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Abstract 

Neutral thermospheric density is an essential quantity required for precise orbit determination of satellites, collision 
avoidance of satellites, re-entry prediction of satellites or space debris, and satellite lifetime assessments. Empirical 
models of the thermosphere fail to provide sufficient estimates of neutral thermospheric density along the orbits of 
satellites by reason of approximations, assumptions and a limited temporal resolution. At high solar activity these esti-
mates can be off by 70% when comparing to observations at 12-hourly averages. In recent decades, neutral density 
is regularly observed with satellite accelerometers on board of low Earth orbiting satellites like CHAMP, GOCE, GRACE, 
GRACE-FO, or Swarm. When assimilating such along-track information into global models of thermosphere–iono-
sphere dynamics, it has been often observed that only a very local sub-domain of the model grid around the satel-
lite’s position is updated. To extend the impact to the entire model domain we suggest a new two-step approach: 
we use accelerometer-derived neutral densities from the CHAMP mission in a first step to calibrate an empirical 
thermosphere density model (NRLMSIS 2.0). In a second step, we assimilate—for the first time—densities predicted 
for a regular three-dimensional grid into the TIE-GCM (Thermosphere Ionosphere Electrodynamics General Circulation 
Model). Data assimilation is performed using the Local Error-Subspace Transform Kalman Filter provided by the Paral-
lel Data Assimilation Framework (PDAF). We test the new approach using a 2-week-long period containing the 5 April 
2010 Geomagnetic storm. Accelerometer-derived neutral densities from the GRACE mission are used for additional 
evaluation. We demonstrate that the two-step approach globally improves the simulation of thermospheric density. 
We could significantly improve the density prediction for CHAMP and GRACE. In fact, the offset between the acceler-
ometer-derived densities and the model prediction is reduced by 45% for CHAMP and 20% for GRACE when apply-
ing the two-step approach. The implication is that our approach allows one to much better ’transplant’ the precise 
CHAMP thermospheric density measurements to satellites flying at a similar altitude.
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Background
Neutral thermospheric density plays an important 
role when computing the atmospheric drag accelera-
tion acting on satellites (e.g., Vallado and Finkleman 
2014). Applications in need for accurate drag estimates 
are precise orbit determination (e.g., Montenbruck and 
Gill 2005; Longuski et  al. 2022), the forecasting of orbit 
decay or mission life time (e.g., Walterscheid 1989), and 
predicting the re-entry of satellites or space debris and 
identifying locations on Earth that might be endangered 
by this (e.g., Klinkrad et  al. 2006). Especially, satellites 
flying below 1000  km are affected by atmospheric drag 
that is the largest non-gravitational acceleration at those 
altitudes.

One can determine the neutral density with differ-
ent methods (Emmert 2015). In  situ measurements are 
conducted with mass spectrometers or accelerometers 
mounted on satellites. However, there are only a few 
satellites equipped with such instruments. It is also pos-
sible to estimate time averaged neutral densities from 
observed satellite orbits. The advantage of this method is 
that it can be applied to any passive satellite, but it is less 
accurate when relying on two line elements (TLE) track-
ing. In case of active satellites—for example, satellites 
equipped with retro reflectors for satellite laser ranging—
the time averaged neutral density can be determined 
within precise orbit determination with higher precision 
than using TLE.

Another approach is the use of thermospheric density 
models. In fact, several numerical and empirical models 
were developed over the last seven decades (e.g., Doorn-
bos (2012, Table  2.1) and Vallado and Finkleman (2014, 
Figure  3)). Empirical density models are constructed 
from observations that are fitted to mathematical equa-
tions. This is in particular critical for the effect of solar 
and geomagnetic forcing on density, since the underly-
ing physics including Joule heating, photochemistry, and 

particle precipitation is partly not understood owing to 
a lack of data, and partly too complex for these simple 
equations. Empirical density models represent the aver-
age state of the atmosphere (e.g., Emmert 2015). Exam-
ples for empirical models are the Jacchia–Bowman (JB, 
Bowman et  al. 2008) model, Naval Research Labora-
tory Mass Spectrometer and Incoherent Scatter radar 
(NRLMSIS 2.0, Emmert 2021) model, and Drag Temper-
ature Model (DTM, Bruinsma and Boniface 2021).

Numerical models propagate an initial state using phys-
ical laws and principles, for instance, heat and momen-
tum balance, electromagnetism and chemical reactions. 
Typically, this is done by solving a set of (partial) differ-
ential equations on a grid. Examples for numerical mod-
els are the National Center for Atmospheric Research 
Thermosphere Ionosphere Electrodynamics General 
Circulation Model (NCAR TIE-GCM, Qian et al. 2014), 
NCAR Whole Atmosphere Community Climate Model 
(WACCM-X, Liu et  al. 2018), and Global Ionosphere–
Thermosphere Model (GITM, Ridley et al. 2006).

There are significant discrepancies between differ-
ent models, and between models and observations (e.g., 
Gaposchkin and Coster 1990; Bruinsma et al. 2012, 2014; 
He et  al. 2018; Panzetta et  al. 2019). Hence, there is an 
ongoing effort in improving the models. In this paper, we 
present a new experimental approach for that purpose.

While numerical models provide physically consistent 
solutions, they do not exhibit improved skills in neutral 
density simulation when compared to empirical mod-
els (e.g., Emmert 2015). A common approach to nudge 
numerical model simulations closer to reality is merging 
them with observations via data assimilation.

In a coupled model, like the TIE-GCM, assimilating 
quantities associated with a compartment also affects the 
other compartments. One can assimilate observations 
of the electron density to improve the representation of 
the neutral mass density. For example, the total electron 
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content, an integrated measure of electrons along a path 
through the atmosphere, could be used for that. Although 
we only assimilate neutral mass densities here, our assim-
ilative version of the TIE-GCM can be easily modified to 
assimilate other quantities.

The in  situ measurements of a single satellite mission 
only intersect with a small subset of the model grid cells. 
This means, compared with models the in situ measure-
ments of a single satellite are very sparse. The farther an 
observation is away from a grid cell, the less information 
is provided by it for that cell. For instance, a measure-
ment of the neutral density on the day side provides lit-
tle information about the density on the night side. Thus, 
assimilating such along-track data should only affect grid 
cells in the vicinity of the satellite’s orbit. Matsuo et  al. 
(2013) have assimilated neutral densities derived form 
the CHAMP (Reigber et  al. 2002) accelerometer into 
the TIE-GCM. The model densities were only improved 
in the vicinity of the satellite’s orbit. But they achieved 
global improvements by co estimation of model drivers.

Besides co estimating parameters for the model drivers, 
one could also assimilate data of many sources at different 
locations simultaneously for global model improvements. 
In this study we test another approach that consists of 
two steps and is illustrated in Fig.  1. We use the along-
track densities derived from the CHAMP accelerometer 
to calibrate an empirical model (the NRLMSIS 2.0). The 
calibrated empirical model is viewed here as a combina-
tion of the data used to build the empirical model itself 
and the densities derived from the CHAMP accelerome-
ter, with more weight given to the CHAMP observations. 
For the calibration we evaluate the empirical model along 
the CHAMP orbit and scale the observed densities by the 
modeled densities to derive scale factors. We also apply a 
low pass filter to the scale factors. The calibrated model 
is the output of the original model multiplied with the 
corresponding scale factor. In the first step, we evaluate 
the calibrated empirical model on a regular three-dimen-
sional grid. We call it the data grid. In the second step, 
we assimilated the data located on the data grid into the 
TIE-GCM that is located on what we call the state grid.

Data assimilation of various observations types has 
already been applied to different models of the upper 
atmosphere in several studies: Solomentsev et al. (2012) 
have assimilated simulated GPS observations into a 
numerical model of the ionosphere using the Ensemble 
Square Root Filter. The aim was assessing the state esti-
mation of the ionosphere and improving the estimation 
of model drivers. Observations from GPS Occultation 
have been assimilated by Lee et al. (2012) into the TIE-
GCM using the Ensemble Kalman filter under geomag-
netic quiet conditions. They aimed at improving the 
global ionospheric electron density specification. Mat-
suo et al. (2013) have assimilated CHAMP observations 
and GPS Occultation measurements into the TIE-GCM 
using the Ensemble Kalman filter. They found that assim-
ilation of accelerometer-derived densities only improves 
the model densities in the vicinity of the satellite’s orbit. 
But they also demonstrated that co estimating the F10.7 
parameter together with accelerometer-derived densities 
impacts the global model. In the study of Morozov et al. 
(2013) the ensemble adjustment Kalman filter is used to 
assimilate CHAMP observations into the Global Iono-
sphere–Thermosphere Model during a geomagnetically 
calm period. They estimate the F10.7 index in a way it has 
a constant variance. They could reduce the model bias 
along the CHAMP and GRACE orbits. Codrescu et  al. 
(2018) have assimilated neutral densities derived from 
accelerometers on board of the CHAMP mission into the 
CTIPe model during quiet conditions at solar minimum 
using the Ensemble Kalman Filter. The model results 
were improved when comparing to CHAMP and GRACE 

Fig. 1  The green lines illustrate the grid of the TIE-GCM at one epoch. 
We call it the state grid. The blue lines show the (constant) grid at 
which we evaluate the NRLMSIS 2.0. We call it the data grid. The black 
curve illustrates the orbit of the CHAMP satellite for some revolutions. 
In the two-step approach we first calibrate the NRLMSIS 2.0 with the 
accelerometer-derived density of the CHAMP satellite, and evaluate 
it on the data grid. In a second step we assimilated the densities 
located on the data grid—in data assimilation terminology this are 
the observations—into the TIE-GCM. The grids appear thicker as they 
are in reality, since the radius of Earth is not added. Actually both 
grids cover the entire Earth, but we show only a subset for a clearer 
illustration
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observations. Forootan (2022) have applied a calibration 
and data assimilation technique to the empirical NRLM-
SISE-00 model using observations from the GRACE 
accelerometer.

In contrast to the existing approaches, the two-step 
approach enables us to assimilate globally distributed 
neutral densities that are derived from satellite acceler-
ometers and an empirical model, which is also build from 
many observations.

Methods
Data assimilation
Data assimilation (e.g., Lahoz et  al. 2010) combines the 
state estimation of a model with observations taking into 
account the uncertainty of both to get an estimate of the 
state with higher accuracy. There are many different data 
assimilation approaches. For highly nonlinear problems, 
like atmosphere models, ensemble Kalman filters (e.g., 
Vetra-Carvalho et al. 2018) are frequently employed. By 
implicitly representing the variance–covariance matrix 
of the model state by an ensemble of states, ensemble 
filters are very efficient in terms of computational cost 
and computer memory requirements and can be eas-
ily integrated into the model code. These filters utilize a 
sequence of forecast and analysis steps. The forecast step 
uses the model to predict the observations. At the subse-
quent analysis step the state of the model is fitted so that 
it minimizes the distance to the forecasted observations 
and the actual observations w.r.t. the associated vari-
ance–covariance matrices.

The Parallel Data Assimilation Framework (Nerger 
et  al. 2020) developed at the Alfred Wegener Institute 
Bremerhaven is open-source software for ensemble-
based data assimilation. It is designed for large scale 
numerical models and allows the application of different 
filter algorithms. Moreover, it enables parallel computa-
tion of all ensemble members, which in turn can also be 
calculated in parallel if supported by the model. Both, 
the TIE-GCM and PDAF are written in Fortran which 
simplifies the implementation. In this study, we use the 
localized (Nerger et  al. 2006) error-subspace transform 
Kalman filter (Nerger et al. 2012b, ESTKF).

The original ensemble Kalman filter (Evensen 1994, 
EnkF) formulation is typically expanded with perturbed 
observations to account for an underestimation of the 
analysis error covariance that leads to a too small ensem-
ble spread after the analysis step (Burgers et  al. 1998; 
Houtekamer and Mitchell 1998). The perturbed observa-
tions are an additional source for sampling errors (Whi-
taker and Hamill 2002), which are avoided by a class of 
filters using a deterministic transformation from the 
forecast ensemble to the analysis ensemble (e.g., Tippett 
et  al. 2003). We choose The ESTKF since it belongs to 

this class and is formulated in an efficient way (Nerger 
et al. 2012b).

Determining neutral densities from space‑borne 
accelerometers
Given the atmospheric drag acting on a satellite, together 
with a model describing the shape and material of the 
satellite one can derive the neutral mass density at the 
satellite’s position (e.g., Doornbos 2012,  p.91). Acceler-
ometers onboard satellites measure the superposition of 
all non-conservative accelerations acting on the satellite. 
To isolate the atmospheric drag acceleration from the 
measurements, one needs to carefully model all other 
non-conservative forces and remove their effect. In prac-
tice, one needs to simulate the acceleration caused by 
thermal re-radiation, solar radiation pressure and Earth 
radiation pressure, and remove it from the the measured 
accelerations. For this study, we use the neutral mass 
densities derived from the accelerometers on board of 
the CHAMP (Reigber et  al. 2002) and GRACE (Tapley 
et al. 2007) mission using the approach described in Viel-
berg et  al. (2018); Vielberg and Kusche (2020). Further 
information can be found at Vielberg (2021).

Neutral density models used in this study
The NCAR Thermosphere Ionosphere Electrodynamics 
General Circulation Model (TIE-GCM, Qian et al. 2014), 
represents a global, numerical model of the upper atmos-
phere. The TIE-GCM ranges from approximately 97 km 
to 500  km altitude. The upper boundary is not fixed in 
geometric height coordinates, since the TIE-GCM uses 
pressure levels as vertical coordinate. For this study we 
use the latest version of the TIE-GCM (version 2.0). An 
important proxy driver for the TIE-GCM is the F10.7 
index (e.g., Tapping 2013) that is used to compute the 
extreme ultraviolet (EUV) radiation, based on the model 
of Richards et  al. (1994). The TIE-GCM includes two 
alternative empirical high-latitude potential models com-
puting ionospheric convection: the Heelis model (Heelis 
et al. 1982) and the Weimer model (Weimer 2005). The 
first requires the three hourly Kp index (e.g., Matzka et al. 
2021), whereas the second uses solar wind and interplan-
etary magnetic field parameters provided by the OMNI 
Dataset with one minute temporal resolution (Papitash-
vili and King 2020).

The Naval Research Laboratory Mass Spectrometer 
Incoherent Scatter radar 2.0 (NRLMSIS  2.0, Emmert 
2021) model is a global, empirical model of the atmos-
phere. It takes location, time, geomagnetic activity repre-
sented by the Kp index, and solar activity represented by 
the F10.7 index as input. It computes the neutral compo-
sition, density, and temperature. Since it is derived from 
various observations at different periods and locations 
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the results represent the averaged observed state of the 
atmosphere for the given inputs. The model extends from 
the ground to the exobase.

Period for experiments
The period of the assimilation experiment is restricted by 
three factors: first, it must contain measurements of the 
CHAMP and GRACE missions. That is, the period must 
be between 2002 and 2010. Second, the period must con-
tain at least one strong storm (Kp ≥ 7 ), but also quiet 
condition, so we can evaluate the assimilation framework 
for different geomagnetic activity. Finally, the duration is 
restricted by the computing time. A 2-week-long period 

is processed on our hardware (400 cores distributed over 
25 Intel(R) Xeon(R) Gold 6130 processors) in about four 
hours and 20 min. This allows us to test different settings 
in a reasonable amount of time. We choose the period 
from 27 Mar 2010 00:00 UTC+0 till 10 April 2010 00:00 
UTC+0, that satisfies all three conditions. In Fig. 2, the 
solar and geomagnetic activity during the experiments 
is illustrated. On April 5, 2010, an interplanetary coro-
nal mass ejection reached Earth around 8:27h UTC+0 
and triggered a geomagnetic storm (Lu et al. 2014; Sheng 
et  al. 2017). The mean altitudes of the CHAMP and 
GRACE satellite during the experiment are 302 km and 
474 km, respectively.

Fig. 2  External forcing time series during the period of the experiment required to run the NRLMSIS 2.0 and TIE-GCM. A Kp value greater than or 
equal to five is considered as storm. The main storm event is at 5th April from 6:00 to 18:00 UTC+0. The temporal resolution of the F10.7 index and 
Kp index is one day and three hours, respectively. The solar wind and the z component of the interplanetary magnetic field are taken form the 
OMNI data set and have a 1-min resolution
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Calibration of NRLMSIS 2.0
The majority of the observations used to estimate the 
NRLMSIS  2.0 parameters are between the ground and 
105 km altitude (Emmert 2021, Table 1). Above this alti-
tude only density observations derived from two line ele-
ments were used along with synthetic observations from 
the preceding model NRLMSISE-00. Since, the TIE-
GCM starts at approximately 97 km altitude it does not 
intersect with most of the observations used for building 
the NRLMSIS  2.0. Moreover, empirical models return 
average states of the atmosphere. Thus, we calibrate the 
model to perform better at the altitudes covered by the 
TIE-GCM.

We calibrate the NRLMSIS 2.0 by scaling it with time 
dependent factors. The scale factor is thus defined as the 
quotient of the density derived from the CHAMP accel-
erometer ρCHAMP and the density ρNRLMSIS 2.0 predicted 
by the NRLMSIS 2.0 for the corresponding location and 
time (see also Zeitler et al. 2021, Eq. 10):

In Fig. 3, the scale factors for the duration of the experi-
ment are plotted. During and after the strong storm 
(starting at 5th April), the scale factors are much larger 
compared to the rest of the period (Fig. 3 a and c). Within 
each orbit, the scale factors vary according to latitude and 
whether the satellite is on the day or night side (Fig. 3 b). 
For example, on the night side equator (argument of lati-
tude is zero) the scale factors are systematically larger 
than on the day side equator (argument of latitude is 
180◦ ). The median scale factor on the night side is about 
16% larger than the median on the day side.

As shown, the scale factor depends on the horizontal 
location. However, for each epoch, we can only derive the 
scale factor at one location if we use only one satellite. 
That is, the scale factor is expected to work best for loca-
tions near the CHAMP satellite.

(1)s(t) =
ρCHAMP(t)

ρNRLMSIS 2.0(t)
.

Fig. 3  Panel a shows the scale factor between the neutral densities computed with NRLMSIS 2.0 and the neutral densities derived from the CHAMP 
accelerometer. The argument of latitude is the angle–measured on the orbital plane–between the ascending node and the satellite. Values of 0 ◦ 
and 180◦ correspond to the night side and day side equator, respectively. At 90◦ and 270◦ CHAMP is closest the north and south pole, respectively. 
The solid black line is the border between day and night side. The dashed black line marks the point where the satellite is closest to the poles. The 
solid blue line in panel b is the median scale factor at the corresponding argument of latitude. The solid blue line in panel c is the median scale 
factor at the corresponding orbit. The light blue areas in panels b and c mark the interval between the 25th and 75th percentile. Panels d, e, f show 
the scale factors filtered with a 3-hourly low-pass filter analogously to panels a, b, c
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Thus, we decided to filter out the orbital signal in the 
scale factor time series. We found that a cut-off frequency 
of three hours, which approximately corresponds to two 
revolutions of the CHAMP satellite, eliminates this sig-
nal (see Fig.  3  d and  e). That is, the variability between 
day and night side within an orbit vanishes in the filtered 
scale factor time series. The three hourly filtered scale 
factor is an average value that can be applied to the whole 
model, at the cost of signal loss (compare Fig. 3 a and d). 
Consequently, the cut-off frequency also limits the dura-
tion between subsequent analysis steps.

As shown in Zeitler et  al. (2021), half daily scale fac-
tors derived at different heights are highly correlated. For 
CHAMP and GRACE the correlation is 89%. Thus, when 
calibrating the NRLMSIS 2.0 with observations from the 
CHAMP mission, we expect that the calibrated model 
also fits better to the densities derived from the GRACE 
accelerometer.

Spatial resolution of the data grid
We choose the horizontal resolution of the data grid, so 
that it reflects the resolution of the NRLMSIS  2.0. The 
NRLMSIS 2.0 uses spherical harmonics up to degree six 
to expand the model parameters to the global atmos-
phere (Hedin (1987, Equation  A22) and Emmert et  al. 
(2021,  Section2.4)). That is, the NRLMSIS  2.0 cannot 
resolve signals with wavelength smaller than 360

◦

6 = 60◦ 

arc length. To sample these signals, one needs at least 
half the wavelength. Here, we choose a third with gives 
20◦ for the horizontal resolution of the data grid. Using a 
finer grid would increase the number of observations and 
slow down the assimilation while the gain in informa-
tion is limited. The data grid starts at 100 km and ends at 
550 km covering most of the state grid. The vertical reso-
lution is 25 km. This value corresponds approximately to 
the number density scale height at 200 km altitude.

Setup for TIE‑GCM
We use the latest version of the TIE-GCM (version 
2.0). The TIE-GCM either runs with 5.0◦ or 2.5◦ hori-
zontal resolution. For this study, we use the coarser five 
degree resolution since it runs about ten times faster and 
requires one eighth of the disk space to store the results 
at the same temporal resolution. The step size—the time 
between subsequent model states—is 15 seconds. We 
found it difficult to use longer values as this caused some 
ensemble members to crash. We do not save every model 
step, since it would require too much memory: Saving 
the ensemble mean of the neutral density at the state grid 
at each model step for a 2-week-long period using single 
precision requires approximately 24 GB. But we also need 
to save the data at the data grid and the corresponding 
standard deviations. If one also stores the results of each 

Table 1  The quantities that are perturbed to generate the ensemble are listed in the first column

The solar wind parameters are only perturbed if the Weimer model is used. Whereas hemispheric power and cross tail potential are only perturbed in case of the 
Heelis model. The third and fourth column are the parameters used for sampling the truncated normal distributions. The mean is always zero. Note that correlations 
are not listed in this table. The truncation is symmetric. That means values larger than the positive truncation threshold as well as values less than the negative 
truncation threshold are rejected. The last two columns contain the minimal and maximal values of the unperturbed quantities during the experiment

Units Standard deviation Truncation Min Max

External forcing
 F10.7 sfu 1 ± 50 75.9 87.8

 Hemispheric power GW 5 ± 9 15.3 155.0

 Cross tail potential kV 8 ± 12 23.2 170.4

 Solar wind density 1/cm
3 0.1 ± 0.3 0.5 27.1

 Solar wind velocity km/h 45 ± 135 329.3 820.8

Lower boundary conditions
 Neutral temperature K 3 ± 9 151.5 198.8

 Neutral zonal wind cm/s 500 ± 1500 − 5914.5 5841.5

 Neutral meridional wind cm/s 650 ± 1950 − 8073.3 8077.5

 Geopotential height m 70 ± 210 97246.7 98652.7

Constants
 Characteristic Maxwellian energy of 
polar cusp electrons

keV 0.01 ± 0.03 0.1

 Characteristic Maxwellian energy of 
drizzle electrons

keV 0.05 ± 0.15 0.5

 Joule heating factor – 0.15 ± 0.45 1.5
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ensemble member the storage requirements increase 
accordingly. Thus, we save the results every ten minutes.

The TIE-GCM requires lower boundary constraints 
for neutral temperature, horizontal neutral wind, and 
geopotential altitude. By default a ’flat’ lower boundary 
is assumed. That is, there is no wind, the neutral tem-
perature is 181 K, and the geopotential height is 96.4 km. 
Alternatively, one can use zonal monthly mean clima-
tologies to specify the lower boundaries. This feature is 
based on the work of Jones et al. (2014). The TIE-GCM 
comes with a file containing zonal climatologies derived 
from the NRLMSISE-00 (Picone et al. 2002) and the Hor-
izontal Wind Model (HWM07, Drob et al. 2008). To use 
it with the five degree grid one has to interpolate, since 
it is only given for the 2.5 degree grid. Regardless which 
method is chosen to specify the lower boundary, we addi-
tionally add tidal perturbations derived from the Global 
Scale Wave Model 2002 (GSWM-02 Hagan and Forbes 
2002) to it to account for migrating diurnal and semi-
diurnal tides.

Ensemble generation
We create the ensemble by adding perturbations to the 
external forcing, lower boundary conditions and some 
constants to each ensemble member that are sampled 
from a truncated multivariate normal distribution with 
zero mean. The truncation of the normal distribution is 
necessary to prevent model crashes caused by extreme 
values sampled from the tails of the normal distribu-
tion that are invalid or unrealistic. We sample the per-
turbations once and use the same values for the entire 
duration of the experiment. For each lower boundary 
condition, only one value is sampled, which is added to 
all elements of the corresponding field. We do not con-
sider errors within the field, but a global offset of the 
lower boundary condition. In Table  1, the parameters 
of the probability density function are listed.

Since we have no access to the true probability den-
sity function of the perturbed parameters, we have 
to determine it to a certain extend arbitrarily. The 
standard deviation of the constants that we perturb 
is assumed to be 10% of the constant itself. Following 
Tapping (2013) we assume that the standard devia-
tion of the F10.7 index is one solar flux unit for values 
smaller than 100. When using the Heelis model we per-
turb hemispheric power and cross tail potential. Since 
both are computed within the TIE-GCM from the Kp 
index we introduce a correlation of 0.9. If the Weimer 
model is employed, we perturb the solar wind veloc-
ity and density instead. The lower boundary conditions 
of the TIE-GCM are perturbed by diurnal and semi-
diurnal tides computed by the global scale wave model 

(GSWM). We decided to approximate the standard 
deviation of the lower boundary conditions from the 
GSWM tidal perturbations. We take 10% of the largest 
absolute tidal perturbation in March.

We use an ensemble with 100 members. The initial 
value for the assimilation are computed with an open-
loop simulation, which starts 10 days before the assimi-
lation experiment.

State vector and observation operator
The TIE-GCM approximates the state of the atmos-
phere at an epoch with multiple quantities located on 
the state grid, given for the current and previous model 
step. Since TIE-GCM computes time derivatives simply 
via finite differences from the previous and current steps, 
this can be viewed as equivalent to storing variables and 
their derivative in the state vector. The neutral mass den-
sity can be linked to these fields via the mass fractions w 
of the modeled species and the neutral temperature T. 
Thus, in our study the state vector is composed of

O, O2 , and He denote atomic oxygen, molecular oxygen 
and atomic helium, respectively. The quantities evaluated 
at the previous step are denoted with a prime symbol.

The observation operator H is a composition of the 
function computing the neutral mass density ρ(x) and an 
interpolation function I() that computes the values at the 
data grid given values on the state grid:

For each cell of the state grid and each step, we can com-
pute the neutral mass density assuming an ideal gas with

Here, p is the pressure, R denotes the gas constant and M 
is the mean molar mass

The molar mass of a species is denoted with M, 
and the mass fraction of molecular Nitrogen is 
wN2 = 1− wO − wO2 − wHe.

Since the state grid is irregularly spaced in the vertical 
dimension, we first perform linear interpolation along 
this axis. Since the neutral mass density decreases almost 
exponentially with height, we apply the natural logarithm 
to the neutral densities before performing the vertical 

(2)x = [T ,T ′,wO,w
′
O,wO2,wO2

′,wHe,w
′
He].

(3)y = H(x) = (I ◦ ρ)(x).

(4)ρ =
pM(wO,wO2,wHe)

RT
.

(5)

M(wO,wO2,wHe) =
1

wO

MO
+

wO2

MO2

+
wHe

MHe
+

wN2

MN2

.
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interpolation. This ensures small interpolation and espe-
cially small extrapolation errors, since on a logarithmic 
scale the density profiles are almost linear. We then apply 
the exponential function to the vertically interpolated 
values to transform the interpolated values back to neu-
tral mass densities. Two more linear interpolations along 
the horizontal coordinates axes are performed to com-
pute the mass densities on the data  grid. If the obser-
vations are given exactly at the time of the current step, 
another interpolation along the time axis is not necessary.

Observations
At each analysis step we assimilate the neutral mass den-
sities from the calibrated NRLMSIS  2.0 located on the 
data  grid into the TIE-GCM. These densities are not 
real observations, but we still use the term ’observation’ 
here to be consistent with data assimilation terminology. 
The current implementation only supports uncorrelated 
observation. Thus, although the observations are highly 
correlated we cannot account for it by using the full vari-
ance–covariance matrix of the observations.

We approximate the standard deviation of the NRLM-
SIS  2.0 neutral mass density by multiplying the uncali-
brated neutral mass density ρ with a factor fh depending 
on the altitude. The height dependent factor is obtained 
from the standard deviations provided in (Emmert 2021, 
Data Set 5) for the epoch 2006-2013 at 250  km and 
400  km altitude. We use linear interpolation to get the 
standard deviation for arbitrary heights:

We introduce additional weights: pga(Kp) , pdist(d) , and 
p0 to account for the geomagnetic activity, the distance to 
the CHAMP satellite and a constant factor, respectively. 
The standard deviation is computed with

We use the Kp index as indicator of the geomagnetic 
activity. For quiet periods (Kp < 4 2

3 ) the weight is one. 
For the maximal Kp value of 9, the factor is 12 . The values 
in between are linearly interpolated. This factor ensures 
that the NRLMSIS 2.0 observations have a lower weight 
during storms.

(6)fh(h) =















0.148+
h− 250

1500
h < 400 km

0.248+
h− 400

3260
h ≥ 400 km.

(7)σρ(ρ, h, Kp, d) = fh(h) ρ
1

pga(Kp)

1

pdist(d)

1

p0
.

(8)pga(Kp) =







1 Kp < 4 2
3

40− 3Kp

26
Kp ≥ 4 2

3 .

The standard deviation is weighted by the distance 
between the CHAMP satellite and the center of the cor-
responding data grid cell. We use two exponential decay 
functions depending on the spherical distance �φ on the 
unit sphere and the vertical geocentric distance �h:

The weighting is controlled by the half life parameters �φ 
and �h . For the experiments presented in this study �φ is 
infinite. That is, the spherical distance has no impact on 
the weights.

Forecast duration
The forecast duration is the duration between two subse-
quent analysis steps. We refer to model runs with infinite 
forecast duration, i.e., runs in which no data are assimi-
lated, as open-loop simulations. If the forecast duration is 
too long, it will resemble the open-loop simulation some 
time before the next analysis step. If it is too short, the 
model state is mainly constrained by the observations 
and not the model dynamics. In that case the assimilation 
is useless since one could use the observations directly. 
For this consideration also the standard deviation of the 
observations and the model forecast are important. If 
the observations have much larger uncertainties than the 
forecast, the result resembles the open-loop simulation 
and the other way round.

The lower bound of the forecast duration is given by 
the model step length. The forecast duration should not 
exceed the cut-off period of the low pass filter applied to 
the scale factors.

The model step length is 15 seconds and the NRLM-
SIS 2.0 has been filtered with a three hourly low pass fil-
ter. Thus, we choose to perform the analysis step hourly.

Localization
At each analysis step of a global filter, each element of 
the state vector is updated taking into account all obser-
vations, regardless of how far the observations are away 
from the location of the corresponding element of the 
state vector. This can be of advantage if there are long-
range correlation in the system (e.g., the ocean or the 
atmosphere). For instance, a single in  situ observation 
within the atmosphere could theoretically improve the 
state estimate of the whole atmosphere. However, this 
requires that significant long-range correlations exist 
and that they are correctly represented by the ensemble. 
Typically, the random errors in the representation of the 
covariances are larger than the actual signal for small 

(9)

pdist(�φ ,�h) = exp

(

−
ln(2)

�φ

�φ

)

exp

(

−
ln(2)

�h
|�h|

)

.
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ensembles (Nerger et  al. 2006,  p.640). This can lead to 
spurious correlations (e.g., Hamill et al. 2001) and locally 
incredible estimates (Nerger et  al. 2006,  p.640). This 
problem is addressed by filtering out long-range corre-
lations in the analysis step by applying localization (e.g., 
Nerger et al. 2012a).

For the ESTKF, domain localization (Nerger et al. 2006) 
together with an optional observation localization (Hunt 
et al. 2007) is implemented within PDAF: the state grid is 
subdivided into disjoint sub-domains. Only observations 
whose distance from the center of the corresponding sub-
domain is smaller than a cut-off radius are used to update 
the elements of the state vector within the sub-domain.

The geometric horizontal extent of the state grid cells 
and data  grid cells increases with altitude. An edge at 
550  km altitude is 7% larger than at 100  km. Moreover, 
the vertices of each grid are located closer to each other 
at the poles. At the equator the distance between two 
neighboring vertices along a circle of latitude is almost 
six times larger than at 80◦ latitude. Additionally, the 
vertical extent of the state  grid cells increases with alti-
tude due to the use of pressure levels. To include about 
the same number of observations at each sub-domain, we 
compute the distance using the indices of the state  grid 
cells as coordinates. To transfer the coordinates of the 
data  grid to the index coordinates of the state  grid, we 
use the geometric height of the ensemble mean.

We subdivided the state grid into sub-domains contain-
ing at most three cells in meridional, zonal and vertical 
direction. The distance is computed using the L2 norm. 
The cut-off radius is seven grid cells, which corresponds 
to a horizontal metric radius of about 4000  km at the 
equator and about 700 km at ±80◦ latitude.

Table 2  Setup for open-loop simulations. Only settings that 
differ are listed

Experiment identifier OLS 1 OLS 2 OLS 3

High-latitude potential model Heelis Heelis Weimer

Lower boundary flat MSIS & HWM MSIS & HWM

Fig. 4  The neutral mass density along the orbits of CHAMP and GRACE is plotted for a nine hour long period. The dashed vertical gray lines indicate 
the transits above the north pole and the dotted vertical gray lines the transits above the south pole. The calibrated NRLMSIS 2.0 time series was 
computed using scale factors filtered with a cut-off frequency of eight cpd
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Fig. 5  For each altitude of the data grid we computed the median of the neutral mass density including all longitudes, latitudes and times. The 
horizontal dotted lines indicate the intersection of the height profile of the calibrated NRLMSIS 2.0 with the profile of the corresponding open-loop 
simulation. Below 350 km the lines do not intersect

Table 3  Setups for the data assimilation experiments

A ’completion’ of 100% means that the experiment ran to the end without any errors. Values below 100% indicate that the TIE-GCM crashed after the corresponding 
percentage of the experiment’s intended duration. �h is the half life parameter for weighting the densities on the data grid based ob the vertical distance to CHAMP 
(see Eq. 9). p0 is the constant weighting factor introduced in Eq. 7. We abbreviate observation localization with ’obs. loc.’. ’median difference’ refers to the median of 
the differences between ensemble mean and accelerometer derived density of the corresponding satellite. The RMSE is computed using the difference between 
ensemble mean and accelerometer derived density. The statistics are only computed for experiments with 100% completion to ensure comparability

ID completion (%) �h (km) p0 obs. loc. median difference ( g

cm3 ) RMSE ( g

cm3 )

CHAMP GRACE CHAMP GRACE

01 100 ∞ 1.0 No − 9.6e−16 − 7.1e−17 2.3e−15 1.2e−16

02 100 ∞ 2.0 No − 2.9e−16 − 5.3e−17 1.8e−15 1.0e−16

03 100 ∞ 3.0 No 4.9e−17 − 4.2e−17 1.7e−15 9.7e−17

04 25 ∞ 4.0 No

05 100 150 3.0 No − 2.8e−16 − 5.1e−17 1.8e−15 1.0e−16

06 100 300 3.0 No − 1.1e−16 − 4.8e−17 1.8e−15 1.0e−16

07 100 600 3.0 No − 3.4e−17 − 4.5e−17 1.7e−15 9.9e−17

08 100 300 4.0 No 9.7e−17 − 4.1e−17 1.7e−15 9.6e−17

09 53 150 6.0 No

10 54 200 4.5 No

11 100 ∞ 3.0 Yes − 1.3e−15 − 7.9e−17 2.6e−15 1.3e−16

12 100 300 4.0 Yes − 1.2e−15 − 7.4e−17 2.5e−15 1.3e−16

OLS 1 100 − 1.8e−15 − 9.8e−17 3.1e−15 1.6e−16

OLS 2 100 − 1.4e−15 − 9.1e−17 2.7e−15 1.6e−16

OLS 3 100 − 1.8e−16 − 5.1e−17 2.4e−15 1.4e−16
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Additionally, we apply observation localization in some 
experiments. For each sub-domain the associated obser-
vations are weighted based on the distance. PDAF com-
putes the weights with a finite function that mimics a 

Gaussian, realized as polynomial of order five (Gaspari 
and Cohn 1999, Eq. 4.10). This weighting function mono-
tonically decreases from one at zero distance to zero at a 
distance equal to the cut-off radius.

Fig. 6  Each panel contains time series of neutral density 
(

g

cm3

)

 for different cells of the data grid. Each row corresponds to a geocentric latitude 

and each column to an ellipsoidal height. The longitude is always 0◦E . The panels of each column share the same y-axis. The errors bands show the 
standard deviation. This figure shows the first 2 days of the experiment with quiet geomagnetic conditions
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State constraints
After the analysis step the state vector may contain values 
that are physically impossible. Thus, we enforce the fol-
lowing constraints:

•	 The neutral temperatures given in Kelvin must be 
positive.

•	 The mass fraction of each species must be in the 
interval [0, 1].

•	 The mass fractions at each location must sum up to 
one.

Fig. 7  Each panel contains time series of neutral density 
(

g

cm3

)

 for different cells of the data grid. Each row corresponds to a geocentric latitude 

and each column to an ellipsoidal height. The longitude is always 0◦E . The panels of each column share the same y-axis. The errors bands show the 
standard deviation. This figure shows 2 days of the experiment including the storm at 5th April
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Results and discussion
Open‑loop experiments
At first we try different setups for the TIE-GCM without 
assimilating any data. We investigate two setups for the 
lower boundary conditions: a flat lower boundary and a 
zonal mean climatology lower boundary derived from 
the MSIS and HWM. Additionally, we compare open-
loop simulations using the Heelis and Weimer mod-
els. The Heelis model implies the use of the Kp index, 
whereas the Weimer model implies the use of solar wind 
and interplanetary magnetic field parameters. The F10.7 
index is used in all experiments. The open-loop experi-
ments are summarized in Table 2. The following discus-
sion always refers to the ensemble mean of the open-loop 
experiments.

When using the zonal mean climatology instead of 
a flat lower boundary the median density (computed 
over the whole time period of the simulations) along the 

CHAMP orbit increases by 5% (OLS 2 vs. OLS 1). When 
using the Weimer model instead of the Heelis model the 
median density along the CHAMP orbit increases by 13% 
(OLS  3 vs. OLS  2). The along-track densities of OLS  1 
and OLS  2 show the same behavior and are basically 
separated by an offset, whereas the along-track densities 
of OLS 3 show other features (see Fig. 4), for example, a 
larger density drop at the north pole.

The height profiles showing the median neutral density 
in Fig. 5 associated with the OLS 2 and OLS 3 intersect 
with the profiles associated with the calibrated NRLM-
SIS 2.0. The median density of OLS 2 and OLS 3 below 
the intersections is higher than the median density of the 
calibrated NRLMSIS 2.0. Accordingly, above the intersec-
tions the NRLMSIS 2.0 has higher densities. This means 
that at the analysis steps, the densities above the corre-
sponding intersection must increase, while the densities 
below must decrease. In other words, the innovation (in 

Fig. 8  This height profile illustrates the average ratio of the analyzed ( y − H(xa) ) and forecasted ( y − H(xf ) ) observational residuals for the first nine analysis 
steps. For easier interpretation we subtract the ratio from one: H(x

a)−H(xf )

y−H(xf )
= 1−

y−H(xa)

y−H(xf )
 . The numerator contains the differences between the analyzed and 

forecasted observations and the denominator is the innovation. We subdivide the x axis into three intervals: [−∞, 0) , [0, 1], and (1,∞] . For each interval we 
provide exemplary illustrations for the ratio. In the first interval (negative ratio), the analyzed state (transformed to the observation space) is pushed away from 
the observations, in the third interval (ratio greater than one) the correction applied to the forecast overshoots the innovation. A value of zero means that 
observations have no impact and the analyzed observations are equal to the forecasted observations H(xa) = H(xf ) . A value of one means that the full 
innovation is adopted H(xa) = y . Ideally, the ratio is in the interval [0, 1], which means that the analyzed observations are between the real observations and 
the modeled observations. The solid bold line is the median computed over all layers of the data grid at the corresponding color coded analysis step. The 
shaded area marks the interval between the 25th and 75th percentile. Here xa is the analyzed state after applying constraints
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the language of data assimilation, it is generally the dif-
ference between observations and model forecasts) has a 
different sign depending on the altitude.

Data assimilation experiments
We tested different setups for the data assimilation that 
are summarized in Table 3. For the TIE-GCM we use the 
same setup as for the OLS  3, since the external forcing 
has the highest temporal resolution. We use the median 
of the differences between the accelerometer-derived 
neutral densities and the corresponding densities of the 
TIE-GCM as performance indicator for our experiments 
(see last column of Table 3). We show only the results of 
experiment 8 in more detail since it achieved the best 
improvement for GRACE and the second best improve-
ments for CHAMP.

We present only the ensemble mean of the neutral den-
sities, since it reduces the dimensionality of the ensem-
ble, simplifying the illustration of the results.

Fig. 9  For the first four analysis steps, the average ratio of the 
standard deviation of the NRLMSIS 2.0, and the model forecast are 
plotted for each level of the data grid. A value of one means that 
both have the same uncertainty. Values greater than one indicate 
that the observation error is larger than the forecast error. The solid 
line is the median computed over all layers of the data grid at the 
corresponding color coded analysis step. The shaded area marks the 
interval between the 25th and 75th percentile

Fig. 10  Each map corresponds to a pressure level of the state grid. The difference between the forecast mean and analysis mean of the neutral 
density 

(

g

cm3

)

 is indicated by the color bars on the right. Each row corresponds to a pressure level. each column to an analysis step. This figure 

shows the three first analysis steps. The horizontal position of CHAMP is marked with a black star, the position of the Sun with an orange circle, and 
the day–night border with an orange line
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We first look at the temporal evolution of the ensemble 
mean. Figure 6 shows the time series of the neutral mass 
densities at nine cells of the data grid for the first 2 days 
of the experiment. The columns contain the time series 
located at 250 km, 300 km, and 475 km, respectively. The 
average height during the experiment of the CHAMP 
and GRACE satellite are 302  km and 474  km, respec-
tively. Thus, the second column is associated with the 
CHAMP mission and the third column with the GRACE 
satellite. The innovation is the difference between the 
densities of the calibrated NRLMSIS  2.0 and the densi-
ties forecasted by the model. At the first analysis step 
(27 March) and at 250 km (first column), the correction 
is larger than the innovation. This is especially visible at 
60◦N  latitude (panel a). However, this initial overshooting 
does not affect the long term behavior of the assimilated 
time series. In fact the assimilated densities stays close 
to the calibrated NRLMSIS 2.0 densities after the second 
analysis step.

At 300  km and 60◦N  (panel  b) one can observe the 
opposite: After the analysis step the density is pushed 
further away from the calibrated NRLMSIS 2.0. But, after 

a few more analysis steps the assimilated time series fol-
lows the calibrated NRLMSIS 2.0 closely.

Figure 7 illustrates in the same way as Fig. 6 neutral 
density time series, but shows another period includ-
ing the storm. The corrections are larger than in Fig. 6 
showing quiet conditions. During the forecast phase 
the ensemble mean departs much faster from the ana-
lyzed state as under quiet conditions. Consequently, 
at the subsequent analysis steps larger corrections are 
necessary. The analyzed state does not fit to the model 
dynamics during the storm.

As suggested by Fig. 6, the overshooting after the first 
analysis step depends on the altitude. Figure  8 relates 
the innovation at each altitude of the data grid with the 
actual correction performed at the analysis step for the 
first nine analysis steps. Overshooting occurs mainly 
between 190 km and 260 km after the first analysis step 
(intersections of the dark blue line with right vertical 
line). The profiles of the analysis steps following the 
first one are similar: At 100 km the calibrated NRLM-
SIS 2.0 is basically ignored. With increasing altitude the 
influence of the calibrated NRLMSIS 2.0 gets larger. At 

Fig. 11  Densities along the orbits of CHAMP and GRACE from various sources. The x axis is limited to a period where KP is always larger than or 
equal to 5 and contains the largest KP value of 7 2

3
 in the experiment (9:00–12:00). The dotted vertical lines mark the analysis steps
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500 km roughly half of the innovation is adopted at the 
analysis step. Above 500  km the influence of the cali-
brated NRLMSIS 2.0 decreases slightly.

In Fig.  9, we show the average ratio of the standard 
deviations of the calibrated NRLMSIS  2.0 (computed 
using Eq. 7) and the forecasted ensemble at the four first 
analysis steps. Before the first analysis step the median 
standard deviation of the calibrated NRLMSIS  2.0 is 
about one and a half times larger than the standard devi-
ation of the ensemble. Only at 100 km altitude the cali-
brated NRLMSIS  2.0 has on average a slightly smaller 
standard deviation than the ensemble. After the first 
analysis step the ratio becomes larger, since the stand-
ard deviation of the ensemble is reduced: Above 200 km 
the standard deviation of the ensemble is about 4 times 
smaller. After the fourth step it is about 6 times smaller. 
The profiles have a local minimum at 300 km altitude that 
is caused by the weighting of the calibrated NRLMSIS 2.0 
based on the vertical distance to CHAMP flying at that 
altitude.

The difference between the forecast and analysis 
ensemble mean is shown in Fig.  10 on world maps for 
different pressure levels and analysis steps. The position 
of CHAMP is marked with a star symbol. The model is 
updated globally, as expected. Above roughly 200  km 
negative values (density is increased at analysis step) 
mainly occur on the night side south pole. At the day side 
the density is mostly decreased at the analysis step (posi-
tive difference). Below 200 km the differences are almost 
only negative. A dependency on the location of the satel-
lite is not visible.

To compare the neutral densities from the assimilation 
experiment with the densities derived from the acceler-
ometers, we interpolate the densities on the state  grid 
to the corresponding orbits using the same method that 
is used to interpolate the state  grid to the data  grid. In 
Fig. 11, the along-track neutral densities are plotted for a 
twelve hour long subset of the experiment including the 
storm. The assimilation run fits much better to the obser-
vations compared with the open-loop simulation, since it 
is not constantly too small. Indeed, it often resembles the 

Fig. 12  The densities along the GRACE and CHAMP orbit were interpolated from the assimilated TIE-GCM and the open-loop simulation. 
Additionally, the (calibrated) NRLMSIS 2.0 was evaluated along the corresponding orbits. This figure shows the histograms of these three time series 
reduced by the accelerometer-derived densities. The histograms were calculated over the 14-day period of the experiment
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observed time series better than the calibrated NRLM-
SIS  2.0 time series, for example, at 10:50, 14:05, 16:10. 
The same holds for the GRACE time series. Especially, 
from 15:00-18:00 the assimilation time series outper-
forms the others.

Figure  12 confirms the previous findings. Along the 
orbit of CHAMP the assimilation run is much closer 
to the accelerometer-derived densities than the open-
loop simulation. Along the GRACE orbit the assimila-
tion run also outperforms the open-loop simulation. 
The calibrated NRLMSIS  2.0 is closest to the acceler-
ometer-derived densities and has the smallest spread for 
CHAMP and GRACE.

The major issue with our approach are large jumps 
in the ensemble mean time series especially during 
the storm. The model departs from the analyzed state 
much faster as during quiet conditions. We believe that 
those jumps can be reduced by co estimating suitable 
(internal) model parameters, that are not limited to 
corrections for external forcing, like the F10.7 proxy. 
For example, one could try corrections for hard coded 
parameters like chemical reaction rates, eddy diffusion, 
thermal diffusion, characteristic energy of particles, or 
solar proton flux, but at present we cannot yet provide 
a specific recommendation. Sheng et al. (2017) suggests 
that the cooling processes are not correctly represented 
in the TIE-GCM at the 5 April 2010 geomagnetic storm 
and Lu et  al. (2014) suspects that the eddy diffusion 
coefficient is too high during the storm.

There are many options for the data assimilation 
setup: The ensemble generation, filter choice and 
related settings, and the calibration of the NRLMSIS 2.0 
and the approximation of the standard deviation could 
be tuned in follow-on research. Within the limitations 
of this study, we have explored only a small subset.

A caveat is that our experiments were conducted in a 
period with small solar irradiance, and that for a period 
with high solar activity other settings might be neces-
sary. Moreover, we suggest that further research could 
focus on adding, additional independent observations. 
An evident candidate are TEC values as provided via 
GNSS observations or—more representative for the low 
Earth orbit—from radar altimetry over the oceans.

Conclusions
We have implemented a new two-step approach for 
assimilating along-track observations into a physics-
based model of the upper atmosphere. First an empiri-
cal model is calibrated via scale factors derived from the 
accelerometer aboard a LEO satellite. In a second step, 
the calibrated model is evaluated on a regular grid and 
the resulting neutral densities are assimilated into the 
numerical model. Here, we use densities derived from 

the CHAMP accelerometer to calibrate the NRLM-
SIS  2.0 and assimilate the densities into the TIE-GCM. 
We applied the approach to a 2-week-long period in 2010 
including the 5 April 2010 geomagnetic storm.

We demonstrated that the assimilation approach has a 
global impact on the model and that the model predic-
tion along the CHAMP and GRACE orbit fits well to the 
corresponding observations. When comparing the open-
loop simulation with the assimilation run, the RMSE was 
reduced from 2.4 × 10−15 to 1.7× 10−15  g

cm3 for CHAMP 
and from 1.4 × 10−16 to 9.6× 10−17  g

cm3 for GRACE 
(experiment 8 in Table 3). The median difference between 
model and observations is 45% smaller for CHAMP and 
20% smaller for GRACE. We believe this approach could 
be thus beneficial for ’transplanting’ the high accuracy 
of in situ neutral density observations to other satellites 
at similar altitudes. It could also be used by modelers to 
improve the representation of processes and boundary 
conditions.

We found that large jumps in the density time series 
were introduced by the analysis steps. Here, the model 
moves away fast from the analyzed state, since the model 
parameters controlling the dynamics of the model are not 
updated at the analysis step. We suspect, that the jumps 
can be handled by adding additional entries to the state 
vector for estimating corrections for TIE-GCM param-
eters. For example, cooling rates, eddy diffusion, or reac-
tion rates. Estimating the dynamics of the TIE-GCM 
in that way could produce solutions that outperform 
the calibrated NRLMSIS  2.0. Another idea for future 
research is applying the two-step approach to CHAMP 
and GRACE simultaneously.
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