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1 Introduction

The flavor symmetry is a powerful approach to understand the flavor structure of quarks
and leptons, and in addition, it provides the bridge between bottom-up and top-down ap-
proaches of model building. Indeed, when the flavor symmetry is embedded into a geomet-
ric symmetry of an extra-dimensional space, subgroups of the geometric symmetry would
control the flavor structure of matter zero-modes. For instance, the PSL(2,Z) modular
symmetry incorporates the phenomenologically interesting non-Abelian discrete symme-
tries such as S3, S4, A4 and A5 in the principal subgroups [1]. From the viewpoint of ultra-
violet physics, it was known that the SL(2,Z) modular group and its subgroups appearing
in toroidal compactifications are connected to the flavor symmetries of matter zero-modes
in heterotic orbifold models [2–6] and Type IIB superstring theories with magnetized D-
branes [7–13]. Such flavor symmetries are called modular flavor symmetries. The multi
moduli cases such as Sp(2h,Z) symplectic modular symmetry are also discussed in the con-
text of heterotic string theory on toroidal orbifolds [14] and Calabi-Yau manifolds [15–18].

From the phenomenological point of view, the modular flavor symmetries are attractive
for predicting the masses and mixing angles of quarks and leptons under a certain value of
the moduli fields [19–30]. The higher-dimensional operators in the Standard Model effective
field theory are also controlled by the modular symmetries [31, 32], taking into account
the selection rule of the string theory [33]. The flavor symmetry of quarks/leptons, as well
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as CP symmetry, is broken only by the modulus τ parametrizing the shape of the torus.
Note that the CP transformation is regarded as an outer automorphism of the modular
group for the single modulus [5, 34] and multi moduli cases [18]. Once the modulus is
fixed, there is no flavor symmetry in a generic moduli space. However, there exist so-called
fixed points in the fundamental region of the PSL(2,Z): τ = i, w, i∞ with w = −1+i

√
3

2 ,
preserving Z2, Z3 and Z2 symmetries, respectively. Such fixed points play an important
role for several phenomenological applications of the lepton sector [22, 31, 32, 35–43] as
well as controlling the effective action such as the dark matter (DM) stability [44]. To
dynamically fix the moduli values gives a strong prediction on proposed modular flavor
models. These attempts were performed in refs. [45–49]. However, in most of modular
flavor models, one requires a slight difference in moduli values from fixed points to explain
the observed masses and mixing angles of quarks/leptons as recently discussed in ref. [49].

In this paper, we adopt a top-down approach to dynamically fix the moduli values
around the fixed points of the moduli space. In the string theory, background fluxes can
stabilize the moduli fields such that subgroups of SL(2,Z) are realized [50] and also the
CP symmetry is spontaneously broken [17, 47]. In addition, the flux landscape prefers
the stabilization of moduli fields at fixed points with enhanced symmetries [48, 51]. The
purpose of this paper is to investigate the stabilization of moduli values at nearby fixed
points and discuss the phenomenological implications. For concreteness, we focus on Type
IIB string theory on toroidal orientifolds, where the complex structure moduli determine
the flavor structure of quarks and leptons. Turning on background three-form fluxes, these
complex structure moduli, as well as the dilaton, will be stabilized at statistically-favored
symmetric points. To break enhanced symmetries in the complex structure moduli space,
we incorporate non-perturbative effects whose existence is motivated by the stabilization
of remaining volume moduli associated with the metric of extra-dimensional space. It is
then expected that these non-perturbative effects can slightly shift the values of complex
structure moduli from fixed points. Indeed, our systematic analysis of flux vacua with
non-perturbative effects reveals that the complex structure moduli are stabilized at nearby
fixed points whose magnitudes are controlled by non-perturbative effects.

Furthermore, we also incorporate the uplifting potential to obtain the de Sitter (dS)
vacuum as discussed in the Kachru-Kallosh-Linde-Trivedi (KKLT) scenario [52]. Such
a supersymmetry (SUSY) breaking source also shift the value of the complex structure
moduli from fixed points.1 It turns out that the string landscape prefers |δτ | ' 10−5 for the
deviation of the complex structure modulus from fixed points 〈τ〉 = i, w, 2i, respectively.2

It corresponds to a specific SUSY breaking scale. In addition, the CP-breaking vacua
are statistically favored due to the existence of non-perturbative effects as well as the
uplifting source, although the number of CP-breaking vacua is statistically small in the
finite number of flux vacua [48]. These moduli values are well fitted with observed masses
and mixing angles in the lepton sector on a concrete A4 modular flavor model. Furthermore,
a quasi-stable dark matter (DM) would be realized due to the softly broken residual flavor
symmetry at fixed points.

1Soft SUSY breaking terms will keep the modular invariance in the moduli-mediated SUSY breaking
scenario [53], and their phenomenological aspects are discussed in refs. [54–56].

2Here, τ = i∞ is approximated as τ = 2i.
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This paper is organized as follows. After reviewing the structure of Type IIB flux vacua
on T 6/(Z2 × Z′2) orientifolds in section 2.1, we incorporate the non-perturbative effects to
stabilize the volume moduli in section 2.2. We numerically estimate the deviations of the
complex structure modulus τ from fixed points in section 2.3, taking into account SUSY
breaking effects. These effects slightly break the enhanced symmetries in the moduli space
of toroidal orientifolds. Given these moduli values, we study the concrete A4 modular
flavor model in section 3 with an emphasis on the lepton sector. The distributions of A4
model and the string landscape are compared. We summarize the paper in section 4. In
appendix A, we list the A4 modular forms used in this paper.

2 Moduli distributions in the string landscape

In section 2.1, we first review the flux vacua in Type IIB string theory on T 6/(Z2 × Z′2)
orientifolds with an emphasis on the enhanced symmetry in the complex structure moduli
space. Next, we focus on non-perturbative effects, which slightly break the enhanced
symmetries in moduli space of toroidal orbifolds as discussed in section 2.2. Finally, we
plot the deviation of the complex structure modulus from fixed points and the typical
SUSY breaking scale in section 2.3.

2.1 Flux vacua with enhanced symmetries

In Type IIB string theory on T 6/(Z2 × Z′2) orientifolds, the moduli Kähler potential and
the flux-induced superpotential are given by3

K = − ln(−i(S − S̄))− 2 lnV(T )− 3 ln (i(τ − τ̄)) , (2.1)

where S, T, τ denote the dilaton, Kähler moduli (volume moduli) and the complex structure
modulus, respectively. Here and in what follows, we adopt the reduced Planck mass unit
unless we specify it, and we consider the isotropic torus τ = τ1 = τ2 = τ3 to simplify our
analysis. In Type IIB flux compactifications, one can consider the so-called Gukov-Vafa-
Witten type superpotential [57] induced by background three-form fluxes:

Wflux = a0τ3 − 3aτ2 − 3bτ − b0 − S
(
c0τ3 − 3cτ2 − 3dτ − d0

)
, (2.2)

where {a0, a, b, b0, c
0, c, d, d0} represent three-form flux quanta with the notation of ref. [48].

These integers are now quantized in multiple of 8 on T 6/(Z2×Z′2) geometry. In this paper,
we analyze the SUSY minima:

∂SW = ∂τW = W = 0 , (2.3)

at which the energy of scalar potential vanishes V = eK(KIJ̄DIWDJW −3|W |2) = 0 with
DIW = ∂IW +W∂IK. Here, we use the so-called no-scale structure for the Kähler moduli:

3We follow the convention of ref. [48].
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Kij̄KiKj̄ = 3 with Ki = ∂T iK and Kij̄ being the inverse of Kähler metric. The SUSY
conditions can be analytically solved by redefining the superpotential as

WRR = a0τ3 − 3aτ2 − 3bτ − b0 = (rτ + s)P (τ) , (2.4)
WNS = c0τ3 − 3cτ2 − 3dτ − d0 = (uτ + v)P (τ) . (2.5)

Here, we denote a quadratic (integer-coefficient) polynomial P (τ) with respect to τ , and
the minimum of τ is found by solving P (τ) = 0. Following ref. [58], we write

P (τ) = lτ2 +mτ + n , (2.6)

under m2 − 4ln < 0, whose expression leads to the vacuum expectation value of τ :

〈τ〉 = −m+
√
m2 − 4ln

2l (l, n > 0) ,

〈τ〉 = −m−
√
m2 − 4ln

2l (l, n < 0) . (2.7)

The vacuum expectation value of the dilaton field is obtained by solving ∂τW = 0, i.e.,

P (τ)∂τ{(rτ + s)− S(uτ + v)}+ {(rτ + s)− S(uτ + v)}∂τP (τ) = 0 . (2.8)

Since the τ is now stabilized at eq. (2.7) determined by P (τ) = 0, we require

〈S〉 = rτ + s

uτ + v
. (2.9)

Note that the condition ∂τP (τ) = 0 gives rise to a real τ and the dilaton cannot be
stabilized anymore. At this stage, one cannot stabilize the Kähler moduli and requires
additional sources such as non-perturbative effects.

Before going into the detail of the volume moduli stabilization, we also review the
structure of flux vacua on the toroidal orientifold. Remarkably, the background three-form
fluxes induce a net D3-brane charge:

Nflux = 1
l4s

∫
H3 ∧ F3 = c0b0 − d0a

0 +
3∑
i=1

(cibi − diai) = c0b0 − d0a
0 + 3(cb− da) , (2.10)

with the string length ls, which should be canceled on a compact manifold. Taking into
the contributions of D3/D7-branes and O3/O7-planes, the flux-induced D3-brane charge
is constrained as

0 ≤ Nflux ≤ Nmax
flux = O(105) . (2.11)

Here, we admit the F-theory extension of the Type IIB orientifolds where a largest value
of O3-plane contribution is given by 1820448 [59, 60]. Furthermore, Nflux should be in
multiple of 192 due to the fact that {a0, a, b, b0, c

0, c, d, d0} ∈ 8Z.
For concreteness, we focus on the vacuum structure of τ whose fixed points in the

moduli space are τ = i, w = −1+i
√

3
2 , i∞, each of which corresponds to the Z2, Z3, Z2
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Figure 1. The numbers of stable vacua on the fundamental domain of τ in the case of Nmax
flux =

192× 1000 [48].

fixed points, respectively. The τ = i, w fixed points are statistically favored in the flux
landscape, as seen in figure 1, where the higher the degeneracy of vacua, the darker the
color is. Note that one cannot realize τ = i∞ requiring the infinite value of flux quanta, and
it is inconsistent with the charge cancellation condition of D3-brane charge (2.11), namely
the tadpole cancellation condition. In this respect, we adopt τ = 2i as an approximation
of τ = i∞. Such an approximation will often be used in the phenomenological analysis of
modular flavor models.

2.2 Stabilization of volume moduli by non-perturbative effects

In this section, we analyze the stabilization of volume moduli along the line of KKLT
scenario [52]. The stabilization of volume moduli is performed by the following non-
perturbative effects:

W = Wflux(τ, S) +Wnp(S, T ) , (2.12)

where

Wnp =
∑
m

Cme
iamT+ibmS (2.13)

is supposed to be generated by D-brane instanton effects with am, bm = 2π or strong
dynamics on D7-branes wrapping the rigid cycle with am = 2π/N and N being the rank of
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the gauge group. Here and in what follows, we consider a simple setup where the volume
of internal manifold is determined by a single Kähler modulus T whose Kähler potential is
given by K = −3 ln(i(T̄ − T )).

In the KKLT construction, the dilaton and the complex structure moduli are deter-
mined in the context of Type IIB flux compactifications as discussed in section 2.1. Note
that the vacuum expectation value of flux superpotential vanishes in our analysis in the
previous section; thereby the dilaton-dependent non-perturbative effects would induce the
constant term in the effective superpotential:

Weff = Wnp(〈S〉, T ) , (2.14)

which includes the following terms required in the KKLT construction:

Weff ' 〈eibS〉+ CeiaT . (2.15)

Thus, the overall Kähler modulus is stabilized at T = T0 satisfying

DTWeff = ∂TWeff +KTWeff = 0 , (2.16)

at which the minimum value of T is estimated as

a〈T 〉 ≈ ln(C/w0) , (2.17)

with w0 = 〈eibS〉. Here, the origin of small superpotential w0 relies on the dilaton-dependent
non-perturbative effects. It is also possible to realize the small flux superpotential in Type
IIB/F-theory flux compactifications (see, refs. [61, 62], for the large complex structure
regime). In what follows, the prefactor C is assumed to be a constant, in particular, 1.

So far, we have assumed that the dilaton and the complex structure moduli are stabi-
lized in flux compactifications. However, the presence of non-perturbative effects slightly
shifts their values. Indeed, the true vacuum is found by solving

DIW = 0 , (2.18)

which changes the moduli values obtained in the previous section. To find the slight
difference from the fixed points of complex structure modulus, we utilize the perturbation
method; the non-perturbative superpotential Wnp causes the shift of the minima:

τ = 〈τ〉+ δτ ,

S = 〈S〉+ δS ,

T = 〈T 〉+ δT , (2.19)

where the reference points {〈τ〉, 〈S〉, 〈T 〉} are given in eqs. (2.7), (2.9) and (2.17), respec-
tively.

Following ref. [63], we estimate the deviation up to a linear order. Let us consider the
Kähler-invariant quantity G = K+ln |W |2 satisfying GA = ∂AG = 0 at the SUSY minima.

– 6 –
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Here and in what follows, the index A denotes both the holomorphic and anti-holomorphic
fields: {S, T, τ, S̄, T̄ , τ̄}. From the expansion (2.19), GA is expanded as

GA = GA
∣∣
〈〉+δφ

BGAB
∣∣
〈〉+(O(δφ)2) , (2.20)

where
∣∣
〈〉 means

∣∣
τ=〈τ〉,S=〈S〉,T=〈T 〉. Under the assumption a, b > 1, we obtain

GIJ , GĪ J̄ � GIJ̄ , GĪJ , (2.21)

which implies that GAB and GAB are diagonalized only by the holomorphic and anti-
holomorphic parts, respectively. As a result, we obtain

δφI = GIJGJ
∣∣
〈〉+(O(δφ)2) , (2.22)

whose explicit form is written by

δτ = Weff

(
− GS
WSτ

) ∣∣∣∣
〈〉

+O(W 2
eff) ,

δS = Weff
WSτ

(
Wττ

WSτ
GS −Gτ

) ∣∣∣∣
〈〉

+O(W 2
eff) ,

δT =
(
−GST
GTT

) ∣∣∣∣
〈〉
δS . (2.23)

Note that the internal volume should be larger than the string length,

Im(T )� 1 , (2.24)

and the weak string coupling Im(S) > 1; thereby the magnitude of the flux superpotential
is exponentially small:

〈Weff〉 ' w0 + eiaT < 10−3 . (2.25)

Here and in the following numerical calculations, we take a = b = 2π for concreteness.
In this way, the deviation of the vacuum values {δτ, δS, δT} are determined by the

non-perturbative effects, implying that the deviation is naturally suppressed with respect
to the volume modulus. From the phenomenological point of view, such a small deviation
of τ is useful for predicting the masses and mixing angles of quarks and leptons, as dis-
cussed in detail in section 3. Before going into a phenomenological analysis, we discuss the
supersymmetry breaking effects in the next section.

2.3 Moduli values at nearby fixed points

So far, we have analyzed the stabilization of the complex structure modulus, dilaton and
Kähler moduli at SUSY minima. However, the obtained vacuum energy is negative, i.e.,
anti-de Sitter (AdS) vacuum. To realize a dS vacuum, it is required to uplift the AdS
vacuum to the dS one. Among several proposals for the uplifting scenarios, we focus on
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Figure 2. The number of vacua at nearby 〈τ〉 = i as a function of |δτ | in the left panel and Arg(δτ)
in the right panel, respectively. In the left panel, the absolute value of gravitino mass is plotted as
a function of |δτ |.

the anti D3-brane as originally utilized in the KKLT scenario [52]. The anti D3-brane
induces the positive vacuum energy due to its SUSY breaking effect,

Vup = D

(i(T̄ − T ))3 , (2.26)

where a constant D is chosen to realize the present vacuum energy. Then, the effective
scalar potential is described as

V = eK
(
KIJ̄DIWDJW − 3|W |2

)
+ Vup , (2.27)

indicating that the uplifting source further causes the shift of the moduli values obtained
in the previous section.

To see the deviation of complex structure moduli values from fixed points, we numer-
ically calculate the deviation of τ from 〈τ〉 = i, w, 2i by utilizing a finite number of flux
vacua with Nmax

flux = 1000. By calculating the minimization condition of the full scalar po-
tential ∂IV = 0 for I = τ, S, T , we find deviations of the complex structure modulus from
fixed points δτ ≡ τ−〈τ〉 as shown in figures 2, 3 and 4. It turns out that the flux landscape
prefers |δτ | ' 10−5 from fixed points 〈τ〉 = i, w, 2i, but there is no sizable difference in the
phase direction. It means that the CP symmetry parametrized by τ → −τ̄ is broken in
a generic moduli space. Furthermore, we plot the typical SUSY breaking scale, i.e., the
gravitino mass m3/2 = eK/2W , in the same figures. At the statistically favored moduli
values |δτ | = O(10−5), the gravitino mass is m3/2 = O(10−5) in the reduced Planck mass
unit. Note that the small δτ is originating from non-perturbative effects and the uplifting
source, both of which are the same order.

3 A4 modular flavor model

To illustrate implications of distributions of moduli fields around fixed points, we study
the phenomenology of lepton sector on a concrete A4 modular flavor model.
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Figure 3. The number of vacua at nearby 〈τ〉 = w as a function of |δτ | in the left panel and
Arg(δτ) in the right panel, respectively. In the left panel, the absolute value of gravitino mass is
plotted as a function of |δτ |.
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Figure 4. The number of vacua at nearby 〈τ〉 = 2i as a function of |δτ | in the left panel and
Arg(δτ) in the right panel, respectively. In the left panel, the absolute value of gravitino mass is
plotted as a function of |δτ |.

L {ec, µc, τ c} N c Hu Hd

SU(2)L 2 1 1 2 2
U(1)Y −1

2 1 0 1
2 −1

2

A4 3 {1,1′,1′} 3 1 1
−kI −2 {−2,−4,−4} −2 0 0

Table 1. Charge assignments under SU(2)L × U(1)Y × A4 in the lepton and Higgs sectors, where
kI denotes the modular weight of matter superfields ΦI .

3.1 Setup

For concreteness, we specify charge assignments under SU(2)L×U(1)Y ×A4 for the lepton
and Higgs sectors as summarized in table 1. Here, the A4 group belongs to the SL(2,Z)
modular group parametrized by the modulus τ . The Yukawa couplings are constructed in
a modular invariant way. (For more details, see, appendix A.) Then, we can write down
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the modular invariant superpotential:

W = ye(Y (4)
3 L)1Hde

c +
∑

r=3,3′

y(r)
µ (Y (6)

r L)1Hdµ
c +

∑
r=3,3′

y(r)
τ (Y (6)

r L)1Hdτ
c

+
∑

r=1,1′

y
(r)
d (Y (4)

r LHuN
c)1 + y

(3S)
d (Y (4)

3 Hu(LN c)3S)1 + y
(3A)
d (Y (4)

3 Hu(LN c)3A)1

+
∑

r=1,1′,3
M (r)(Y (4)

r N cN c)1, (3.1)

where Y (k)
r denotes the holomorphic modular form with weight k for r representations under

the A4 group, and {ye, y(r)
µ , y

(r)
τ , y

(r)
d } are parameters. Here, we introduce the Majorana

mass terms to realize small neutrino masses.
In the following, we enumerate the mass matrix of the lepton sector.

1. Charged-lepton mass matrix

After the electroweak symmetry breaking, charged-lepton mass matrix is written as

(ml)LR = vd√
2


Y

(4)
1 Y

(6)
3 + εµY

(6)
3′ Y

(6)
3 + ετY

(6)
3′

Y
(4)

3 Y
(6)

2 + εµY
(6)

2′ Y
(6)

2 + ετY
(6)

2′

Y
(4)

2 Y
(6)

1 + εµY
(6)

1′ Y
(6)

1 + ετY
(6)

1′

×

ye 0 0
0 y

(3)
µ 0

0 0 y
(3)
τ

 , (3.2)

where we introduce

〈Hd〉 = vd, εµ = y
(3′)
µ

y
(3)
µ

, ετ = y
(3′)
τ

y
(3)
τ

, Y
(k)

3 =


Y

(k)
1

Y
(k)

2

Y
(k)

3

 , Y
(k)

3′ =


Y

(k)
1′

Y
(k)

2′

Y
(k)

3′

 . (3.3)

The explicit modular forms are listed in appendix A. Then the charged-lepton mass
square eigenstate can be found by diag(|me|2, |mµ|2, |mτ |2) ≡ V †lLm

†
lmlVlL . We nu-

merically determine the three parameters ye, y(3)
µ , y

(3)
τ to fit the three charged-lepton

masses by applying the relations:

Tr[m†lml] = |me|2 + |mµ|2 + |mτ |2, (3.4)

Det[m†lml] = |me|2|mµ|2|mτ |2, (3.5)

(Tr[m†lml])2 − Tr[(m†lml)2] = 2(|me|2|mν |2 + |mµ|2|mτ |2 + |me|2|mτ |2). (3.6)

Therefore, input parameters are εµ, ετ in the charged-lepton sector.
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2. Dirac Yukawa mass matrix

(mD)LN = vu√
2

y
(3S)
d

3


2Y (4)

1 −Y (4)
3 −Y (4)

2

−Y (4)
3 2Y (4)

2 −Y (4)
1

−Y (4)
2 −Y (4)

1 2Y (4)
3

+ y
(3A)
d

2


0 Y

(4)
3 −Y (4)

2

−Y (4)
3 0 Y

(4)
1

Y
(4)

2 −Y (4)
1 0



+y(1)
d Y

(4)
1


1 0 0
0 0 1
0 1 0

+ y
(1′)
d Y

(4)
1′


0 0 1
0 1 0
1 0 0




= md0




2Y (4)
1 (−1 + gD)Y (4)

3 −(1 + gD)Y (4)
2

−(1 + gD)Y (4)
3 2Y (4)

2 (−1 + gD)Y (4)
1

(−1 + gD)Y (4)
2 −(1 + gD)Y (4)

1 2Y (4)
3



+h1


1 0 0
0 0 1
0 1 0

+ h2


0 0 1
0 1 0
1 0 0




≡ md0m̃D, (3.7)

where we define

〈Hu〉 = vu, md0 ≡
y

(3S)
d

3
√

2
vu, gD = 3y(3A)

d

2y(3S)
d

, h1 = 3y(1)
d Y

(4)
1

y
(3S)
d

, h2 =
3y(1′)
d Y

(4)
1′

y
(3S)
d

.

(3.8)

3. Majorana mass matrix

MN = M1
3


2Y (4)

1 −Y (4)
3 −Y (4)

2

−Y (4)
3 2Y (4)

2 −Y (4)
1

−Y (4)
2 −Y (4)

1 2Y (4)
3

+M2Y
(4)

1


1 0 0
0 0 1
0 1 0

+M3Y
(4)

1′


0 0 1
0 1 0
1 0 0



= M0




2Y (4)
1 −Y (4)

3 −Y (4)
2

−Y (4)
3 2Y (4)

2 −Y (4)
1

−Y (4)
2 −Y (4)

1 2Y (4)
3

+ f1


1 0 0
0 0 1
0 1 0

+ f2


0 0 1
0 1 0
1 0 0




≡M0M̃N , (3.9)

where we define

M0 ≡
M1
3 , f1 = 3Y (4)

1 M2
M1

, f2 =
3Y (4)

1′ M3
M1

. (3.10)

Then, the active neutrino mass matrix is given by

mν ≈ −mT
DM

−1
N mD = −κm̃T

DM̃
−1
N m̃D = −κm̃ν , (3.11)
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where the mass dimensional parameter κ is defined by m2
d0
/M0. m̃ν is diagonalized

by applying a unitary matrix as V †ν (m̃†νm̃ν)Vν = (m̃2
1, m̃

2
2, m̃

2
3). In this case, κ is

determined by

(NH) : κ2 = |∆m
2
atm|

m̃2
3 − m̃2

1
, (IH) : κ2 = |∆m

2
atm|

m̃2
2 − m̃2

3
, (3.12)

where ∆m2
atm is atmospheric neutrino mass square difference, and NH and IH stand

for normal and inverted hierarchies, respectively. The solar mass square difference is
also found in terms of κ as follows:

∆m2
sol = κ2(m̃2

2 − m̃2
1). (3.13)

In our numerical analysis, we regard ∆m2
atm as an input parameter from experiments

so that ∆m2
sol be output parameter giving numerical (m̃2

1, m̃
2
2, m̃

2
3). Then, one finds

UPMNS = V †lLVν , and it is parametrized by three mixing angles θij(i, j = 1, 2, 3; i < j),
one CP violating Dirac phase δCP, and two Majorana phases {α21, α32} as follows:

UPMNS =


c12c13 s12c13 s13e

−iδCP

−s12c23−c12s23s13e
iδCP c12c23−s12s23s13e

iδCP s23c13

s12s23−c12c23s13e
iδCP −c12s23−s12c23s13e

iδCP c23c13




1 0 0
0 ei

α21
2 0

0 0 ei
α31

2

 ,
(3.14)

where cij and sij stand for cos θij and sin θij , respectively. These mixings are rewritten
in terms of the component of UPMNS as follows:

sin2 θ13 = |(UPMNS)13|2, sin2 θ23 = |(UPMNS)23|2

1−|(UPMNS)13|2
, sin2 θ12 = |(UPMNS)12|2

1−|(UPMNS)13|2
.

(3.15)
In addition, we can compute the Jarlskog invariant, δCP from PMNS matrix elements
(UPMNS)αi ≡ Uαi:

JCP = Im[Ue1Uµ2U
∗
e2U

∗
µ1] = s23c23s12c12s13c

2
13 sin δCP, (3.16)

and the Majorana phases are also estimated in terms of other invariants I1 and I2
constructed by PMNS matrix elements:

I1 = Im[U∗e1Ue2] = c12s12c
2
13 sin

(
α21
2

)
, I2 = Im[U∗e1Ue3] = c12s13c13 sin

(
α31
2 −δCP

)
.

(3.17)
Furthermore, the effective mass for the neutrinoless double beta decay is given by

〈mee〉 = κ|D̃ν1c
2
12c

2
13 + D̃ν2s

2
12c

2
13e

iα21 + D̃ν3s
2
13e

i(α31−2δCP)| , (3.18)

where its observed value could be measured by KamLAND-Zen experiment in fu-
ture [64]. In our numerical analysis below, we will do ∆χ square analysis referring to
ref. [65].
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3.2 Numerical analysis

In this section, we show the allowed region with χ square analysis to satisfy the current
neutrino oscillation data, where we randomly select within the following ranges of input
parameters,

|δτ | ∈ [10−20, 0.1], {εµ, ετ , gD, f1, f2, h1, h2} ∈ [10−4, 2], (3.19)

where we assume all the parameters (except τ) are real for simplicity. We also take Yukawa
couplings of the SM charged leptons at the GUT scale 2 × 1016 GeV and ∆m2

atm as input
parameters, where tan β = 5 is taken as a bench mark [66]:

ye = (1.97± 0.024)× 10−6, yµ = (4.16± 0.050)× 10−4,

yτ = (7.07± 0.073)× 10−3, (3.20)
|∆m2

atm| = (2.431− 2.598)× 10−21 eV2 for NH, (3.21)
|∆m2

atm| = (2.412− 2.583)× 10−21 eV2 for IH, (3.22)

where the charged-lepton masses are within 1σ region, while ∆m2
atm is within 3σ region.

Here, the lepton masses are defined by m` = y`vH with vH = 174GeV. Then, we pick the
output data up only when the χ square is within 5σ considering five measured neutrino
oscillation data; (∆m2

sol, sin2 θ13, sin2 θ23, sin2 θ12) [67]. Here, we do not include δCP in
the χ square analysis due to the large ambiguity of experimental results in 3σ interval. In
general, IH case is more difficult to accumulate more data to satisfy the neutrino oscillation
data, because the minimum χ square is 2.7 in Nufit 5.0 [67].

3.2.1 Nearby τ = i

In figure 5, we show our several allowed regions on τ at nearby τ = i in case of NH, where
each of color represents blue ≤ 1σ, 1σ < green ≤ 2σ, 2σ < yellow ≤ 3σ, 3σ < red ≤ 5σ.
The up-left one represents the allowed region of the imaginary part of τ in terms of the
real part of τ . The up-right one demonstrates the allowed region of neutrinoless double
beta decay 〈mee〉 in terms of the lightest active neutrino mass m1. There are two linear
correlations between them. Furthermore, the smaller χ square is localized at nearby their
smaller masses. The down-left one shows the allowed region of Majorana phases α21 and
α31. Since we take all input parameters (except τ) to be real values, both the allowed
regions are localized at nearby by 0◦, 180◦. The down-right one depicts the allowed region
of Dirac phase δCP in terms of the sum of neutrino masses

∑
mi. The vertical line is

the upper bound on cosmological constraint
∑
mi < 0.12 eV [68]. There is an intriguing

tendency that allowed region of smaller χ square is localized at smaller
∑
mi that is within

the cosmological bound. Another feature is that the best fit value of Dirac CP phase ∼ 195◦

would be reproduced when we allow up to 5σ interval.
In figure 6, we show the several figures in terms of deviation from τ = i in the same

case of figure 5 at 5 σ interval, where each of color represents |δτ | < 10−15 for black,
10−15 ≤ |δτ | < 10−12 for gray, 10−12 ≤ |δτ | < 10−10 for purple, 10−10 ≤ |δτ | < 10−7 for
brown, 10−7 ≤ |δτ | < 10−5 for blue green, 10−5 ≤ |δτ | < 10−3 for orange, and 10−3 ≤
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Figure 5. Each of color represents blue ≤ 1σ, 1σ < green ≤ 2σ, 2σ < yellow ≤ 3σ, 3σ < red ≤ 5σ.

Figure 6. |δτ | < 10−15 for black, 10−15 ≤ |δτ | < 10−12 for gray, 10−12 ≤ |δτ | < 10−10 for purple,
10−10 ≤ |δτ | < 10−7 for brown, 10−7 ≤ |δτ | < 10−5 for blue green, 10−5 ≤ |δτ | < 10−3 for orange,
and 10−3 ≤ |δτ | < 10−1 for magenta.
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Figure 7. Each of color represents blue ≤ 1σ, 1σ < green ≤ 2σ, 2σ < yellow ≤ 3σ, 3σ < red ≤ 5σ.

|δτ | < 10−1 for magenta. The up-left one is the same as the case of up-right one in figure 5.
It implies that smaller deviations |δτ | tend to be localized at nearby their smaller masses.
The up-right one is the same as the case of down-left one in figure 5. This figure would
show rather trivial. Therefore, the smaller deviation is localized at 0◦ and 180◦, while the
larger deviation deviates from these two points. It directly follows from our phase source is
τ only. The down-left one is the same as the case of down-right one in figure 5. The smaller
deviation would be favored in the point of view of the bound on cosmological constraint.

In figure 7, we show our several allowed regions on τ at nearby τ = i in case of IH, where
color legends are the same as the one of figure 5. Therefore, we have found only the allowed
region of 3σ − 5σ. The up-left one represents the allowed region of imaginary part of τ in
terms of real part of τ . The up-right one demonstrates the allowed region of neutrinoless
double beta decay 〈mee〉 in terms of the lightest active neutrino mass m3. There are two
correlations between them; one is a linear line and another is a slightly curved one. The
solutions tend to be localized at nearby smaller mass ofm3 with 〈mee〉 = 0.015, 0.05 eV. The
down-left one shows the allowed region of Majorana phases α21 and α31. Both the allowed
regions are localized at nearby by 0◦, 180◦ similar to the case of NH. The down-right one
depicts the allowed region of the sum of neutrino masses

∑
mi in terms of Dirac phase δCP.

The vertical line is the upper bound on cosmological constraint. δCP is allowed at the points
0◦ and 180◦. While a large part of

∑
mi would be ruled out by the cosmological bound.

Therefore, we would predict a narrow range of 0.1 eV ≤
∑
mi ≤ 0.12 eV in this case.

In figure 8, we show the several figures in terms of deviation from τ = i where the
color legends are the same as the one in figure 6. The up-left one corresponds to the case
of up-right one in figure 7. It implies that smaller deviations |δτ | tend to be localized at
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Figure 8. |δτ | < 10−15 for black, 10−15 ≤ |δτ | < 10−12 for gray, 10−12 ≤ |δτ | < 10−10 for purple,
10−10 ≤ |δτ | < 10−7 for brown, 10−7 ≤ |δτ | < 10−5 for blue green, 10−5 ≤ |δτ | < 10−3 for orange,
and 10−3 ≤ |δτ | < 10−1 for magenta.

nearby their smaller masses m3. The up-right one corresponds to the case of down-left
one in figure 7. This figure would show rather trivial. Therefore, the smaller deviation
is localized at 0◦ and 180◦, while the larger deviation deviates from these two points. It
directly follows from the fact that our phase source is τ only. The down-left one corresponds
to the case of down-right one in figure 7. The smaller deviation would be favored in the
point of view of the bound on cosmological constraint.

Finally, we discuss ratios of the number of solutions in a corresponding range of
−Log10|δτ | to the number of whole solutions for both the string landscape in figure 2
and the A4 model within 5σ. Figure 9 indicates both the distributions of A4 model with
NH and the moduli fields in the string landscape peak around |δτ | = O(10−5), but such a
signal will not be found in the IH case.

3.2.2 Nearby τ = ω

In figure 10, we show our several allowed regions on τ at nearby τ = ω in case of NH,
where the color legends are the same as the one in figure 6. The up-left one represents the
allowed region of the imaginary part of τ in terms of the real part of τ . The smaller χ
square denoted by blue color is closest to the fixed point of τ = ω, which would be a good
tendency. The up-right one demonstrates the allowed region of neutrinoless double beta
decay 〈mee〉 in terms of the lightest active neutrino mass m1. There is a linear correlation
with width between them. Furthermore, all the regions of χ square tend to run the whole
range. The down-left one shows the allowed region of Majorana phases α21 and α31. Even
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Figure 9. Ratios of the number of solutions in a corresponding range of −Log10|δτ | to the number
of whole solutions for both the string landscape in figure 2 and the A4 model within 5σ. We present
the NH and the IH in the left and right panels, respectively.

Figure 10. Each of color represents blue ≤ 1σ, 1σ < green ≤ 2σ, 2σ < yellow ≤ 3σ, 3σ < red ≤ 5σ.

though the whole region is allowed, there exist two islands at around −50◦ ≤ α21, α31 ≤ 50◦.
The down-right one depicts the allowed region of Dirac phase δCP in terms of the sum of
neutrino masses

∑
mi. The vertical line is the upper bound on cosmological constraint.

Below this bound, the whole region is allowed for δCP. At nearby this bound, δCP is allowed
by 0◦ − 100◦ and 270◦ − 360◦. Furthermore, the smaller χ square tends to be localized at
nearby the cosmological bound, and its testability would be enhanced.

In figure 11, we show the several figures in terms of deviation from τ = ω where the
color legends are the same as the one in figure 6. The up-left one corresponds to the case
of up-right one in figure 10. The up-right one corresponds to the case of down-left one in
figure 10. The down-left one corresponds to the case of down-right one in figure 10. These
figures show us that larger deviation; 10−3 ≤ |δτ | < 10−1, is requested when the neutrino
oscillations are satisfied. It is not favored by the theoretical point of view as we already
discussed in section 2.
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Figure 11. |δτ | < 10−15 for black, 10−15 ≤ |δτ | < 10−12 for gray, 10−12 ≤ |δτ | < 10−10 for purple,
10−10 ≤ |δτ | < 10−7 for brown, 10−7 ≤ |δτ | < 10−5 for blue green, 10−5 ≤ |δτ | < 10−3 for orange,
and 10−3 ≤ |δτ | < 10−1 for magenta.

Figure 12. Each of color represents blue ≤ 1σ, 1σ < green ≤ 2σ, 2σ < yellow ≤ 3σ, 3σ < red ≤ 5σ.
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Figure 13. |δτ | < 10−15 for black, 10−15 ≤ |δτ | < 10−12 for gray, 10−12 ≤ |δτ | < 10−10 for purple,
10−10 ≤ |δτ | < 10−7 for brown, 10−7 ≤ |δτ | < 10−5 for blue green, 10−5 ≤ |δτ | < 10−3 for orange,
and 10−3 ≤ |δτ | < 10−1 for magenta.

In figure 12, we show our several allowed regions on τ at nearby τ = ω in case of IH,
where the color legends are the same as the one in figure 6. The up-left one represents the
allowed region of the imaginary part of τ in terms of the real part of τ . We have found
only the allowed region of 2σ − 5σ. The up-right one demonstrates the allowed region
of neutrinoless double beta decay 〈mee〉 in terms of the lightest active neutrino mass m3.
There seems to be a linear correlation between them, and 0.02 eV. 〈mee〉 . 0.06 eV up to
5σ, but the allowed regions are localized at nearby small masses up to 2σ. The down-left
one shows the allowed region of Majorana phases α21 and α31. We find the allowed regions
100◦ . α21 . 280◦ and 50◦ . α31 . 340◦. The down-right one depicts the allowed region
of Dirac phase δCP in terms of the sum of neutrino masses

∑
mi. The allowed region at

yellow plots;
∑
mi ' 0.11 eV, is totally within the cosmological constraint. This implies

that m3 is almost zero combined with the up-right figure.

In figure 13, we show the several figures in terms of deviation from τ = ω where the
color legends are the same as the one in figure 8. The up-left one corresponds to the case
of up-right one in figure 12. The up-right one corresponds to the case of down-left one
in figure 12. The down-left one corresponds to the case of down-right one in figure 12.
These figures also show us that larger deviation; 10−3 ≤ |δτ | < 10−1, is requested when
the neutrino oscillations are satisfied. It is not favored by the theoretical point of view as
we already discussed in section 2. In conclusion, in the case of τ = ω, both the case of NH
and IH would not be favored by the theoretical viewpoint.
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Figure 14. Each of color represents blue ≤ 1σ, 1σ < green ≤ 2σ, 2σ < yellow ≤ 3σ, 3σ < red ≤ 5σ.

3.2.3 Nearby τ = 2i

In figure 14, we show our several allowed regions on τ at nearby τ = 2i in case of NH, where
the color legends are the same as the one in figure 6. The up-left one represents the allowed
region of the imaginary part of τ in terms of the real part of τ . The smaller χ square denoted
by blue color is closest to the fixed point of τ = 2i, which would be a good tendency. The
up-right one demonstrates the allowed region of neutrinoless double beta decay 〈mee〉 in
terms of the lightest active neutrino mass m1. There is main linear correlation between
them. We find the allowed regions 0 eV≤ m1 ≤0.014 eV, and 0 eV≤ 〈mee〉 ≤0.013 eV. The
down-left one shows the allowed region of Majorana phases α21 and α31. Both the phases
allow to be 0◦ or 180◦. The down-right one depicts the allowed region of Dirac phase δCP
in terms of the sum of neutrino masses

∑
mi. The whole allowed region of

∑
mi is totally

within the bound on cosmological constraint; 0.058 eV≤
∑
mi ≤ 0.082 eV, whereas the

allowed region of δCP is the same as Majorana phases; 0◦ or 180◦. Note that it is trivial
that we find no phases since the situation is similar to the case of τ = i.

In figure 15, we show the several figures in terms of deviation from τ = 2i in the same
case of figure 5, where the color legends are the same as the one in figure 6. The up-left one
is the same as the case of up-right one in figure 14. The up-right one is the same as the case
of down-left one in figure 14. The down-left one is the same as the case of down-right one
in figure 14. These figures suggest us that size of deviation almost run the whole ranges
that are allowed by the neutrino oscillation data.

In figure 16, we show our several allowed regions on τ at nearby τ = 2i in case of IH,
where color legends are the same as the one of figure 5. Therefore, we have found only the
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Figure 15. |δτ | < 10−15 for black, 10−15 ≤ |δτ | < 10−12 for gray, 10−12 ≤ |δτ | < 10−10 for purple,
10−10 ≤ |δτ | < 10−7 for brown, 10−7 ≤ |δτ | < 10−5 for blue green, 10−5 ≤ |δτ | < 10−3 for orange,
and 10−3 ≤ |δτ | < 10−1 for magenta.

Figure 16. Each of color represents blue ≤ 1σ, 1σ < green ≤ 2σ, 2σ < yellow ≤ 3σ, 3σ < red ≤ 5σ.
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Figure 17. |δτ | < 10−15 for black, 10−15 ≤ |δτ | < 10−12 for gray, 10−12 ≤ |δτ | < 10−10 for purple,
10−10 ≤ |δτ | < 10−7 for brown, 10−7 ≤ |δτ | < 10−5 for blue green, 10−5 ≤ |δτ | < 10−3 for orange,
and 10−3 ≤ |δτ | < 10−1 for magenta.

allowed region of 2σ − 5σ. The up-left one represents the allowed region of the imaginary
part of τ in terms of the real part of τ . The up-right one demonstrates the allowed region
of neutrinoless double beta decay 〈mee〉 in terms of the lightest active neutrino mass m3.
We find the allowed regions as follows: 0 eV≤ m3 ≤0.03 eV and 0.014 eV≤ 〈mee〉 ≤0.04 eV
up to 5σ, but the allowed regions are localized at nearby small masses at yellow plots. The
down-left one shows the allowed region of Majorana phases α21 and α31. α21 is allowed by
100◦ to 200◦, while α31 is wider region than α21. However the allowed regions are localized
at nearby α21 = 180◦ and α31 = 0◦ at yellow plots. The down-right one depicts the allowed
region of Dirac phase δCP in terms of the sum of neutrino masses

∑
mi. The vertical line

is the upper bound on cosmological constraint. δCP is allowed at the points 0◦ and 180◦.
On the other hand, almost half the points of

∑
mi would be ruled out by the cosmological

bound. Therefore, we would predict a narrow range of 0.1eV ≤
∑
mi ≤ 0.12 eV that is

almost the same as the one in case of τ = i.
In figure 17, we show the several figures in terms of deviation from τ = 2i in the same

case of figure 5, where the color legends are the same as the one in figure 8. The up-left one
is the same as the case of up-right one in figure 16. The up-right one is the same as the case
of down-left one in figure 16. The down-left one is the same as the case of down-right one
in figure 16. These figures suggest us that size of deviation almost run the whole ranges
that are allowed by the neutrino oscillation data.

In a similar to τ ' i, we plot ratios of the number of solutions in a corresponding range
of −Log10|δτ | to the number of whole solutions for both the string landscape in figure 2
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Figure 18. Ratios of the string landscape in figure 4 and the A4 model within 5σ, where the
ratios are defined as those of the number of solutions in a corresponding range of −Log10|δτ | to the
number of whole solutions. We present the NH and the IH in the left and right panels, respectively.

and the A4 model within 5σ in figure 18. It indicates both the distributions of A4 model
with NH and the moduli fields in the string landscape peak around |δτ | = O(10−5), but
such a signal will not be found in the IH case.

Here, we summarize our results where τ = ω does not favor a theoretical point of view
from the string landscape. Thus, we focus on τ = i and τ = 2i only. In the case of τ = i

with NH, there is an intriguing tendency that the allowed region of smaller χ square is
localized at smaller

∑
mi that is within the cosmological bound. Another feature is that

the best fit value of Dirac CP phase ∼ 195◦ would be reproduced when we allow up to
5σ interval. It implies that smaller deviations |δτ | tend to be localized at nearby their
smaller masses. In the case of τ = i with IH, There are two correlations between them;
one is a linear line, and another is a slightly curved one. The solutions tend to be localized
at nearby smaller mass of m3 with 〈mee〉 = 0.015, 0.05 eV. A large part of

∑
mi would

be ruled out by the cosmological bound. Therefore, we would predict a narrow range of
0.1 eV ≤

∑
mi ≤ 0.12 eV. It implies that smaller deviations |δτ | tend to be localized

at nearby their smaller masses m3. The smaller deviation would be favored in the point
of view of the bound on the cosmological constraint. Both the distributions of A4 model
with NH and the moduli fields in the string landscape peak around |δτ | = O(10−5), but
such a signal is not found. In the case of τ = 2i with NH, the smaller χ square denoted
in blue is closest to the fixed point of τ = 2i, which would be a good tendency. We find
the allowed regions 0 eV≤ m1 ≤0.014 eV, and 0 eV≤ 〈mee〉 ≤0.013 eV. The whole allowed
region of

∑
mi is totally within the bound on cosmological constraint; 0.058 eV≤

∑
mi ≤

0.082 eV. The size of the deviation from τ = 2i almost runs the whole ranges that are
allowed by the neutrino oscillation data. In the case of τ = 2i with IH, we find the allowed
regions as follows: 0 eV≤ m3 ≤0.03 eV and 0.014 eV≤ 〈mee〉 ≤0.04 eV up to 5σ, but the
allowed regions are localized at nearby small masses at yellow plots. α21 is allowed by
100◦ to 200◦, while α31 is wider region than α21. Almost half the points of

∑
mi would

be ruled out by the cosmological bound. Therefore, we would predict a narrow range of
0.1eV ≤

∑
mi ≤ 0.12 eV that is almost the same as the one in the case of τ = i. The

size of the deviation from τ = 2i almost runs the whole ranges that are allowed by the
neutrino oscillation data. Both the distributions of A4 model with NH and moduli fields in
the string landscape peak around |δτ | = O(10−5), but such a signal is not found in the IH.
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4 Conclusions

The residual flavor symmetries appearing in fixed points of PSL(2,Z) moduli space are
employed in a wide variety of modular flavor models, but a small departure of the mod-
ulus from fixed points is required to realize the observed masses and mixing angles of
quarks/leptons and CP-breaking effects in the bottom-up modular invariant theories. In
this paper, we have explicitly demonstrated the breaking of residual flavor symmetry from
the top-down approach.

Following ref. [17], we have studied the moduli stabilization in the context of Type IIB
string theory on T 6/(Z2×Z′2) orientifold. In Type IIB flux compactifications, it was known
that Z2 and Z3 fixed points on the fundamental domain of the complex structure modulus
space are statistically favored in the finite number of vacua. However, the volume moduli
have not been stabilized yet, and a present stage of acceleration of the Universe should
be realized. In this respect, we have incorporated non-perturbative corrections to the
superpotential as well as uplifting sources to stabilize the volume moduli at the dS vacua.
These sources naturally shift the value of τ from fixed points by a small amount. We find
that the deviations of τ from fixed points 〈τ〉 = i, w, 2i are statistically favored at |δτ | '
10−5 and the CP symmetry τ → −τ̄ is broken in a generic choice of background fluxes. Since
the SUSY is broken by the existence of uplifting source, the typical SUSY-breaking scale,
i.e., the gravitino mass, is estimated as of O(1013)GeV at the small departure |δτ | ' 10−5.
In this way, the top-down approach restricts ourselves to the specific value of the modulus
τ as well as the SUSY-breaking scale.

To illustrate phenomenological implications, we analyze the concrete A4 modular flavor
model with an emphasis on the lepton sector. Under charge assignments for the lepton and
Higgs sectors in table 1, we have presented several predictions in the vicinity of three fixed
points by a global χ2 analysis in both the normal and inverted hierarchies of neutrinos.
It turns out that there exist many phenomenologically promising models around 〈τ〉 = i

with the normal hierarchy, whose number is compared with that of the string landscape
in figure 9. It implies similar distributions for string and A4 models with respect to δτ .
Furthermore, there is an intriguing tendency that allowed region of smaller χ square is
localized at smaller

∑
mi that is within the cosmological bound.

Before closing our paper, it is worthwhile mentioning the quasi-stable DM candidate
due to the tiny deviation from the fixed points in τ = i, 2i. In ref. [44], especially, DM
and neutrino oscillation data can simultaneously be explained at τ = i where DM is a
Majorana heavy fermion with modular weight −2. In this set up,4 DM decays into leptons
and Higgses via a Dirac term. Assuming order one free parameter and the DM mass (mX)
is much heavier than the leptons and Higgses, we estimate its lifetime (τX) as follows:

τX ' 1.32× 10−25 ×
∣∣∣Y (6)

1

∣∣∣−2
(1 TeV
mX

)
sec. (4.1)

4In order to identify DM, we would need to assign a singlet under A4 symmetry in order to avoid mixings
among Majorana fermions that spoil the stability of DM. Also, we might need to construct a model with
all the singlets under A4 to get neutrino oscillation data. In this sense, our model has to be modified when
there is DM in a theory.
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When mX = 1TeV, the upper limit of
∣∣∣Y (6)

1

∣∣∣ be less than the order 10−21 in order X to be
a quasi-stable DM imposing 1017sec . τX . Here, 1017 sec is the age of the Universe. This
constraint is equivalent to |δτ | . 5.57× 10−9 that is within our valid parameter space.
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A A4 modular forms

Note that the modulus-dependent modular forms are constructed by the weight 2 modular
form,

Y
(2)

3 =


Y1

Y2

Y3

 , (A.1)

with

Y1(τ) = i

2π

(
η′(τ/3)
η(τ/3) + η′((τ + 1)/3)

η((τ + 1)/3) + η′((τ + 2)/3)
η((τ + 2)/3) −

27η′(3τ)
η(3τ)

)
, (A.2)

Y2(τ) = −i
π

(
η′(τ/3)
η(τ/3) + ω2 η

′((τ + 1)/3)
η((τ + 1)/3) + ω

η′((τ + 2)/3)
η((τ + 2)/3)

)
, (A.3)

Y3(τ) = −i
π

(
η′(τ/3)
η(τ/3) + ω

η′((τ + 1)/3)
η((τ + 1)/3) + ω2 η

′((τ + 2)/3)
η((τ + 2)/3)

)
, (A.4)

where η(τ) denotes the Dedekind eta-function and ω = e2πi/3. Recalling that the other
modular forms are constructed by tensor products of Y (2)

3 , we list the modular forms used
in our analysis:

Y
(4)

3 (τ) =


Y 2

1 − Y2Y3

Y 2
3 − Y1Y2

Y 2
2 − Y1Y3

 ,

Y
(4)

1 = Y 2
1 + 2Y2Y3 , Y

(4)
1′ = Y 2

3 + 2Y1Y2 .

Y
(6)

3 (τ) = Y
(4)

1 Y
(2)

3 (τ) = (Y 2
1 + 2Y2Y3)


Y1

Y2

Y3

 ,

Y
(6)

3′ (τ) = Y
(4)

1′ Y
(2)

3 (τ) = (Y 2
3 + 2Y1Y2)


Y3

Y1

Y2

 . (A.5)
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