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Abstract 

Background:  High-grade serous carcinoma (HGSC) is the most common and deadly subtype of ovarian cancer. 
Although most patients will initially respond to first-line treatment with a combination of surgery and platinum-based 
chemotherapy, up to a quarter will be resistant to treatment. We aimed to identify a new strategy to improve HGSC 
patient management at the time of cancer diagnosis (HGSC-1LTR).

Methods:  A total of 109 ready-available formalin-fixed paraffin-embedded HGSC tissues obtained at the time of 
HGSC diagnosis were selected for proteomic analysis. Clinical data, treatment approach and outcomes were collected 
for all patients. An initial discovery cohort (n = 21) were divided into chemoresistant and chemosensitive groups 
and evaluated using discovery mass-spectrometry (MS)-based proteomics. Proteins showing differential abundance 
between groups were verified in a verification cohort (n = 88) using targeted MS-based proteomics. A logistic regres‑
sion model was used to select those proteins able to correctly classify patients into chemoresistant and chemosensi‑
tive. The classification performance of the protein and clinical data combinations were assessed through the genera‑
tion of receiver operating characteristic (ROC) curves.

Results:  Using the HGSC-1LTR strategy we have identified a molecular signature (TKT, LAMC1 and FUCO) that 
combined with ready available clinical data (patients’ age, menopausal status, serum CA125 levels, and treatment 
approach) is able to predict patient response to first-line treatment with an AUC: 0.82 (95% CI 0.72–0.92).

Conclusions:  We have established a new strategy that combines molecular and clinical parameters to predict the 
response to first-line treatment in HGSC patients (HGSC-1LTR). This strategy can allow the identification of chemore‑
sistance at the time of diagnosis providing the optimization of therapeutic decision making and the evaluation of 
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alternative treatment strategies. Thus, advancing towards the improvement of patient outcome and the individualiza‑
tion of HGSC patients’ care.

Keywords:  High-grade serous ovarian cancer, Proteomics, Biomarker, Prediction, Treatment

Background
High-grade serous carcinoma (HGSC) remains the most 
common and deadly subtype of ovarian cancer, due to 
its diagnosis at advanced stages in over 80% of cases [1]. 
The standard of care of advanced stage HGSC is a com-
bination of cytoreductive surgery and platinum-based 
chemotherapy (i.e. carboplatin and paclitaxel). Cytore-
ductive surgery can be performed at the time of cancer 
diagnosis or can be delayed after 3 or 4 cycles of neoad-
juvant chemotherapy [2]. Recently, the use of a targeted 
management approach (i.e. anti-angiogenic agents and 
PARP inhibitors) has been introduced for specific sub-
groups of patients such as those with BRCA mutations 
[3, 4]. Although the results on BRCA mutation status can 
be available within 2–3  weeks from diagnosis in some 
referral oncological centres, in most clinical settings 
worldwide it is not available until first-line treatment 
has already commenced. Although HGSC is considered 
to be a platinum-sensitive disease, ~ 20–30% of patients 
fail to respond or experience disease recurrence within 
6  months of completing chemotherapy [5]. In clinical 
practice, these patients are considered to be resistant 
to platinum, and second-line treatment is usually based 
on non-platinum agents (e.g. gemcitabine, pegylated 
liposomal doxorubicin, topotecan or weekly paclitaxel) 
and control of symptoms [2, 6]. Efforts to establish bio-
logical stratification profiles in HGSC are mainly being 
focused on genomic and transcriptomic markers [7–10], 
while the evaluation of protein markers to assess treat-
ment response and/or survival in HGSC tissue samples 
remain scarce [11–13]. Beyond their clinical relevance 
as biological endpoints and drug targets, proteins are 
markers widely used in clinical tests for disease diagnosis 
and prognosis [13, 14]. In addition, the use of proteomic 
approaches (i.e. mass spectrometry) enable the system-
atic interrogation of proteomes from complex clinical 
samples which can later be translated into immunoassays 
for clinical use [15, 16]. Despite the numerous studies 
being carried out to identify novel protein biomarkers in 
ovarian cancer, there are currently no validated markers 
used in the clinic to predict response to first-line treat-
ment and guide the management of patients with newly 
diagnosed HGSC. In this work, we present a new strategy 
that combines molecular and routine clinical parameters 
to anticipate the response to first-line treatment in HGSC 
patients (HGSC-1LTR). Prediction of those patients 
less likely to respond to first-line chemotherapy allows 

alternative treatment strategies to be considered at the 
time of cancer diagnosis (i.e. non-platinum drugs) thus 
improving patients’ response and survival. It also opti-
mizes therapeutic decision making and allows an indi-
vidualized management strategy by avoiding the use of 
futile treatments, thus improving patients’ quality of life. 
This strategy is therefore of special relevance for patients 
with advanced HGSC for whom a predictive method is 
lacking. Thus, in this work we aim to identify a protein 
biomarker signature able to predict response to first-line 
treatment in patients with newly diagnosed HGSC.

Methods
Patient cohorts
A total of 109 patients with newly diagnosed advanced 
stage HGSC managed at the Gynecological Oncology 
Unit at the Hospital Vall d’Hebron (Barcelona, Spain) 
between 1996 and 2017 were included in the study. Out 
of these, a fifth (21 patients) were randomly selected 
for the discovery cohort and four fifths (88 patients) for 
the verification cohort. Patients were classified accord-
ing to their treatment-free interval to platinum (TFIp) 
into two main groups: TFIp < 6 months (chemoresistant) 
and TFIp > 6 months (chemosensitive). For the discovery 
cohort, the chemosensitive group was subdivided into 
those patients who developed recurrence (chemosensi-
tive with TFIp > 6 months) and those who did not recur 
(chemosensitive with no recurrence) in order to cat-
egorise the subgroup of patients with better response to 
chemotherapy. The characteristics of all patients included 
in the discovery and verification phases are summarized 
in Tables  1 and 2 and Additional file  1: Table  S1 and 
Additional file 2: Table S2.

Formalin‑fixed paraffin‑embedded tissue samples
Formalin-fixed paraffin-embedded (FFPE) tissue samples 
were obtained from the Pathology Department human 
tissue repository at the Hospital Vall d’Hebron (Barce-
lona, Spain). All cases corresponded to HGSC tumour 
biopsies obtained at the time of diagnosis. Samples were 
registered, processed and fixed following the hospital 
standard operating procedures. Pathological and clini-
cal data from all gynaecological registered samples were 
manually reviewed to ensure that all patients included 
in the study met the following criteria: (a) newly diag-
nosed advanced stage HGSC (stages III and IV), (b) treat-
ment with primary surgery and six cycles of carboplatin 
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Table 1  Summary of the clinical characteristics of the patient groups included in the discovery cohort

TFIp: treatment-free interval to platinum

Chemoresistant with TFIp < 6 m 
(n = 7)

Chemosensitive with TFIp > 6 m 
(n = 7)

Chemosensitive with 
no recurrence (n = 7)

Age (years)

Average (range) 67 (53–77) 58 (49–69) 60 (43–70)

Menopausal status (n, %)

Premenopausal 0 2 (29%) 1 (14%)

Postmenopausal 7 (100%) 5 (71%) 6 (86%)

Stage (n, %)

IIIC 6 (86%) 6 (86%) 7 (100%)

IV 1 (14%) 1 (14%) 0

Serum CA125 levels at diagnosis (U/mL)

Average (range) 1944 (809–5500) 2444 (126–6992) 1051 (100–2856)

TFIp (months)

Average (range) 3 (1–5) 28 (11–67) NA

Primary treatment (n, %)

Cytoreductive surgery 4 (57%) 5 (71%) 4 (57%)

Neoadjuvant chemotherapy 3 (43%) 2 (29%) 3 (43%)

Status (n, %)

Alive 0 1 (14%) 7 (100%)

Dead 7 (100%) 6 (86%) 0

Table 2  Summary of the clinical characteristics of the patient groups included in the verification cohort

TFIp: treatment-free interval to platinum

Chemoresistant (n = 25) Chemosensitive (n = 63)

Age (years)

Average (range) 63 (49–81) 59 (37–84)

Menopausal status (n, %)

Premenopausal 1 (4%) 18 (29%)

Postmenopausal 24 (96%) 45 (71%)

Stage (n, %)

IIIA 0 2 (3%)

IIIB 1 (4%) 6 (10%)

IIIC 16 (64%) 45 (71%)

IVA 3 (12%) 4 (6%)

IVB 5 (20%) 6 (10%)

Serum CA125 levels at diagnosis (U/mL)

Average (range) 2246 (161–10,548) 1385 (20–19,007)

TFIp (months)

Average (range) 3 (1–5) 13 (6–63)

Primary treatment (n, %)

Cytoreductive surgery 7 (28%) 44 (70%)

Neoadjuvant chemotherapy 18 (72%) 19 (30%)

Status (n, %)

Alive 0 31 (49%)

Dead 25 (100%) 32 (51%)
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and paclitaxel chemotherapy, (c) follow-up until disease 
recurrence or at least five years after treatment comple-
tion. The histopathological features of the selected sam-
ples were then reviewed by an experienced pathologist 
to confirm the diagnosis and tumour content. Areas 
containing 80% or more tumour with no areas of necro-
sis were selected for serial sectioning and further sample 
processing.

Discovery cohort
Sample preparation for proteomic analysis
An initial cohort of 21 patients were randomly selected 
for biomarker discovery from whom FFPE tumour sam-
ples were collected. For FFPE sample preparation we 
adapted a recently described workflow capable of yield-
ing substantial amounts of peptides for quantification by 
proteomic analysis with high reproducibility [17]. FFPE 
tissues were cut in five serial sections of 10  µm thick 
using a microtome. A clean blade was used for section-
ing each tissue sample separately. Tissue sections were 
deparaffinated in 1 ml xylene (3 min at 50 °C) and washed 
twice with 1  ml absolute ethanol. Ethanol was removed 
completely and sections were left to air-dry.

Data analysis
Acquired data were analysed using the Proteome Discov-
erer software suite (v.2.0, Thermo Fisher Scientific) and 
peptides were identified using the Mascot search engine 
(v.2.5.1, Matrix Science). Data were searched against 
the Swiss-Prot human protein database (as in October 
2017, 20,239 entries) plus a list of common contaminants 
(148 entries) [18]. The precursor ion mass tolerance was 
7 ppm at the MS1 level, and up to three missed cleavages 
for trypsin were allowed. The fragment ion mass toler-
ance was set to 0.5 Da and methionine oxidation was set 
as variable modification. The identified peptides were fil-
tered by 5% FDR. Peptide areas were obtained using the 
“Precursor Ions Area Detector” module in the Proteome 
Discoverer software suite (v.2.0, Thermo Fisher Scien-
tific). Protein abundance in each condition was estimated 
using the average of the three most intense peptides per 
protein group (Additional file  3: Table  S3). Data were 
log2-transformed, normalized by equalised median and 
quantified using the MSstats R software package v.3.8.2 
[19]. Only those proteins with quantitative values in at 
least 4 out of 7 patients per group were considered in the 
group comparison analysis. Changes in protein abun-
dance between groups were compared using two-sided t 
test analysis followed by correction for multiple testing 
[20]. Changes were considered significant with a q-value 
below 0.05.

All significant differentially expressed proteins were 
included in the analysis. Additional proteins were 

selected according to at least one of the following crite-
ria: (a) were present in at least 4 patients in one group 
and completely absent in the comparison group, (b) were 
either completely present or completely absent in the 
chemoresistant group, (c) had been previously reported 
in the literature as potential predictive markers in ovar-
ian cancer. Nine proteins were included using these crite-
ria, three of which corresponded to proteins drawn from 
the literature (i.e. CT45, CDK1 and CLDN3) [11, 21–23].

Verification cohort
Sample preparation for proteomic analysis
A cohort of 88 patients were randomly selected for bio-
marker verification from whom FFPE samples were 
collected. FFPE tissues were cut in 5 serial sections of 
10 µM thick using a microtome. A clean blade was used 
for sectioning each tissue sample separately. Tissue sec-
tions were deparaffinated in 1 ml xylene (3 min at 50 °C) 
and washed twice with 1  ml absolute ethanol. Ethanol 
was removed completely and sections were left to air-
dry. Samples were resuspended in lysis buffer (40  mM 
TrisHCl, 1% SDS, pH 8.2) and left to incubate at 99  °C 
for 30 min and 80 °C for 2 h in a thermomixer. Following 
centrifugation (20 min, RT, 15,000g) the supernatant was 
quantified using BCA protein assay. Protein extracts were 
diluted 20 times with 50 mM ammonium bicarbonate for 
digestion with trypsin (1:50 w:w, 37 °C, 8 h, Promega cat 
# V5113). Detergent was removed from protein digests 
using the HIPPR™ Detergent Removal Spin Column Kit 
(Thermo Scientific, PN 88305) following manufacturer 
instructions. Peptide mix was acidified with formic acid 
5% and desalted with a MicroSpin C18 column (The Nest 
Group, Inc). Isotopically-labelled peptides (13C6,15N2-Lys 
and 13C6,15N4-Arg, Pepotec Peptides, Thermo Fisher Sci-
entific) were spiked in the peptide mixtures and used as 
internal standard for quantification by parallel reaction 
monitoring (PRM). A total of 30 proteins and 59 peptides 
were selected for PRM from 88 samples (25 chemoresist-
ant and 63 chemosensitive).

Parallel reaction monitoring
Up to two unique peptides per protein were selected for 
targeted protein quantification, prioritizing those pep-
tides that had been previously observed in the discovery 
cohort. For each selected peptide, an isotopically-labelled 
peptide (13C6,15N4-Arginine, and 13C6,15N2-Lys) was 
spiked in the samples and used as an internal standard 
for quantification by Parallel reaction monitoring (PRM). 
The amount of internal standard peptide to be spiked in 
each sample was evaluated using dilution curves and the 
final concentration was chosen based on the following 
criteria: (a) to be within the concentration range in which 
a linear response of the peptide was observed and, (b to 
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have an area as close to the endogenous peptide area as 
possible. One microgram of digested sample was analysed 
by PRM using an Orbitrap Fusion Lumos (Thermo Fisher 
Scientific) coupled to an EASY-nanoLC 1000 UPLC sys-
tem (Thermo Fisher Scientific) with a 50-cm C18 chro-
matographic column. Peptide mixes were separated with 
a chromatographic gradient starting at 95% buffer A and 
5% buffer B with a flow rate of 300 nL/min and going up 
to 25% buffer B and 75% A in 52 min and to 40% B and 
60% A in 8 min (Buffer A: 0.1% formic acid in water and 
Buffer B: 0.1% formic acid in acetonitrile). The Orbitrap 
Fusion Lumos was operated in positive ionization mode 
with an EASY-Spray nanosource at 2.4 kV and at a source 
temperature of 275  °C. A scheduled PRM method was 
used for data acquisition with a quadrupole isolation win-
dow set to 1.4 m/z and MS2 scans over a mass range of 
m/z 340–950, with detection in the Orbitrap mass ana-
lyser at a 60  K resolution. MS2 fragmentation was per-
formed using HCD fragmentation at normalised collision 
energy of 30%, the AGC was set at 50,000 and the maxi-
mum injection time at 118  ms. The size of the sched-
uled window was 6  min and the maximum cycle time 
was 2.8 s. All data was acquired with XCalibur software 
v.3.0.63. QCloud was used to control instrument longitu-
dinal performance during the project [24].

Data analysis
Product ion chromatographic traces corresponding to the 
targeted precursor peptides were evaluated with Skyline 
software v.4.2 [25] based on: (a) the number of detected 
traces, (b) co-elution of endogenous traces, (c) co-elution 
of endogenous and internal standard peptides, (d) cor-
relation of the trace relative intensities between endog-
enous and internal standard peptides and, (e) expected 
retention time. Those transitions showing interferences 
on the PRM traces were discarded. Measurements which 
were considered to be under the limit of detection were 
replaced with an estimation of the background value. 
Peptides who did not fulfil all the above criteria were 
removed from the study (seven peptides in total). In 
addition, eight samples were also discarded due to sam-
ple quality. In all, we consistently quantified a total of 52 
peptides corresponding to 29 proteins across 80 samples. 
Peak areas were obtained for each production and data 
were log2-transformed prior to normalization and statis-
tical analysis (Additional file 5: Table S4). Normalization 
relied on internal isotopically-labelled standard peptides 
which were used to equalise the median abundance of 
the internal standard peptides across all runs and then 
shift all endogenous areas in a run by a same amount. 
Protein abundance estimates were performed with the 
software package MSstats 3.14.1 [19]. Missing quantifi-
cation values were imputed with a minimum estimated 

log2-transformed abundance for a given protein across 
runs.

Predictive analysis
For predictive analysis 29 proteins and 29 peptides (best 
peptide for each protein) were used (Additional file  6: 
Table  S5). The final verification cohort (n = 80) was 
divided into a training subset and a validation subset 
with a 8:10 ratio. Within the training set, the abundance 
of each protein was fitted in a logistic regression model 
between chemoresistant and chemosensitive patients and 
the classification ability of each protein was evaluated 
by the area under the curve (AUC) of a receiver operat-
ing characteristic. The protein with the highest AUC was 
selected as the first classifier. Most discriminative pro-
teins were repeatedly added to the classifier one by one 
as long as their combination resulted in an increase in 
AUC value higher than 0.02. The best protein combina-
tion in the training subset was fitted in a logistic regres-
sion model and was applied to the validation subset. The 
procedure from division into training and validation set 
to fitting of the logistic model with the best classification 
signature was repeated 500 times to assess the reproduc-
ibility of classification ability. The final consensus model 
was comprised of the combination of proteins which 
were selected with higher frequencies in the 500 repeats 
[26]. The pROC package in R was used to draw ROCs, 
calculate AUCs and other predictive performance data 
including sensitivity and specificity at the optimal cut-off 
threshold (Youden J Index) for discrimination between 
groups [27].

Results
Identification of protein biomarker candidates 
from formalin‑fixed paraffin embedded HGSC tissues
Our first aim was to identify potential protein biomarker 
candidates able to predict response to first-line treat-
ment in patients with newly diagnosed HGSC. To this 
intent, we performed a discovery proteomic analysis of 
FFPE tumour samples from a cohort of 21 patients diag-
nosed with advanced stage HGSC. This analysis identi-
fied proteins that differed in abundance in relation to the 
patients’ response to chemotherapy with carboplatin and 
paclitaxel. We divided the cohort according to the time of 
disease recurrence into chemoresistant and chemosensi-
tive [28] (see “Materials and Methods” section). Table 1 
and Additional file  1: Table  S1 summarize the clinical 
characteristics of the groups of patients included in the 
discovery cohort.

We quantified a total of 6813 proteins in our discov-
ery dataset (Fig.  1B). Only those proteins identified in 
at least 4 out of 7 patients in each group (2441 proteins 
on average) were considered for quantitative analysis 
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and statistical group comparison evaluation (Additional 
file 4: Fig. S1A). We identified 27 differentially expressed 
proteins between the three groups (chemoresistant with 
TFIp < 6  months, chemosensitive with TFIp > 6  months, 
and chemosensitive with no recurrence) (q-value < 0.05) 
(Fig. 1C). Of these, 21 proteins showed changes in abun-
dance, whilst 6 proteins were present in at least four 
patients in one group and completely absent in the com-
parison group. These six proteins include CISD2, CRP, 
DNAJC10, ID4, SYUA and protein C8orf33. Additionally, 
three proteins previously shown to be associated to ovar-
ian cancer prognosis were added from the literature (i.e. 
CT45, CDK1 and CLDN3) [11, 21–23]. Hence, a total of 

30 proteins were selected as potential protein biomarker 
candidates for verification by targeted proteomics in an 
independent cohort of HGSC patients.
Verification of protein biomarker candidates 
from formalin‑fixed paraffin‑ embedded HGSC tissues
Protein verification acts as a bridging phase capable 
of overcoming the gap between biomarker discovery 
and validation [15, 29]. In the verification cohort we 
aimed to accurately quantify the candidate biomark-
ers obtained by discovery proteomics as a basis for our 
predictive analysis circumscribing the intended use 
of our potential predictive biomarker signature to the 

Fig. 1  Identification of protein biomarker candidates using discovery proteomics. A Graphical abstract of the patient groups and number of 
samples included in the discovery phase. B Overview of the proteomics workflow used in the discovery phase. HGSC indicates high-grade serous 
ovarian cancer tumours. C Volcano plots of the pairwise comparisons between the three groups included in the discovery phase (chemoresistant 
with TFIp < 6 months, chemosensitive with TFIp > 6 months and chemosensitive with no recurrence). Highlighted in red are the differentially 
expressed proteins and highlighted in blue are the proteins present in at least four patients in one group and completely absent in the other group
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classification of patients into the chemoresistant and 
chemosensitive groups.

We verified the biomarker candidates selected from 
the discovery cohort using targeted proteomics. In par-
ticular, we used parallel reaction monitoring (PRM) in 
an independent cohort of 88 FFPE tumour samples to 
assess the ability of the selected biomarker candidates 
to predict patients’ response to first-line treatment. In 
this verification cohort, we also sought to define the 
potential clinical applicability of a protein biomarker 
signature. Because the intended use is the prediction of 
response to first-line treatment in patients with newly 
diagnosed advanced stage HGSC, we limited our pre-
dictive analysis to two groups based on the TFIp cut-
off of 6 months and therefore divided our verification 
cohort into chemoresistant (TFIp < 6 months) (n = 25) 
and chemosensitive (TFIp > 6 months) (n = 63) groups 
(Fig.  2A). The characteristics of the patient groups 
included in the verification phase are summarized in 
Table 2 and Additional file 2: Table S2.

FFPE tumour samples were processed in the same 
manner as in the discovery phase. In order to quantify 
the protein biomarker candidates by PRM, we selected 
a specific subset of representative peptides which 
were used as surrogates for each protein candidate. 
We chose 1 or 2 peptides per protein based on their 
uniqueness to the given target, their chromatographic 
and mass spectrometry performance and their stabil-
ity [30]. Using these criteria we selected a total of 59 
peptides corresponding to the 30 protein candidates 
for quantification by PRM (Table 3). Internal standard 
peptides were used to guide the identification of the 
endogenous peptides and to accurately quantify them 
in the tumour samples. These standards consisted of 
identical peptide sequences as the endogenous with 
the C-terminus amino acid isotopically labelled which 
were spiked into each sample for analysis (Additional 
file  4: Fig. S1B). The technical variability of the assay 
was calculated as a coefficient of variation (CV) show-
ing a median CV of 3%, being the highest value 26% 
(Additional file 4: Fig. S1C).

Identification of a protein signature able to classify 
patients into chemoresistant and chemosensitive groups
The final step of this verification cohort was aimed at 
defining protein combinations able to classify patients 
diagnosed with advanced stage HGSC into those who 
will respond to first-line chemotherapy treatment with 
carboplatin and paclitaxel and those who will not. To this 
intent, we performed a logistic regression model to select 
and evaluate those proteins able to correctly classify 
patients into chemoresistant and chemosensitive groups, 
both individually and in combination. Details of the 
cross-validation analysis can be found in the correspond-
ing methods section. In brief, the final patient cohort 
(n = 80) was randomly divided into a training set and 
validation set. The classification power of each protein 
was first evaluated in the training set by a logistic regres-
sion model and additional proteins were then added into 
the best protein classifier in a stepwise manner. The vali-
dation set was then used to evaluate the discriminatory 
performance between chemoresistant and chemosensi-
tive patients. This cross-validation process was repeated 
500 times in order to assess its robustness. The classifi-
cation performance of the most frequently selected pro-
tein combinations were assessed within the whole dataset 
through the generation of receiver operating character-
istic (ROC) curves. This predictive analysis identified a 
3-protein combination including transketolase (TKT, 
P29401), laminin subunit gamma-1 (LAMC1, P11047) 
and tissue alpha-L-fucosidase (FUCO, P04066), as the 
best protein classifier of chemotherapy response with 
an AUC of 0.76 (95% CI 0.64–0.87). This protein combi-
nation was followed by another 3-protein combination 
which contained TKT, LAMC1 and c-reactive protein 
(CRP, P02741) with an AUC of 0.75 (95% CI 0.64–0.86) 
(Fig.  2B, C Additional file  7: Table  S6 and Additional 
file 8: Fig. S2A, B).

Because response rates of platinum sensitivity are 
known to fall in a continuum, we next assessed if 
both protein combinations (TKT + LAMC1 + FUCO 
and TKT + LAMC1 + CRP) were also good classi-
fiers when considering the most marginal group of 

(See figure on next page.)
Fig. 2  Predicted proteins able to discriminate between chemoresistant and chemosensitive patients. A Graphical abstract of the patient 
groups included in the verification cohort. B Frequency plot representing the number of times a protein combination was selected over 500 
iterations. C Targeted proteomic profiles (fragment extracted ion chromatograms) corresponding to the endogenous peptides and their internal 
standards for proteins TKT, LAMC1 and FUCO. D Receiver operating curves corresponding to the predictor formed by the combination of proteins 
TKT + LAMC1 + FUCO and clinical parameters including age, menopausal status, CA125 levels at diagnosis and decision to treat with either 
primary cytoreductive surgery or neoadjuvant chemotherapy. The protein combination TKT + LAMC1 + FUCO (AUC from 0.76; 95% CI 0.64–0.87) 
in combination with clinical data (AUC 0.75; 95% CI 0.63–0.88) increased the AUC value to 0.82 (95% CI 0.72–0.92), p = 0.09. E Workflow of the 
HGSC-1LTR strategy. Identification of chemoresistance can facilitate the study of alternative treatments to improve patient outcome. Patients 
classified as chemosensitive could undergo the standard of care with platinum-based agents
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Fig. 2  (See legend on previous page.)



Page 9 of 13Bradbury et al. Journal of Translational Medicine          (2022) 20:611 	

Table 3  List of the 30 proteins and 52 peptides selected for Parallel Reaction Monitoring measurement

Accession Protein Peptide

Q8N6H7 ARFG2 _ADP-ribosylation factor GTPase-activating protein 2 EVDAEYEAR

LAYQELQIDR

Q8IXM2 BAP18 _Chromatin complexes subunit BAP18 VYEDSGIPLPAESPK

VGEIFSAAGAAFTK

Q9H7E9 C8orf33 _UPF0488 protein C8orf33 AAAYSAQVQPVDGATR​

LPGPVSSAR

P06493 CDK1 _Cyclin-dependent kinase 1 SPEVLLGSAR

NLDENGLDLLSK

Q8N5K1 CISD2 _CDGSH iron-sulfur domain-containing protein 2 LPVPESITGFAR

DSLINLK

O15551 CLD3 _Claudin-3 STGPGASLGTGYDR

VVYSAPR

Q9UNS2 CSN3 _COP9 signalosome complex subunit 3 ASALEQFVNSVR

AMDQEITVNPQFVQK

P02741 CRP _C-reactive protein ESDTSYVSLK

QDNEILIFWSK

P0DMU7 CT45A6 _Cancer/testis antigen family 45 member A6 VAVDPETVFK

IFEMLEGVQGPTAVR

Q8IXB1 DJC10 _DnaJ homolog subfamily C member 10 NFQEEQINTR

ILYDILAFAK

P58107 EPIPL _Epiplakin AEAEAGSPRPDPR

ALQQGLVGLELK

P04066 FUCO _Tissue alpha-L-fucidase DLVGELGTALR

FFHPEEWADLFQAAGAK

P07093 GDN _Glia-derived nexin ASAATTAILIAR

IEVSEDGTK

P47928 ID4 _DNA-binding protein inhibitor ID-4 TPLTALNTDPAGAVNK

P19823 ITIH2 _Inter-alpha-trypsin inhibitor heavy chain H2 LSNENHGIAQR

IQPSGGTNINEALLR

P11047 LAMC1 _Laminin subunit gamma-1 NTIEETGNLAEQAR

EAQQALGSAAADATEAK

O14910 LIN7A _Protein lin-7 homolog A IIPGGVAER

ATVAAFAASEGHSHPR

P62312 LSM6 _U6 snRNA-associated Sm-like protein LSm6 LNSGVDYR

GNNVLYISTQK

Q99733 NP1L4 _Nucleome assembly protein 1-like 4 AAATAEEPDPK

VLAALQER

P12955 PEPD_Xaa-Pro dipeptidase IDEPGLR

LPASHATWMGK

P28062 PSB8 _Proteasome subunit beta type-8 FQHGVIAAVDSR

ASAGSYISALR

O00584 RNT2 _Ribonuclease T2 VYGVIPK

ELDLNSVLLK

P23526 SAHH_Adenylhomocysteinase GISEETTTGVHNLYK

VADIGLAAWGR​

O75533 SF3B1 _Splicing factor 3B subunit 1 THEDIEAQIR

WDQTADQTPGATPK

P37840 SYUA _Alpha-synuclein EGVVHGVATVAEK

TVEGAGSIAAATGFVK
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chemosensitive patients. Thus, we compared the abil-
ity of our protein combinations to discriminate between 
chemoresistant and partially chemosensitive patients 
(i.e. those patients who develop recurrence between 6 
and 12  months after the last dose of chemotherapy). 
These partially chemosensitive patients are still taken 
into consideration in clinical trials assessing chemo-
therapy response although recent evidence shows they 
also benefit from re-treatment with platinum-based 
regimens [31, 32]. We observed that protein combina-
tion TKT + LAMC1 + FUCO was able to discriminate 
between chemoresistant and partially chemosensitive 
patients with an AUC of 0.76 (95% CI 0.61–0.91). Con-
trary, TKT + LAMC1 + CRP had worse discriminatory 
ability with an AUC value of 0.70 (95% CI 0.53–0.87) 
(Additional file  8: Fig. S2C). Therefore, the 3-protein 
combination signature TKT + LAMC1 + FUCO showed 
the best ability to classify patients into chemoresistant 
and chemosensitive groups, even when considering the 
closest subgroups of patients.

The addition of clinical parameters improves 
the classificatory ability of the protein signature
Next, we assessed if the addition of clinical information 
could improve the classificatory performance of our pro-
tein biomarker signature. We included relevant clinical 
data routinely used by clinicians during the assessment of 
patients diagnosed with HGSC prior to treatment. This 
data included patients’ age, menopausal status, serum 
CA125 levels at the time of diagnosis and the decision to 
treat with either primary cytoreductive surgery or neoad-
juvant chemotherapy following clinical, radiological and 
surgical evaluation. The combined analysis of our pro-
tein biomarker signature (AUC 0.76; 95% CI 0.64–0.87) 
with clinical parameters (AUC 0.75; 95% CI 0.63–0.88) 
showed that it provided a better classificatory power with 

an AUC value of 0.82 (95% CI 0.72–0.92), p-value = 0.09 
(Fig. 2D). Interestingly, this analysis shows how the addi-
tion of molecular information, and more concretely the 
protein signature identified in this work, can substan-
tially improve its classificatory performance provided by 
clinical data alone (Additional file 9: Table S7).

Discussion
In this work we have established a new strategy that 
combines molecular and clinical parameters to predict 
the response to first-line treatment in HGSC patients 
(HGSC-1LTR) (Fig.  2E). There are currently no protein 
biomarkers available at the time of HGSC diagnosis able 
to predict patients individual response to first-line chem-
otherapy with carboplatin and paclitaxel. In addition, 
studies evaluating predictive protein markers in ovarian 
cancer tissues using proteomic approaches are scarce 
as highlighted in a recent review by our group [13]. 
The identification of these predictors of chemotherapy 
response, as the one presented here, allows the prioritiza-
tion of platinum-based agents if the disease is sensitive, 
and the use of alternative treatments if resistant in order 
to improve patient management. This ability to predict 
a patient’s response is particularly relevant in chemore-
sistant HGSC because alternative non-platinum based 
chemotherapy regimens could be considered or clinically 
evaluated in this subgroup of patients [33]. Addition-
ally, it offers several clinical advantages and aid informed 
clinical decisions. Clinicians could address patients’ indi-
vidual needs and improve their quality of life by avoid-
ing the use of futile treatments. It could also alleviate the 
economic burden of the healthcare system associated 
with the use of ineffective treatments. Although under-
standing why platinum-resistance occurs is essential for 
improving survival, new strategies able to discriminate 
between chemoresistant and chemosensitive patients at 

Table 3  (continued)

Accession Protein Peptide

P35269 T2FA _General transcription factor IIF subunit 1 LDTGPQSLSGK

EFRPEDQPWLLR

Q8WUY1 THEM6 _Protein THEM6 LLEPFEVR

AFYLEAR

P29401 TKT _Transketolase SVPTSTVFYPSDGVATEK

ILATPPQEDAPSVDIANIR

P04350 TBB4A _Tubulin beta-4A chain EVDEQMLSVQSK

INVYYNEATGGNYVPR

P62253 UB2G1 _Ubiquitin-conjugating enzyme E2 G1 FITEIWHPNVDK

TELQSALLLR
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the time of cancer diagnosis are paramount for better 
HGSC patient management. Our findings are therefore 
an important step in advancing towards a stratified risk-
management of HGSC patients through the identifica-
tion of biological predictors of treatment response.

One of the main challenges in this type of projects is 
the selection of samples to be used for the discovery of 
protein candidates relevant to our study. In our study we 
chose tissues for two main reasons. Firstly, archival FFPE 
tumour samples represent a valuable resource for study-
ing cancer biomarkers because they are widely avail-
able in hospitals and are associated to important clinical 
information (e.g. histology, response to treatment and 
outcomes). Secondly, all patients included in the study, 
and for whom the predictive biomarker is intended to be 
used (i.e. patients with newly diagnosed advanced stage 
HGSC), undergo a biopsy prior to starting chemotherapy 
treatment. Therefore, patients’ tissues are available with-
out the need of additional invasive procedures. Moreover, 
tumour tissues are where potential protein biomarkers 
are more likely to be enriched. Although FFPE tissues 
have traditionally been associated to a high variation in 
protein quality due to formalin-induced chemical modi-
fications and differences in storage times [34], recent 
studies have confirmed that proteomes are preserved to 
a comparable extent to those obtained from fresh frozen 
tissues and are not influenced by their storage [35, 36]. 
In the study by Coscia et  al. [11] authors evaluated 25 
advanced stage HGSC FFPE samples by discovery pro-
teomics and identified CT45 as a platinum sensitivity 
mediator in ovarian cancer. We were able to observe an 
increased protein abundance by targeted proteomics in 
chemosensitive samples, in line with the results observed 
by Coscia et al. However, this protein was excluded from 
subsequent predictive analysis because its targeted pep-
tides were not consistently detected.

Clinical parameters routinely recorded by healthcare 
professionals can be relevant to improve the classifica-
tory ability of protein biomarkers. An example of this 
is the Risk of Ovarian Malignancy Algorithm (ROMA) 
which integrates patients menopausal status to serum 
CA125 and HE4 levels, to distinguishing between a 
benign and malignant pelvic mass [37]. We assessed the 
classificatory ability of our protein signature in combina-
tion with relevant clinical data such as the patients age, 
menopausal status, serum CA125 levels and the deci-
sion to treat with either primary cytoreductive surgery 
or neoadjuvant chemotherapy. Indeed, the addition of 
the patients data that is currently considered in clini-
cal practice, improved the classification power of the 

protein biomarker combination. Although mutations in 
BRCA and other homologous recombination genes are 
known to predict response to chemotherapy, current 
clinical guidelines recommend referral for genetic test-
ing at the time of ovarian cancer diagnosis. Hence, since 
the genetic test is not widely available in all clinical set-
tings until chemotherapy has commenced, a predictor of 
first-line treatment response, at present, cannot include 
the genetic information. Although we have not integrated 
the BRCA mutational status in our HGSC-1LTR strategy, 
it would be a basic parameter to add in future valida-
tion phases together with the use of targeted therapies in 
the maintenance setting given the rapid advances in the 
field. In addition, our study was limited by the availabil-
ity of HGSC samples and the quality of the FFPE tissues 
for protein extraction and MS analysis. This limitation 
is associated to differences in patients’ age between the 
chemoresistant and chemosenstivie groups and TFIp 
between the discovery and the verification cohorts. 
Given that we included patients undergoing either pri-
mary cytoreductive surgery or interval surgery, it would 
also be interesting to evaluate the HGSC-1LTR strategy 
in future studies comparing the molecular characteristics 
of tissues before and after neoadjuvant chemotherapy. 
Finally, for the widespread implementation of our signa-
ture in routine clinical practice, we would require valida-
tion in a higher number of patients and the availability of 
mass spectrometry technology in the clinics.

Conclusions
We have established a new strategy (HGSC-1LTR) that 
combines tissue levels of proteins TKT, LAMC1 and 
FUCO, together with patients’ age, menopausal status, 
serum CA125 levels, and treatment approach to predict 
the response to first-line treatment in HGSC patients. 
These data are obtained from ready-available biopsies 
in hospitals, and ready-available clinical data at the time 
of HGSC diagnosis, thus no additional interventions 
are required beyond current clinical practice. Because 
predictive tools are currently lacking for patients with 
advanced HGSC, this new strategy is clinically relevant 
for the prediction of chemoresistant patients. Identifi-
cation of chemoresistance at the time of diagnosis can 
facilitate the study of alternative treatments aimed at 
improving the outcome for these patients. In addition, 
those patients classified as chemosensitive could undergo 
standard care with platinum-based agents. Therefore, the 
HGSC-1LTR strategy can allow optimization of thera-
peutic decision making and individualize HGSC patients’ 
care.
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