the sub-group passes the futility boundary. Similarly, the power for sub-group and full group 
(S &F) is calculated among 10,000 simulations with both the sub-group and full group pass the futility boundary

Setting 1 Setting 2 Setting 3

Weight(w1k ,w2k) Design S S & F S S & F S

PFS OS GSD 0.877 0.873 0.908 0.908 0.908

(wPFS

1k
,wPFS

2k
)a (wOS

1k
,wOS

2k
)a AD 0.903 0.914 0.945 0.947 0.908

gGSD 0.914 0.925 0.945 0.947 0.908

(
√
0.2,

√
0.8) (

√
0.2,

√
0.8) AD 0.749 0.750 0.830 0.830 0.798

gGSD 0.769 0.770 0.829 0.829 0.798

(
√
0.3,

√
0.7) (

√
0.3,

√
0.7) AD 0.808 0.813 0.877 0.878 0.844

gGSD 0.826 0.830 0.877 0.878 0.846

(
√
0.5,

√
0.5) (

√
0.5,

√
0.5) AD 0.873 0.881 0.928 0.930 0.895

gGSD 0.888 0.895 0.929 0.930 0.895

(
√
0.5,

√
0.5) (

√
0.7,

√
0.3) AD 0.894 0.903 0.939 0.941 0.904

gGSD 0.908 0.916 0.938 0.940 0.904

(
√
0.7,

√
0.3) (

√
0.7,

√
0.3) AD 0.900 0.910 0.945 0.947 0.908

gGSD 0.913 0.922 0.945 0.947 0.909

(
√
0.8,

√
0.2) (

√
0.8,

√
0.2) AD 0.903 0.914 0.945 0.948 0.905

gGSD 0.915 0.925 0.946 0.948 0.906

(
√
0.6,

√
0.4) (

√
0.6,

√
0.4) AD 0.890 0.899 0.939 0.941 0.903

gGSD 0.904 0.913 0.939 0.941 0.904
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information more efficiently. The simulation results for 
setting 3 (only sub-group has significant treatment ben-
efit) demonstrate that the proposed gGSD reduces the 
patient’s exposure to less effective treatment comparing 
to GSD if the complementary sub-group has less signifi-
cant treatment effect since gGSD does not enroll patients 
in the complementary sub-group in stage 2.

Another advantage of the proposed gGSD is that it can 
terminate early with high power. Figure 3 shows the stop-
ping time of three designs for three weight sets with the 
highest power in Table  4. For GSD, the trial stops early 
if and only if all the four hypotheses are rejected before 
the final analysis. For example, there are 3 hypotheses 
being rejected in IA1 and the last hypothesis is rejected 
in IA2, then the termination point for this trial is at IA2. 
For AD and gGSD, the trial stops early if no sub-group/
full group passes the futility boundary or all the hypoth-
eses tested are rejected before the final analysis. Detailed 
requirements for early stopping of the trial are listed in 
Table 5. As shown in Fig. 3, gGSD is more efficient (i.e., 
higher probability to reject all the hypotheses tested and 
stop early before the final analysis) with higher or compa-
rable power compared to GSD and AD (Fig. 3 panels J-L). 
Therefore gGSD requires less time and resources to prove 
new treatment efficacy than GSD and AD without sacri-
ficing power for an important underlying benefit.

An illustrative example
We use an example with specified p-values to illustrate 
the potential advantage of the proposed gGSD compared 
to GSD. Consider a group sequential design for a Phase 
III 2nd line small cell lung cancer trial with a 50% preva-
lence of platinum-sensitive subgroup where PFS and OS 
are the dual primary endpoints. This example contains a 
total of 924 patients with other parameters same as set-
ting 2 listed in Table  2. The graphical approach [6] was 
used to control FWER of the four hypotheses with a total 
of FWER level 0.025. PFS and OS hypotheses are tested 
in two interim analyses and only OS hypotheses are 
tested in the final analysis.

This example illustrates that gGSD has more power to 
reject the null hypotheses compared to GSD. Table 6 con-
tains the nominal p-values and data generated p-values at 
each interim analysis and the final analysis for GSD and 
gGSD. As shown in Table 6, none of the four hypotheses 
are rejected by using GSD. Using the gGSD and the gated 
rules in Table 1 with θF = 0.83 and θS = 0.85 , stage 2 is 
continued for the full group only (i.e., Scenario 2 in stage 
2). Once H {F ,PFS}

0  is rejected, H {F ,OS}
0  will be tested at level 

α = 0.025 . A fixed weight w1k=w2k=
√
0.5 is used for all 

the p-value combination tests in gGSD. With a p-value of 
0.0022 at the IA1, the PFS is rejected. A p-value of 0.0125 
at IA1 fails to reject OS at IA1. Then the trial continues 

to IA2 for OS testing in the full group. With a p-value of 
0.0019 at the IA2, the OS hypothesis is rejected at IA2. 
So none of the four hypotheses are rejected in GSD while 
gGSD rejects two full group hypotheses.

Summary
Seamless Phase II/III designs are getting more attention 
and being increasingly adopted as a cost effective and 
time saving drug development strategy. In this paper, 
we proposed a gated group sequential design for seam-
less Phase II/III trial with potential sub-group selection. 
Combining this with GSD, our proposed gGSD design 
enables population selection and multiple interim analy-
ses to enable early stopping. In this paper, we extended 
Jenkins, et al. [2] method for population selection to con-
trol FWER for all four of the aforementioned hypotheses 
with dual primary endpoints. The hierarchical testing 
strategy proposed by Glimm et  al. [9] was modified to 
accommodate our multiple testing scenarios with FWER 
controlled between populations. Within each population, 
the graphical approach combined with standard group 
sequential design was used for flexibility. The familywise 
error rate of proposed gGSD is strictly controlled. A pre-
specified sub-group and the full population are tested 
hierarchically to control the FWER. Simulation results 
and the illustrative example suggest that the gated group 
sequential design can reduce sample size compared to 
the other trial designs; e.g., the proposed gated group 
sequential design could achieve the same power with 
a smaller sample size compared to the commonly used 
GSD. Furthermore, the trial can terminate early with suf-
ficient strong evidence from efficacy analyses and poten-
tially moves efficacious products into market faster for 
unmet medical needs. A special note on the particular 
advantage of the gGSD over GSD in the simulation study 
occurs when the true benefit is in the sub-group, but not 
in the full group. The gGSD is designed to focus on the 
stage 2 selected population, increases power over a Phase 
III study of both populations and reduces the patient’s 
exposure to less effective treatment comparing to GSD if 
the complementary sub-group has less significant treat-
ment effect.

The idea proposed in this paper can also be applied to 
conduct efficient trials and simultaneously investigate 
several vital questions for drug development, such as 
identifying the most beneficial sub-group for a new treat-
ment or dose (treatment) selection problem. Moreover, 
the proposed gGSD is applicable to more than one sub-
group where the sub-groups are nested. In this paper, 
the sub-group was pre-specified. However, this sub-
group information may not be always accurately identi-
fied before the trial. Freidlin and Simon [32] proposed 
an adaptive signature design to find sensitive patients, 
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Fig. 3  The stopping time (panels A-I) and the corresponding power (panels J-L) among 10,000 trials for three simulation settings. Only 
simulation results of three weight sets (P1: ( 

√
0.5,

√
0.5 ) for PFS hypotheses and ( 

√
0.7,

√
0.3 ) for OS hypotheses; P2: ( 

√
0.7,

√
0.3 ) for both PFS 

and OS hypotheses; P3: ( 
√
0.8,

√
0.2 ) for both PFS and OS hypotheses) with the highest power are shown in the figure. Panels A/D/G/J: setting 1; 

Panels B/E/H/K: setting 2; Panels C/F/I/L: setting 3; Panels A-C: stopping time for P1; Panels D-F: stopping time for P2; Panels G-I: stopping time for 
P3. The power for each setting under different weight sets is summarized in (panels J-L)
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without pre-specified, into a formal Phase III trial. The 
sub-group size does not have any impact on the method 
proposed in this paper. However, practically speaking, 
generally the sub-group size should be at least 50% of 
the full population to be financially feasible and maybe 
ethical reasonable for using this type of seamless design. 
The proposed seamless design shares the same potential 
operational challenges discussed in the literature that the 
trial team may choose to hold the enrollment while the 
team decides the population selection at the end of stage 
1. Different approaches could be used in setting up the 
criteria for moving into stage 2. One such example could 
be the predictive probability as used in the Belle 4 study 
[33]. In an adaptive time-to-event design, the number of 
events collected in stage 2 could be influenced by a sub-
population selection. These issues arise from the fact that 
patients who are recruited before an interim analysis and 
hence enter the interim analysis as censored observations 
at the time of the interim can have an event later and 
then enter the analysis again. The strategy discussed in 
Jenkins et al. [2] could be used to address the independ-
ent increments assumption.

In this paper, the PFS of the dual-primary endpoints 
was used for the adaptation. Other surrogate “proof-of-
concept” endpoint such as the objective response could 
be used if more appropriate. The gGSD is a two-stage 
trial design with two arms where the second stage data 
are used for a classical group sequential design frame-
work. In this regard, the more commonly discussed 
multi-arm multi-stage (MAMS) design can be combined 
with gGSD. The research is under investigation. When 
there is a severe non-proportional hazard such as the 
delayed effect, the proposed gGSD in current format may 
be less efficient due to the potential poor performance in 
the futility analysis.
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Table 5  Trial stopping point and requirements

Stopping point GSD AD/gGSD

Futility – Both sub-group and full group do not pass the futility boundary

IA1 All the 4 hypotheses are rejected at IA1 (1) At least one group passes the futility boundary. (2) All the 
hypotheses tested are rejected at IA1

IA2 (1) At least 1 hypothesis is not rejected at IA1. (2) All the 4 
hypotheses are rejected at IA2

(1) At least one group passes the futility boundary. (2) At least 1 
hypothesis is not rejected at IA1. (3) All the hypotheses tested are 
rejected at IA2

FA (1) At least 1 hypothesis is not rejected at IA1 and IA2. (2) The 
trial stops at FA regardless of the number of hypotheses rejected

(1) At least one group passes the futility boundary. (2) At least 1 
hypothesis is not rejected at IA1 and IA2. (3) The trial stops at FA 
regardless of the number of hypotheses rejected

Table 6  Theoretical and specified parameters for the illustrative example

The nominal p-value is the p-value boundary in a typical group sequential design under the allocated alpha in different IA time

The data generated p-value is the p-value from the test using the trial data

GSD gGSD

Subgroup Full Group Subgroup Full Group

Analysis Boundary
& p-value

PFS OS PFS OS PFS OS PFS OS

IA1 Nominal p-value
boundary

0.0036 0.0017  < 0.0001  < 0.0001 0.0037 0.0017 0.0039 0.0024

Data generated p-value 0.0177 0.1205 0.0008 0.0104 – – 0.0022 0.0125

IA2 Nominal p-value
boundary

0.0088 0.0078 0.0002 0.0001 0.0090 0.0079 0.0089 0.0088

Data generated p-value 0.0137 0.0502 0.00022 0.0023 – – – 0.0019
FA Nominal p-value

boundary
0.0120 0.0002 0.0122 0.0119

Data generated p-value 0.0534 0.0011 – –
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