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Abstract 

Objectives:  Patients are classified according to the severity of their condition and graded according to the diagnosis 
and treatment capacity of medical institutions. This study aims to correctly assign patients to medical institutions for 
treatment and develop patient allocation and medical resource expansion schemes among hospitals in the medical 
network.

Methods:  Illness severity, hospital level, allocation matching benefit, distance traveled, and emergency medical 
resource fairness were considered. A multi-objective planning method was used to construct a patient allocation 
model during major epidemics. A simulation study was carried out in two scenarios to test the proposed method.

Results:  (1) The single-objective model obtains an unbalanced solution in contrast to the multi-objective model. The 
proposed model considers multi-objective problems and balances the degree of patient allocation matching, dis‑
tance traveled, and fairness. (2) The non-hierarchical model has crowded resources, and the hierarchical model assigns 
patients to matched medical institutions. (3) In the “demand exceeds supply” situation, the patient allocation model 
identified additional resources needed by each hospital.

Conclusion:  Results verify the maneuverability and effectiveness of the proposed model. It can generate schemes for 
specific patient allocation and medical resource amplification and can serve as a quantitative decision-making tool in 
the context of major epidemics.

Keywords:  Hierarchical diagnosis and treatment, Patient allocation, Multi-objective planning, Major epidemics, The 
severity of patients’ conditions

Introduction
Since the twenty-first century, new infectious diseases 
and other major epidemics, such as severe acute respira-
tory syndrome (SARS), Influenza A (H1N1), Ebola, and 
New Crown, have occurred frequently, seriously endan-
gering the safety of human life and property. During 

large-scale epidemics, local healthcare systems will expe-
rience a large influx of patients, often with a scale that 
exceeds their capacity, leading to problems, such as 
crowding out of regional healthcare resources [1]. Saving 
infected patients is important to alleviate the epidemic.

Surge in medical demand and increased burden on 
hospital resources occur after a major epidemic. Ye et al. 
[2] pointed out that excessive medical resources are often 
required for treating unclassified patients, leading to 
additional medical and social problems. Gutierrez and 
Rubli [3] proposed that medical surge capacity can be 
improved by classifying patients and medical resources 
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and triaging patients to different levels of medical insti-
tutions for treatment. Therefore, when the number of 
patients is far beyond the capacity of the medical system, 
the triage principle is needed to match the patients with 
effective medical resources. Hierarchical diagnosis and 
treatment refers to the transfer of patients with differ-
ent conditions to corresponding medical institutions for 
treatment [4]. At present, relevant studies mainly focus 
on the allocation of routine outpatient surgery [5, 6], and 
no work has been conducted on the quantitative analysis 
and optimization of hierarchical diagnosis and treatment 
under major epidemics.

This study aims to develop an effective grading and tri-
age model that depends on the condition of patients and 
the treatment capacity of medical institutions. The model 
will optimize the matching degree between patients 
and medical resources, reduce the depletion of medical 
resources, and determine feasible schemes for patient 
allocation and medical resource expansion in the medical 
network.

The contributions of this work can be summarized as 
follows:

•	 This paper provides healthcare managers with 
schemes for patient allocation and medical resource 
expansion to allocate limited hospital resources to 
infected patients and optimize their matching degree 
during a major epidemic.

•	 This paper will match patients with the right medical 
institution according to the concept of hierarchical 
diagnosis and treatment. The severity of the patient 
condition, the treatment capability of the medical 
institution, and the resources needed for different 
types of patients are considered.

•	 The hierarchical patient allocation model for diagno-
sis and treatment is universal and can be adjusted for 
different pandemics or medical structures.

The remaining parts of this paper are organized as fol-
lows. “Related work” section briefly reviews literature 
related to patient allocation, hierarchical diagnosis and 
treatment, healthcare allocation modeling, and simula-
tion optimization under major pandemics. The hierarchi-
cal diagnostic patient allocation model, namely, NSGA-II, 
and the data from the COVID-19 epidemic in Shanghai, 
China, are presented in “Methods” section. “Results” sec-
tion discusses the numerical results and overall perfor-
mance of the case study and describes schemes that can 
help decision-makers determine patient allocation and 
expand medical resources. “Discussion” section provides 
the discussion. “Conclusion” section summarizes the 
results and limitations of the present work and recom-
mends future improvement directions.

Related work
Related research can be divided into three categories: 
patient allocation under major pandemics, hierarchical 
diagnosis and treatment, and healthcare allocation mod-
eling and simulation optimization.

Studies related to major pandemics cover a wide range, 
including vaccine development [7–9], epidemic forecast-
ing [10, 11], and mitigation strategy [12, 13]. The latter is 
an important research area and includes isolation [14], 
protection [15, 16], prevention and control [17], vac-
cination [18–20]. Rational allocation of patients is an 
important mitigation strategy when a large public health 
emergency occurs. A number of studies have been con-
ducted on the allocation of patients under earthquake, 
hurricane, and other disasters [21–23]. Issues involving 
the allocation of patients and medical resources are also 
common, such as outpatient surgical allocation [24–26] 
and allocation of medical facilities [27]. However, a few 
studies have focused on patient allocation during major 
epidemics.

To our knowledge, only the following studies have dis-
cussed patient allocation protocols under pandemics. 
For example, Sun [28] addressed the patient allocation 
problem during an influenza pandemic by building an 
optimized model to minimize the distance of patients to 
hospitals. Tsai [29] applied a linear programming model 
for minimizing patients’ distance traveled to optimize 
patient allocation during a dengue epidemic. Both stud-
ies only considered the goal of distance traveled, although 
in reality, multiple goals should be optimized. Soroush 
[30] used a data envelope analysis approach to optimize 
the allocation of hospital beds during the COVID-19 
pandemic. Patients in major epidemics often require 
multiple types of resources, but the study only considers 
the allocation of a single resource. Alternatively, none of 
these studies considered the degree of matching between 
the type of patients and the capacity of different medical 
institutions. During major epidemics, patients who do 
not receive matched treatment will have serious conse-
quences [31].

Hierarchical diagnosis and treatment is a good tool 
used to assign patients to matched medical institutions 
for treatment [32]. In 1920, the concept of tertiary care 
was introduced in the UK [33]. The implementation of 
hierarchical diagnosis and treatment in the United States 
and other countries led to satisfactory results [34]. Rele-
vant research focused on status analysis [35], institutional 
system challenge [36, 37], and diagnosis strategies for 
different diseases [38–40]. However, the quantification 
and optimization of hierarchical diagnosis and treatment 
under major epidemics has not been investigated yet.

Studies related to healthcare allocation modeling 
mainly differ in terms of optimization objectives and 
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approaches. The objectives of optimization include dis-
tance [41], death number [42], risk [43], cost [31], and 
fairness [44]. The optimization methods include dynamic 
planning [45], random planning [46], and multi-objective 
planning [47, 48]. In reality, multiple conflicting opti-
mization objectives exist, namely, multi-objective opti-
mization. Aydin [49] considered three goals, namely, 
minimizing the total travel distance traveled, the maxi-
mum evacuation rate, and the risk to optimize ICU and 
non-ICU capabilities; this study also identified solutions 
by using a weighted sum method. Sun [28] dealt with the 
multi-objective problem by using a constraint method 
that moves all but one primary target to the constraint 
set. Zhang [50] used a multi-objective optimization 
approach with combination index weighted to obtain 
a general scheme for hospital inpatient bed allocation. 
These studies combine different objectives into a single 
objective, leading to a single objective problem.

A real-world multi-objective problem is usually needed 
to optimize multiple objectives simultaneously. There-
fore, the best treatment is to find the most trade-off 
solution among all objectives [51]. Non-dominant rank-
ing genetic algorithm (NSGA-II) is widely used in multi-
objective optimization problems. The algorithm will 
assign adaptation to each individual according to Pareto 
ranking and crowding degree and will cover the solution 
as widely as possible [52].

The number of studies targeting the allocation of 
patients during major epidemics is limited. To our knowl-
edge, these issues have only been discussed by Sun, Tsai, 
Soroush, et al. In this regard, the present work proposes a 
multi-objective model to optimize patient allocation with 
the highest matching benefit, minimal distance trave-
led, and optimal fairness. The diagnosis and treatment 
capacity of different medical institutions in the network 
of urban hospitals and the severity of patients’ conditions 
are considered to match them to appropriate medical 
institutions for treatment. This research also considers 
the capacity limitations of multiple healthcare resources. 
In particular, the NSGA-II algorithm is used to obtain an 
allocation scheme that balances all objectives.

Methods
Mathematical modeling and design
After a major epidemic, a large number of confirmed 
patients in the area are waiting for hierarchical diagno-
sis and will need to be dispatched to designated hospitals 
for treatment, depending on the severity of their condi-
tion. We assume that under the occurrence of a major 
epidemic, a city has Ni epidemic areas, where patients 
are divided into p categories according to their degree of 
illness, and Nj designated hospitals exist around the epi-
demic area, each with q categories of different treatment 

capacities. In the event of a major epidemic, the desig-
nated hospital centers provide matching means of treat-
ment for all categories of patients in each epidemic area. 
In this paper, a multi-objective patient allocation scheme 
was designed by comprehensively considering the sever-
ity of patients’ conditions and classifying medical insti-
tutions according to their treatment capabilities. The 
optimization objectives included obtaining the highest 
matching benefit, the shortest distance traveled, and the 
most optimal fairness. The problem of allocation at dif-
ferent phases of an epidemic is also considered to ensure 
that more patients are admitted by expanding the medi-
cal treatment capacity of each hospital. Table 1 presents 
the symbols involved in the proposed model.

Objective function 1: allocation matching benefit
The correct level of patients should be assigned to the 
correct level of hospitals for treatment to ensure that 
each patient can receive the matching treatment methods 
and maximize the effectiveness of treatment resources. 
Patients of different categories will receive different treat-
ment outcomes when they enter different levels of hos-
pital (e.g., if severe patients enter third-class A hospital 
with Intensive Care Unit (ICU) ward and various perfect 
treatment methods, then they will get better treatment 
effect; by contrast, entering a makeshift hospital for iso-
lation will produce poor effect). As such, allocation ben-
efit coefficient mpq is defined as a measure of how well 
patients are matched to the corresponding hospital. It 
represents the allocation revenue coefficient for patients 
with category p seen in level q hospital. The value of mpq 
is larger when patients receive higher effectiveness when 
they visit a matching hospital, and it is smaller when 
patients receive lower effectiveness when they visit a 
hospital worse than the matching one. The value of mpq 
needs to be determined on the basis of clinical experi-
ence. In addition, patients who receive life-saving treat-
ment will receive positive allocation effectiveness, and 
patients who do not receive life-saving treatment will 
have no allocation effectiveness. Therefore, the expres-
sion for consolidated allocated effectiveness is as follows:

Objective function 2: distance traveled
When major epidemics occur, decision makers often 
require that more patients can be treated in the fastest 
possible time [53]. In general, the longer the distance of 
the patient to the hospital, the longer the required trans-
portation time, and the more likely the efficiency of treat-
ment is reduced. Therefore, any means to admit and treat 

(1)f1 = max

q∈Q j∈J p∈P i∈I

mpqvipjq
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patients in the vicinity will be adopted to shorten the 
transportation time and improve the efficiency of treat-
ment. Accordingly, this paper sets the objective function 
of the minimum distance traveled, and its expression is 
shown below:

Objective function 3: principle of fair allocation
When a major epidemic occurs, every epidemic area 
is eager to receive life-saving treatment. However, the 
proximity strategy often fails to meet the needs of all 
epidemic areas. This paper defines the principle of fair 
allocation to balance the allocation of patients in various 
affected areas. In Adams’ theory of fairness, each person’s 
sense of fairness lies in the difference in comparison with 
others or with their own earlier comparisons; the smaller 
the difference is, the fairer they feel [54]. Patients in every 
affected area want to be allocated to more matched treat-
ment. Therefore, the difference in the allocation match-
ing benefit in each epidemic area can be narrowed down 
to achieve fairness. In this regard, this paper defines the 
principle of fair allocation.

(2)f2 = min
∑

j∈J

∑

p∈P

∑

i∈I

Dijuipj

Definition 1  (principle of fair allocation) Let Si be the 
average allocation matching benefit of the epidemic area 
i, whose expression is shown in Eq. (3).

On this basis, the maximum average allocation matching 
benefit ( Smax ) is obtained, and its expression is shown in 
Eq. (4).

  The difference between the average allocation match-
ing benefit and the maximum average allocation match-
ing benefit is defined as the maximum average allocation 
matching benefit deviation, whose expression is shown in 
Eq. (5).

 Fair triage can be achieved by narrowing the difference 
in the average allocation matching benefit among epi-
demic areas to minimize the sum of allocation matching 

(3)

Si =
∑

p∈P

∑

j∈J

∑

q∈Q

mpqvipjq

/

∑

p∈P

∑

j∈J

∑

q∈Q

vipjq , ∀i ∈ I

(4)Smax = max
i

Si

(5)Si = |Si − Smax|, ∀i ∈ I

Table 1  Symbolic description of the model (Patient allocation method in major epidemics, China, 2022)

Ensemble

I The point ensemble in the epidemic area with demand for treatment, I = {i|i = 1, · · · ,Ni } , where Ni is the total number of epidemic areas

J The ensemble of designated hospitals of patients, J =
{

j
∣

∣j = 1, · · · ,Nj

}

, where Nj is the total number of designated hospitals

P The ensemble of patient states, P =
{

p
∣

∣p = 1, · · · ,Nj

}

 , where Np is the the total number of patient’s disease categories

Q The ensemble of designated hospital level, Q =
{

q
∣

∣q = 1, · · · ,Nq

}

 , where Nq is the the total number of designated hospital level

K The ensemble of medical resources, K = {k|k = 1, · · · ,Nk } , where Nk is the the total number of medical resources categories

Parameters

Cjqk Capacity of class k medical resources for hospital j of grade q

Aip Number of patients with Category p in epidemic area i

Dij Distance from epidemic area i to epidemic area j

apk The number of class k medical resources required per class p patient

M Unit allocation matching benefit matrix M = [mpq]Np×Nq , Where mpq represents the allocation matching benefit coefficient for patients 
with Category p seen in q-level hospitals

N Infinite quantity

Variables

rip Number of patients with Category p admitted in epidemic area i

A⋆ip Number of patients in category P of epidemic area i waiting to receive treatment

Decision variables

vipjq Number of patients with Category p traveling from epidemic area i to q-level hospital j

uipj Number of patients with Category p traveling from epidemic area i to designated hospital j

v⋆ipjq Number of patients with Category p in epidemic area i assigned to q-level hospital j, and assigned to virtual capacity

u⋆ipj Number of patients with Category p in epidemic area i who are assigned to hospital j and assigned to the virtual capacity
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benefit deviation in each area. The principle of fair alloca-
tion can be expressed as Eq. (6).

 During the development of major epidemics, the number 
of patients is gradually increasing, and the relationship 
between the supply of medical resources and the demand 
of patients will also change from a state of “supply exceed-
ing demand” to a state of “demand exceeding supply.” The 
patient allocation scheme for the two states will be stud-
ied. Thus, two models are developed for the following 
article.

Model 1: patient allocation model considering supply 
exceeding demand
Multi-objective function:

Constraint:

(6)f3 = min
∑

i∈I

Si

(7){f1, f2, f3}

(8)
∑

i∈I

∑

p∈P

apkvipjq ≤ Cjqk , ∀j ∈ J , q ∈ Q, k ∈ K

confirmed patients. Constraint Formula (10) is used to 
calculate the number of patients with category p admit-
ted in epidemic area i. Constraint Formula (11) is used 
to calculate the number of patients with category p in 
epidemic area i in designated hospital j. Formula (12) is a 
non-negative constraint.

Model 2: patient allocation model considering demand 
exceeds supply
During major epidemics, when the number of 
patients increases to a certain extent, the resources 
provided by medical institutions may not meet the 
needs of patients. At this point, various resource 
capacity limits for constraints (8) in Model 1 may not 
be fully met. Therefore, a feasible allocation scheme 
will not be obtained using Model 1. To address this 
problem, this work sets up a virtual capacity to 
absorb patients who will not be allocated to ensure 
the continuous generation of the allocation scheme. 
Patients have access to virtual resources only when 
all hospitals have insufficient resources. Therefore, 
patients allocated with virtual resources can be seen 
as patients waiting to receive treatment. The specific 
model is as follows:

Multi-objective function:

Constraint:

(13)






max
�

q∈Q

�

j∈J

�

p∈P

�

i∈I

mpq(vipjq + v∗ipjq)
�

v∗ipjq , min
�

j∈J

�

p∈P

�

i∈I

(Dijuipj + NDiju
∗
ipj), f3







(14)
∑

p∈P

∑

i∈I

apkvipjq ≤ Cjqk , ∀i ∈ I , q ∈ Q, k ∈ K

(15)rip =
∑

j∈J

uipj =
∑

j∈J

∑

q∈Q

vipjq , ∀i ∈ I , p ∈ P

(16)A∗
ip = Aip − rip, ∀i ∈ I , p ∈ P

(17)A∗
ip =

∑

j∈J

u∗ipj =
∑

j∈J

∑

q∈Q

v∗ipjq , ∀i ∈ I , p ∈ P

(18)
∑

i∈I

∑

p∈P

apkv
∗
ipjq = C∗

jqk , ∀j ∈ J , q ∈ Q, k ∈ K ;

Constraint Formula (8) indicates the limit of medical 
treatment capacity. Constraint Eq.  (9) means that the 
number of admitted patients is equal to the number of 

(9)rip = Aip, ∀i ∈ I , p ∈ P

(10)rip =
∑

j∈J

uipj , ∀i ∈ I , p ∈ P

(11)uipj =
∑

q∈Q

vipjq , ∀i ∈ I , ∀p ∈ P, ∀q ∈ Q

(12)vipjq ≥ 0, ∀i ∈ I , ∀p ∈ P, ∀q ∈ Q
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Multiple objective function (13) is obtained by For-
mula (7). In the first objective function, when the value 
of vipjq is fixed, v∗ipjq larger mpq(vipjq + v∗ipjq)

/

v∗ipjq is 

smaller. The smaller the v∗ipjq is, the greater the 
mpq(vipjq + v∗ipjq)

/

v∗ipjq will be. Hence, the allocation 
matching benefit is maximized only when more small 
patients ( v∗ipjq ) are allocated to virtual capacity. The aim 
is to refuse to allocate patients with virtual capacity 
( v∗ipjq ) as much as possible until all hospitals have insuf-
ficient resources. The NDiju

∗
ipj part of the second objec-

tive function is identical. N is a very large value that is 
designed to make the distance between the hospital and 
the area as large as possible and to refuse to allocate to 
the virtual capacity of patients as much as possible. 

(19)
A∗
ip ≥ 0,u∗ipj ≥ 0, v∗ipjq ≥ 0, vipjq ≥ 0, ∀i ∈ I , ∀p ∈ P, ∀q ∈ Q Constrained Eq.  (14) represents the limitation of the 

capacity of various medical resources. Equation  (15) 
represents the relationship of various variables. Con-
straint Eq.  (16) is used to calculate the number of 
patients waiting for treatment. Equation  (17) is the 
relationship between patient waiting to receive treat-
ment and patient assigned to virtual capacity. Equa-
tion  (18) is used to determine virtual capacity. 
Equation (19) is a non-negative constraint.

The model can determine whether hospitals need to 
increase medical resources in the situation of “supply 
exceeding demand” based on virtual capacity.

NSGA‑II algorithm
Considering that the patient allocation model established 
is multi-constrained and multi-objective, it belongs to 
the NP problem, which cannot be solved by traditional 

Fig. 1  Flow chart of NSGA-II algorithm
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algorithms. Genetic algorithm (GA) has strong global 
search ability, which can solve such problems well [51]. 
NSGA-II algorithm is obtained using GA genetic algo-
rithm by combining non-dominant ranking and elite 
strategy [55]. It is a very popular and mature algorithm 
for solving multiple objectives [56]. Therefore, this work 
applies the NSGA-II algorithm to solve the model, and its 
flow chart is shown in Fig. 1.

(1) Initial population
The algorithm adopts positive integer coding, and each 

chromosome represents a feasible solution. If Np patients 
in Ni epidemic areas need to be assigned to Nj hospitals, 
an initial population P0 with the scale of Ni × Np × Nj 
needs to be randomly generated. At the same time, 
the initial population is modified by the constraint of 
resource capacity.

(2) Fitness function
Because the objective function constructed in this 

paper is to maximize the distribution matching income 
(f1), minimize the journey distance (f2) and opti-
mize the fairness of allocation (f3). The change trend 
of the three objective functions is different, which is 
not conducive to displaying Pareto curve intuitively. 
Therefore, the objective function is transformed into 
formulas (20), (21) and (22), respectively.

(3) Fast non-dominated sorting
The Pareto grade i(rank) of individual i is determined 

according to the number of individual i dominated by 
other solutions in the population and the set of other 
solutions dominated by individual i.

(4) Crowding degree
In order to ensure the diversity of population, the 

crowding degree id is introduced to ensure that the 
algorithm can converge to a uniformly distributed 
Pareto surface [57]. Under a certain Pareto level, the 
crowding degree of individual i is calculated in for-
mula (23).

where Fm(i + 1) represents the value of the objec-
tive function m of individual i + 1 before individual i; 
Fm(i − 1) represents the value of the objective function m 
of individual i − 1 after individual i; Fmax

m  represents the 
maximum value of the objective function m under the 

(20)F1 = −f1

(21)F2 = f2

(22)F3 = f3

(23)id =

3
∑

m=1

Fm(i + 1)− Fm(i − 1)

Fmax
m − Fmin

m

Pareto level; Fmin
m  represents the minimum value of the 

objective function m under this Pareto level.
(5) Elite strategy
The parent population Pt and the offspring popu-

lation Qt produced by the parent population Pt are 
combined to compete together to produce the next 
generation Pt+1.

(6) Genetic manipulation
Genetic operations include selection, crossover and 

variation.

•	 The selection operation is performed by com-
paring the Pareto grade i(rank) and the crowding 
degree id between individuals. If the Pareto grades 
of two individuals are different, take the individual 
with smaller grades; If two individuals are at the 
same level, take the individual with large crowding 
degree.

•	 The crossover operation uses a single-point cross-
over method [58].

•	 Single point random mutation is used for mutation 
operation [59].

Application of simulation cases
This paper takes the most realistic possible data from 
Shanghai, China during the COVID-19 pandemic period 
to show how a patient allocation model based on hierar-
chical diagnosis and treatment helps decision makers to 
plan patient allocation during a major pandemic and vali-
date the overall performance of the model. Although fully 
accurate data are not available, we believe that hospitals 
and managers will have more accurate information dur-
ing the pandemic.

The COVID-19 pandemic occurred in Shanghai, China 
from March 1 to May 24, 2022. As of May 24, the total 
number of infected people reached 648,334, and the 
highest number in one day was 23,370. For this case 
study, Shanghai was divided into 16 regions. Thirty-four 
hospitals and institutions (with incomplete data, because 
information is not available from some hospitals) were 
collected throughout Shanghai to treat infected patients. 
These hospitals and institutions include 12 3a-grade hos-
pitals, 10 2a-grade hospitals, and 12 makeshift hospitals. 
Area numbers along with hospital location and level are 
shown in Fig. 2.

The distance of each area from each hospital (in km) is 
shown in Table 2. The data were collected from Google 
Maps.

Various resource capacities of each hospital are shown 
in Table 3. The number of beds and ICU in the 34 hos-
pitals was compiled from the Shanghai Municipal Health 
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Commission and the hospitals’ official websites (these 
data are only an estimate based on the collated informa-
tion). At present, no specific data of medical staff in each 
hospital are available, which is based on the proportion 
of the total number of medical staff * beds in the city.

Patients with COVID-19 in Shanghai can be divided into 
three categories: Type I patients are asymptomatic and 
who are in the incubation period and may develop symp-
toms in the future. Type II patients have mild symptoms. 
Type III patients have severe symptoms, and they are seri-
ously ill and often need to be admitted to the ICU ward 
for treatment. The number of patients in each category 
for the two time periods for each area is shown in Table 4. 

On April 1, the epidemic was rising in Shanghai, and the 
number of patients was relatively small. On May 1, the 
peak of the epidemic was reached in Shanghai, and a large 
number of patients were infected. The data in the two time 
periods are divided into the allocation of “Supply exceeds 
demand” and “Demand exceeds Supply” scenarios. The 
data were obtained from the daily COVID-19 information 
released by the Shanghai Municipal Health Commission. 
The Commission has only reported the number of asymp-
tomatic patients and confirmed patients and has no data 
on severe and mild patients. By considering the data from 
news reports, the proportion of severe patients is 1.2%, and 
the cumulative number of severe patients is determined 

Fig. 2  Map of Shanghai, China



Page 9 of 18Ye et al. BMC Medical Informatics and Decision Making          (2022) 22:331 	

according to the cumulative rate of confirmed patients * 
(1.2%). In practical application, the number of patients can-
not be predicted in advance. The number of patients can 
only be estimated according to the prediction results of the 
infectious disease model.

Results
The results were obtained from MATLAB software based 
on the models, algorithms, and data described above.

Parameter design
Model parameter

•	 M: Unit allocation matching benefit matrix. There 
are three types of patients, including type A 
patients, type B patients, and type C patients. There 
are three levels of hospitals, including makeshift 
hospitals (I), 2a-grade hospitals (II), and 3a-grade 
hospitals (III). For practical reasons, we want the 

Table 2  Distance of each area from each hospital

A represents the area, and H represents the hospital

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

Makeshift hospitals

 H1 48 27 89 16 26 8 44 4 10 74 19 24 51 17 12 44

 H2 42 29 98 9 19 13 39 9 12 69 15 17 44 13 11 40

 H3 47 80 125 71 82 65 88 60 67 70 76 70 102 73 71 102

 H4 28 38 117 13 20 27 24 29 26 55 17 4 33 17 20 33

 H5 62 32 118 40 26 37 54 43 34 83 31 40 42 32 36 3

 H6 136 91 20 104 101 87 134 88 88 165 100 115 133 97 98 117

 H7 80 36 44 49 45 32 79 32 32 109 44 59 78 41 42 61

 H8 54 15 91 15 10 10 47 17 8 80 12 27 48 9 10 24

 H9 40 37 116 21 18 29 30 30 29 60 20 16 3 20 23 30

 H10 52 53 133 33 34 41 20 42 40 63 32 28 29 32 35 34

 H11 40 25 99 8 14 13 36 11 13 66 11 16 43 9 7 36

 H12 30 56 131 27 38 42 17 43 42 39 32 21 37 33 36 48

2a-grade hospitals

 H13 79 38 60 48 44 31 78 31 31 108 43 58 76 40 41 60

 H14 56 14 102 34 20 24 52 31 22 82 25 34 50 23 24 16

 H15 79 35 60 48 44 31 78 36 31 108 43 58 76 40 41 60

 H16 39 24 98 7 17 11 35 10 11 65 10 15 42 8 6 36

 H17 57 11 91 22 14 12 51 18 9 83 16 31 51 13 14 27

 H18 45 34 113 23 16 27 29 33 26 59 16 20 27 18 26 25

 H19 63 41 129 42 27 45 47 44 41 75 32 41 28 33 37 17

 H20 66 67 147 47 48 55 37 56 55 69 46 42 19 46 49 48

 H21 56 10 83 25 20 9 53 15 9 84 19 33 52 16 17 35

 H22 43 23 99 15 3 20 40 20 17 70 11 20 40 9 13 21

3a-grade hospitals

 H23 28 85 160 56 67 74 45 72 73 8 61 49 60 64 67 76

 H24 29 39 117 9 16 24 25 24 24 55 16 5 34 15 18 34

 H25 50 54 105 46 65 41 65 36 43 78 51 46 78 49 47 78

 H26 39 22 100 6 12 11 35 12 10 65 9 15 41 4 5 34

 H27 37 48 101 26 37 24 45 19 26 66 31 25 57 28 27 58

 H28 49 38 87 17 19 15 45 2 8 75 15 25 48 13 9 41

 H29 45 23 93 13 18 18 41 4 7 71 15 21 48 12 7 40

 H30 41 27 103 11 4 17 37 21 16 67 6 17 34 8 14 26

 H31 42 22 100 6 11 8 38 8 7 68 8 18 40 4 2 33

 H32 25 43 112 13 24 28 25 24 27 54 21 5 37 22 22 37

 H33 34 28 105 3 11 18 30 17 17 60 7 10 36 8 12 36

 H34 50 23 23 19 17 14 47 4 8 76 14 27 47 12 8 40
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sicker patients to be matched to higher-level hos-
pitals. The value of mpq is larger when patients 
receive higher effectiveness when they visit a 
matching hospital, and it is smaller when patients 
receive lower effectiveness when they visit a hos-
pital worse than the matching one. Therefore, we 
assume that the matching benefit of type A patients 

assigned to hospitals at levels I, II, and III is all 1. 
Type B patients assigned to both level II and level 
III hospitals have matching benefit of 3, while those 
assigned to level I hospitals have matching benefit 
of 1. A type C patient would have a matching ben-
efit of 1 to a level I hospital, 3 to a level II hospital, 
and 5 to a level III hospital. The matching benefit of 
type C patients allocated to hospital at level I is 1. 
The matching benefit of type C patients allocated to 
hospital at level II is 3. The matching benefit of type 
B patients allocated to hospital at level III is 5. So, 
the matching benefit matrix of unit allocation is

	   The mpq set in this paper is only used to demon-
strate the operability of the model. The specific 
value of mpq can be determined based on expert 
experience or the Delphi method.

	 In addition, it should be noted that the model estab-
lished in this paper is a hierarchical model consid-
ering the type of patients and the level of hospitals. 
To verify the validity of the model, the following 
results will compare the hierarchical model with 
the non-hierarchical model. The difference between 
non-hierarchical model and hierarchical model lies 
in the introduction of allocation matching benefit 
coefficient mpq . mpq is introduced into the hierarchi-
cal model and removed from the non-hierarchical 
model. Because, for the non-hierarchical model with-
out considering the type of patients and the level of 
hospitals, the model will no longer distinguish differ-
ent patients from different treatment methods, and 
any patient who obtains any treatment methods will 
be judged as the same allocation benefit 1. In other 
words, in a non-hierarchical model, mpq = 1, ∀p, q.

•	 apk : The number of class k medical resources 
required per class p patient. Suppose there are 
three medical resources that need to be allo-
cated, including general hospital Bed, ICU, and 
Staff. Among them, type A patients need 1 ordi-
nary hospital bed, 0 ICU, 1/6 medical staff, then 
aAk = (1, 0, 1/6), k = Bed, ICU , Staff  . Type B 
Patients need 1 general hospital bed, 0 ICU, 1 medi-
cal staff, then aBk = (1, 0, 1), k = Bed, ICU , Staff  . 
Type C patients need 0 general beds, 1 ICU, 3 health-
care staffs, then a3c = (0, 1, 6), k = Bed, ICU , Staff .

M =
�

mpq

�

=





1 1 1

1 3 3

1 3 5



.

Table 3  Number of medical resources in each hospital

Hospital Bed ICU Staff

Makeshift hospitals

 H1 30,000 0 5000

 H2 12,000 0 2000

 H3 27,200 0 4533

 H4 1000 0 167

 H5 20,000 0 3333

 H6 5400 0 900

 H7 6000 0 1000

 H8 1680 0 280

 H9 80,000 0 13,333

 H10 1000 0 167

 H11 1332 0 222

 H12 2600 0 433

2a-grade hospitals

 H13 300 6 336

 H14 720 8 768

 H15 300 6 336

 H16 1400 10 1460

 H17 1800 10 1860

 H18 200 4 224

 H19 500 6 536

 H20 400 6 436

 H21 1372 6 1408

 H22 1000 6 1036

3a-grade hospitals

 H23 6000 40 6240

 H24 1200 15 1290

 H25 2000 25 2150

 H26 4884 30 5064

 H27 2000 17 2102

 H28 4500 18 4608

 H29 1000 15 1090

 H30 1400 12 1472

 H31 2400 14 2484

 H32 4000 30 4180

 H33 4600 30 4780

 H34 2000 20 2120
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Algorithm parameters

•	 Initial population size is 500.
•	 Maximum iteration is 100.
•	 Cross-over probability is 0.9.
•	 Mutation probability is 0.1.

Contrast single‑objective models and multi‑objective 
models
To verify the feasibility of considering multiple objectives 
in the triage model, this work calculates the allocation 
schemes under different objective functions. For type II 
patients on April 1, the results are presented in Fig.  3, 
which shows the hospitals to which patients in each 
area should be assigned, depending on the objectives. 
For example, type II patients in area 1 were assigned to 
H25 (25th hospitals) and H28 (28th hospitals), consider-
ing only the objective function f1. In order to compare 
the allocation schemes under different objective func-
tions more clearly, Fig. 3 only shows the allocation results 
of epidemic areas 1, 3, 6 and 7. See Additional file  1: 
Table  S1 for detailed results. Considering that NSGA-II 
is an algorithm for solving multi-objectives, the single-
objective problem cannot be implemented by the NSGA-
II algorithm. The results for the single objectives in Fig. 3 
are obtained by GA, and the multi-objective results are 
achieved by the NSGA-II algorithm. The NSGA-II algo-
rithm is essentially derived from GA, and they only differ 

in selecting chromosomes to generate new populations. 
The two algorithms consider the same allocation pattern. 
Therefore, algorithmic differences do not affect the over-
all trends of different allocation schemes.

The results in Fig. 3 are compared between f1 (consid-
ering only the allocation matching benefit) and f2 (con-
sidering only the distance travelled) objectives. Patients 
under the f1 objective received more allocation match-
ing benefit. Specifically, patients under the f1 objec-
tive were centrally assigned to high-level hospitals (e.g., 
2a-grade hospitals and 3a-grade hospitals). Meanwhile, 
patients under the f2 objective were admitted to hospi-
tals at all levels. However, patients under the f1 objective 
were assigned to further hospitals, such as A1 under the 
f1 objective to H25 (50.2  km) and H 28 (48.8  km), but 
patients under A1 and f2 objective were assigned to H23 
(27.8  km) and H32 (25.4  km). The results under the f3 
objective (considering allocation fairness only) were com-
pared with those under f1 and f2 objectives. The f3 objec-
tive allocation scheme ensures that the average medical 
resources of patients are as small as possible, sacrificing 
the distance travelled (patients with A1 were assigned to 
H20 and H26 at distances of 65.9 and 38.7  km, respec-
tively) and allocation matching benefit (more patients are 
assigned to the 2a-grade hospitals, allocation matching 
benefit low).

Therefore, models considering only a single-objective 
yielded imbalanced solutions. All the three objectives 
were considered to balance the degree of matching of 

Table 4  The number of infected patients

Area On April 1 On May 1

Cumulative type A 
patients

Cumulative type B 
patients

Cumulative type C 
patients

Cumulative type A 
patients

Cumulative type B 
patients

Cumulative 
type C 
patients

A1 3509 53 0 13,592 464 6

A2 366 7 0 1572 49 0

A3 911 6 0 2993 39 0

A4 446 62 2 1851 213 3

A5 4078 250 2 11,907 721 7

A6 401 49 0 1045 151 0

A7 1644 260 2 3408 408 2

A8 8899 1213 18 21,261 2593 40

A9 6016 247 3 21,951 1055 14

A10 19,828 3451 55 59,286 8894 141

A11 123 29 0 261 55 0

A12 16,624 2185 35 41,307 5079 82

A13 2956 233 2 6238 624 4

A14 14,419 2178 36 48,740 6842 110

A15 18,759 305 2 53,246 1548 19

A16 23,114 954 16 69,178 3228 50
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patient allocation, the distance traveled, and the equity. 
Figure  3 shows that under multiple objectives (f1, f2, 
and f3), patients are more concentrated in 2a-grade 
hospitals and 3a-grade hospitals, while the patient 

distance traveled is relatively small (e.g., patients in A1 
are assigned to H32 with a distance of 25.4 km). In addi-
tion, the objective value of the multi-objective model 
(f1 = 3.713e + 04, f2 = 3.040e + 05, f3 = 1.922) is relatively 

(b) Consider only f1

(f1=1.314e+05)

(a) Consider only f2 

(f2=1.201e+05)

(c) Consider only f3 

(f3=1.001)

(d) Consider f1, f2 and f3

(f1=3.713e+04, f2=3.040e+05, f3=1.922) 
Fig. 3  Patient allocation scheme for difference objective
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close to the objective value of each single-objective 
model. Therefore, considering the multi-objective model, 
the degree of allocation matching, the distance traveled, 
and fairness are relatively balanced.

Contrast non‑hierarchical and hierarchical models
The allocation scheme compares the graded model with 
the ungraded model to verify the triage model. The 
results of the assignment are shown in Tables  5 and 6. 

Table 5  Non-hierarchical and hierarchical allocation scheme under “Demand exceeds supply” situation

I represents Makeshift hospitals, II represents 2a-grade hospitals, and III represents 3a-grade hospitals

Type A patient Type B patient Type C patient

Hierarchical Non-hierarchical Hierarchical Non-hierarchical Hierarchical Non-
hierarchical

A1 I I II I III III

A2 I III II I / /

A3 I I II III / /

A4 I I II II III III

A5 I II III I III II

A6 I II II II / /

A7 I I II I III III

A8 I I II II III II

A9 I II II I III III

A10 I II II I III III

A11 II I II III / /

A12 I II II I III III

A13 II I II II III III

A14 II III III II III III

A15 I II II III III II

A16 II II II II III III

Table 6  Non-hierarchical and hierarchical allocation scheme under “supply exceeds demand” situation

I represents Makeshift hospitals, II represents 2a-grade hospitals, and III represents 3a-grade hospitals

Type A patient Type B patient Type C patient

Hierarchical Non-hierarchical Hierarchical Non-hierarchical Hierarchical Non-
hierarchical

A1 II III II III / /

A2 II I III II / /

A3 II I II III / /

A4 I III II I III III

A5 II I II II III III

A6 I I II I / /

A7 II III II II III III

A8 I I II III III II

A9 II I II I III II

A10 II II II I III II

A11 III III III II / /

A12 I I II II III III

A13 II II II I III III

A14 II II II II III III

A15 II II II I III II

A16 II I II I III III
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Table 5 shows the non-hierarchical and hierarchical allo-
cation schemes in the “Demand exceeds supply.” Table 6 
shows the non-hierarchical and hierarchical allocation 
scheme in the “Supply exceeds demand.” Tables 5 and 6 
show the level of hospitals to which patients in each area 
were mainly assigned. For example, under the hierarchi-
cal model, type A patients in A1 were mainly assigned to 
grade I hospitals. Both tables have only provided a brief 
allocation protocol, and a detailed scheme will include 
the number of patients assigned to which level of which 
hospital.

According to Table 5, when under the “supply exceeds 
the demand” situation, more type A patients in each 
region under the hierarchical model were assigned to 
grade I hospitals, more mild patients were assigned 
to grade II hospitals, and more severe patients were 
assigned to grade III hospitals. In reality, grade III hos-
pitals are well equipped with high treatment levels. 
Grade II hospitals have general equipment and treat-
ment level. Grade I hospitals are makeshift hospitals 
with few treatment means and low treatment level. In 
actual situations, the more serious the patient condi-
tion is, the higher the level of treatment will be. Thus, 
the results under the hierarchical model in Table  5 
match the real-world considerations.

Under the non-hierarchical model, type A and B 
patients are assigned to grade III hospitals, while type 
C patients are assigned to grade II hospitals. Types 

A and B patients are crowding out the resources of 
severe patients.

The results in Table 6 are similar to those in Table 5, 
and the only difference is that more type A patients 
were assigned to grade II hospitals under the hierar-
chical model. The main reason is that the resources 
of hospitals are greater than the needs of patients in 
the “supply exceeds demand” situation. Thus, patients 
have the opportunity to choose a better hospital.

Shortage of resources in “demand exceeds supply” 
situation
In the “Supply exceeds Demand” situation, medi-
cal resources can meet the needs of all patients. 
In the “demand exceeds supply” situation, medical 
resources cannot meet the needs of all patients. We 
need to consider how to expand medical resources 
to meet the needs of all patients. Model 2 is used to 
determine whether hospitals need to increase medical 
resources and how many resources are needed. In this 
case study, the additional resources required by each 
hospital in the “demand exceeds supply” situation are 
presented in Table  7. The results are used to guide 
how the hospitals in this case manage to increase the 
medical resources to ensure that all patients can be 
treated.

Table 7  Additional resources needed by the hospitals in the “demand exceeds supply” situation

Hospital Bed ICU Staff Hospital Bed ICU Staff

H1 3010 0 576 H18 1137 0 139

H2 5349 0 603 H19 445 0 41

H3 748 0 136 H20 191 0 24

H4 631 0 82 H21 310 0 21

H5 1022 0 138 H22 1028 7 124

H6 2417 0 337 H23 447 0 41

H7 1344 0 184 H24 381 0 31

H8 4483 0 632 H25 457 0 42

H9 572 0 74 H26 1576 0 202

H10 2289 0 319 H27 549 0 55

H11 5710 0 808 H28 1610 20 364

H12 3309 0 465 H29 312 0 22

H13 346 0 41 H30 1198 10 148

H14 493 0 62 H31 432 0 39

H15 907 0 122 H32 712 20 94

H16 568 0 73 H33 1232 0 153

H17 737 0 97 H34 1934 33 253
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Discussion
Frequent pandemics of major epidemics seriously 
endanger the safety of human lives and property. Sav-
ing infected patients is an important means to alleviate 
the progression of the epidemic. However, after the pan-
demic of a major epidemic, the medical demand surges, 
and the burden of hospital resources increases, leading 
to run out of regional medical resources and other prob-
lems. In this regard, this work provides healthcare policy 
makers with useful decision-making tools for planning 
the allocation of patients and the expansion of medical 
resources under major epidemics.

Faced with the allocation of public health emergen-
cies, decision-makers often consider the allocation of 
income [31], transportation benefit [41], and illness 
[40]. However, patients are more eager to have sufficient 
or more healthcare resources than others (i.e., fair allo-
cation principle) [44]. Considering the perspective of 

decision makers and patients, the present work explores 
patient allocation strategies from three aspects: alloca-
tion matching benefit, distance traveled, and fair alloca-
tion principle. The objective function of the allocating 
matching benefit was used to facilitate patient access to 
more matched healthcare resources. The objective func-
tion of distance traveled was used to limit the proximity 
of patients to treatment. The objective function of the 
principle of fairness was used to ensure that the differ-
ence between the medical treatment received by patients 
in each epidemic area was as small as possible. When the 
model considering only a single objective obtained an 
uneven solution, the three objectives were considered 
simultaneously. The results indicate balanced degree of 
matching of patient allocation, distance traveled, and 
fairness.

For multi-objective problems, no single solution that 
simultaneously reached the optimization of each objec-
tive can be found [51]. In this case, the objective func-
tions were in conflict with one another. The optimization 
in obtaining a certain objective function was often at 
the expense of other objective functions. This work uses 
NSGA-II algorithm to generate different solutions for 
conflicting objectives. Figure 4 shows the Pareto solution 
in the “supply exceeds demand” scenario. Figure 5 shows 
the Pareto solution in the "demand exceeds supply" sce-
nario. Although the number of solutions in Figs. 4 and 5 
is different, it has an approximate change trend. Observ-
ing the overall change trend in Figs.  4 and 5, It can be 
seen that with the increase of allocation matching ben-
efit, the distance traveled will increase as a whole, while 
the fairness of allocation will decrease. In other words, 
the increase of allocation matching benefits must be at 
the expense of increasing distance traveled or sacrific-
ing the fairness of allocation. Therefore, users can find 
the best compromise according to their own preferences 
and the trade-off law of three objectives on Pareto sur-
face. For example, when the requirement of allocation 
matching benefit is high, we should find the best solution 
from Pareto surface by increasing the distance traveled or 
reducing the fairness of allocation. Overall, the proposed 
NSGA-II algorithm provides multiple solutions and gives 
users greater flexibility to decide which solution best 
meets the requirements.

In addition, there may be endogeneity and highly cor-
related among the three objectives in the model. We can 
consider learning from Song et  al.’s [60] practice to test 
the correlation between the objectives, and aggregate 
the objectives with significant positive correlations into a 
group to eliminate redundant objectives.

Hierarchical diagnosis and treatment is a good tool 
to assign patients to matched medical institutions for 
treatment. This work compares the allocation scheme 

Fig. 4  Pareto in “supply exceeds demand” situation

Fig. 5  Pareto in “demand exceeds supply” situation
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of graded model. The results are as follows. (1) In the 
non-hierarchical model, resources are crowded, such as 
patients seizing the resources of patients with severe ill-
ness. (2) The scheme of the hierarchical model is the 
same as the concept of hierarchical diagnosis and treat-
ment (matching to the corresponding treatment method 
according to the degree of the condition). The findings 
verified the effectiveness of the triage patient allocation 
model established in this paper.

As the epidemic develops, the number of patients 
in need of treatment will increase and will even exceed 
the maximum capacity of the medical system. Medi-
cal resources are the main reason to limit patients’ 
treatment. Therefore, expanding the supply of medi-
cal resources should be considered to ensure that more 
patients can be treated. The model can be used to guide 
decision makers in deciding how to increase medical 
resources and ensure that all patients can be treated. 
In practice, the model cannot only discuss the supply 
scheme of the above medical resources but also add other 
medical resources (e.g., drugs) for discussion.

Conclusion
After the occurrence of a major epidemic, the allocation 
of different categories of patients to the various hospitals 
is the core of the entire relief operation. This paper sys-
tematically considers the severity of patients’ diseases, 
grade of hospital, allocation effectiveness, transporta-
tion distance and equity, and a patient allocation model 
in major epidemics is constructed with the objectives of 
the highest allocation effectiveness, the lowest transpor-
tation distance, and the equity of access to treatment for 
the patients, which is solved and analyzed by simulation 
data. The operability of the model is verified by results of 
the research.

The innovation of this paper is to consider the sever-
ity of patients’ conditions and the diversity of medi-
cal treatment capabilities, a patient allocation model in 
major epidemics is constructed by applying the multi-
objective planning method. There are three objectives 
in this model, including the highest allocation effective-
ness, the lowest transportation distance, and the equity 
of access to treatment for the patients in each epidemic 
area. This paper solves the problem of the allocation of 
various categories of patients under two scenarios: "sup-
ply exceeding demand" and "demand exceeding supply." 
Considering the fact that the hospital is at capacity and 
a large number of patients are not being admitted under 
"demand exceeding supply" scenario, admission and 
treatment demands of more patients can be satisfied by 
expanding medical treatment capacity. To maximize the 

utility of medical resources, the model provides deci-
sion schemes on how to expand the medical treatment 
capacity.

Research limitations and future research directions
Many aspects in this paper can still be improved. Design-
ing an applicable and efficient algorithm in the solving 
process will be the focus of the next research. In addition, 
the uncertainty of patient demands and the dynamics of 
the decision-making process will be the focus of the next 
research.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12911-​022-​02074-3.

Additional file 1: Table S1. Patient allocation scheme for different 
objective

Acknowledgements
Not applicable.

Author contributions
YY is responsible for conceptualizing the research theme, analysis, interpreta‑
tion of the results, and drafted earlier versions of the manuscript; LH is respon‑
sible for the algorithm, statistics and analysis, and the writing and modification 
of articles; JW is responsible for collecting data and revising articles; Y-CC is 
responsible for the conception, design and coordination of the research; LP 
is responsible for the design, data and results of the research. All authors read 
and approved the final manuscript.

Funding
 This work was supported by Zhejiang provincial natural science founda‑
tion [Grant No. LZ23G030001], Zhejiang Provincial Philosophy and Social 
Sciences Planning Project [Grant Numbers: No. 23NDJC306YB], the National 
Natural Science Foundation of China [Grant Numbers: No. 71872131 and 
72072163], scientific research project of Wenzhou Science and Technology 
Bureau [Grant Numbers: No. R20210100].

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article [and its supplementary information files].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.

Author details
1 Institute of Public Health and Emergency Management, Taizhou Univer‑
sity, Taizhou 318000, Zhejiang, China. 2 Business College, Taizhou University, 
Taizhou 318000, Zhejiang, China. 3 School of Electronics and Information 
Engineering, Taizhou University, Taizhou 318000, Zhejiang, China. 4 Zhejiang 
College of Security Technology, Wenzhou 325000, Zhejiang, China. 

https://doi.org/10.1186/s12911-022-02074-3
https://doi.org/10.1186/s12911-022-02074-3


Page 17 of 18Ye et al. BMC Medical Informatics and Decision Making          (2022) 22:331 	

Received: 30 June 2022   Accepted: 2 December 2022

References
	1.	 Chen TX, Wang Y, Hua L. “Pairing assistance”: the effective way to solve the 

breakdown of health services system caused by COVID-19 pandemic. Int 
J Equity Health. 2020;19(1):168.

	2.	 Ye K, et al. Coping with undifferentiated diseases: from over-diagnosis to 
shared decision making Chinese. Gen Pract. 2020;23(36):4541–7.

	3.	 Gutierrez E, Rubli A. Shocks to hospital occupancy and mortality: evi‑
dence from the 2009 H1N1 pandemic. Manage Sci. 2021;67(9):5943–52.

	4.	 Zhu C, et al. Research on multi-point practice of doctors under the 
background of graded diagnosis and treatment. Int J Educ Cult Soc. 
2021;6(3):79.

	5.	 Saremi A, et al. Appointment scheduling of outpatient surgical 
services in a multistage operating room department. Int J Prod Econ. 
2013;141(2):646–58.

	6.	 Astaraky D, Patrick J. A simulation based approximate dynamic program‑
ming approach to multi-class, multi-resource surgical scheduling. Eur J 
Oper Res. 2015;245(1):309–19.

	7.	 Dutta AK. Vaccine against Covid-19 disease—present status of develop‑
ment. Indian J Pediatr. 2020;87(10):810–6.

	8.	 Mertz L. Innovative vaccines to fight COVID-19, other viruses. IEEE Pulse. 
2021;12(6):6–9.

	9.	 Rab S, et al. An update on the global vaccine development for coronavi‑
rus. Diabetes Metab Syndr. 2020;14(6):2053–5.

	10.	 Rodrigues DS, et al. Predicting the outcome for COVID-19 patients by 
applying time series classification to electronic health records. BMC Med 
Inform Decis Mak. 2022;22(1):187.

	11.	 Sun C, et al. Predicting COVID-19 disease progression and patient out‑
comes based on temporal deep learning. BMC Med Inform Decis Mak. 
2021;21(1):45.

	12.	 Beaunoyer E, Dupere S, Guitton MJ. COVID-19 and digital inequalities: 
Reciprocal impacts and mitigation strategies. Comput Human Behav. 
2020;111: 106424.

	13.	 Walker PGT, et al. The impact of COVID-19 and strategies for mitiga‑
tion and suppression in low- and middle-income countries. Science. 
2020;369(6502):413–22.

	14.	 Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing 
and community containment: pivotal role for old-style public health 
measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med. 
2020;27(2):020.

	15.	 Di Luise E, Magni PA. Interim recommendations for the management of 
forensic investigation during the COVID-19 pandemic: an Italian perspec‑
tive. Sci Justice. 2021;61(6):735–42.

	16.	 Geevarughese NM, Haq R-U. Aerosol generating procedures in ortho‑
paedics and recommended protective gear. J Clin Orthop Trauma. 
2021;12(1):40–2.

	17.	 Cheng C-H, Kuo Y-H, Zhou Z. Outbreak minimization v.s. influence 
maximization: an optimization framework. BMC Med Inform Decis Mak. 
2020;20(1):266.

	18.	 Bubar KM, et al. Model-informed COVID-19 vaccine prioritization strate‑
gies by age and serostatus. Science. 2021;371(6532):916–21.

	19.	 Moore S, et al. Vaccination and non-pharmaceutical interventions 
for COVID-19: a mathematical modelling study. Lancet Infect Dis. 
2021;21(6):793–802.

	20.	 Wang J, et al. Acceptance of COVID-19 vaccination during the COVID-19 
pandemic in China. Vaccines. 2020;8(3):482.

	21.	 Gharib M, Fatemi Ghomi SMT, Jolai F. A multi-objective stochastic 
programming model for post-disaster management. Transportmetrica A 
Transp Sci. 2022;18:1103–26.

	22.	 Sun H, Wang Y, Xue Y. A bi-objective robust optimization model for dis‑
aster response planning under uncertainties. Comput Ind Eng. 2021;155: 
107213.

	23.	 Kim S, Moon JS, Kim YW. One-month recovery experience of a disaster 
relief team functioning as an outpatient clinic following Super Typhoon 
Haiyan: changes in distribution of trauma patients and required medical 
components. Am J Disaster Med. 2018;13(3):147–52.

	24.	 Song J, Bai Y, Wen J. Optimal appointment rule design in an outpatient 
department. IEEE Trans Autom Sci Eng. 2019;16(1):100–14.

	25.	 Song J, Qiu Y, Liu Z. A real-time access control of patient service in the 
outpatient clinic. IEEE Trans Autom Sci Eng. 2017;14(2):758–71.

	26.	 Aringhieri R, et al. Combining workload balance and patient priority 
maximisation in operating room planning through hierarchical multi-
objective optimisation. Eur J Oper Res. 2022;298(2):627–43.

	27.	 Pan X, Song J, Zhang B. Resource allocation via dynamic admission con‑
trol in healthcare system. In 2017 13th IEEE conference on automation 
science and engineering (CASE). 2017.

	28.	 Sun L, DePuy GW, Evans GW. Multi-objective optimization models for 
patient allocation during a pandemic influenza outbreak. Comput Oper 
Res. 2014;51:350–9.

	29.	 Tsai J-F, et al. Solving patient allocation problem during an epidemic 
dengue fever outbreak by mathematical modelling. Healthcare. 
2022;10(1):163.

	30.	 Soroush F, et al. A study of the evacuation and allocation of hospital beds 
during the Covid-19 epidemic: a case study in Iran. BMC Health Serv Res. 
2022;22(1):864.

	31.	 Ekici A, Keskinocak P, Swann JL. Modeling influenza pandemic 
and planning food distribution. M&Som-Manuf Serv Oper Manag. 
2014;16(1):11–27.

	32.	 Shao H, et al. Supply-demand matching of medical services at a city 
level under the background of hierarchical diagnosis and treatment-
based on Didi Chuxing Data in Haikou, China. BMC Health Serv Res. 
2022;22(1):1–12.

	33.	 Grosios K, Gahan PB, Burbidge J. Overview of healthcare in the UK. EPMA 
J. 2010;1(4):529–34.

	34.	 Xie Y, et al. A smart healthcare knowledge service framework for hierar‑
chical medical treatment system. Healthcare. 2022;10(1):32.

	35.	 Xiao Y, et al. Patients gather in large hospitals: the current situation of 
Chinese hospitals and the direction of medical reform. Postgraduate Med 
J. 2022;98: e43.

	36.	 Xiao Y, et al. Challenges in establishing a graded diagnosis and treatment 
system in China. Fam Pract. 2022;39(1):214–6.

	37.	 Jiang Q, et al. Keys to promoting the graded diagnosis and treatment 
system based on the integrated health care system in China. Fam Pract. 
2022;39(1):217–8.

	38.	 Werfel T, et al. The diagnosis and graded therapy of atopic dermatitis. 
Dtsch Arztebl Int. 2014;111(29–30):509–20.

	39.	 Davarpanah AH, et al. Novel screening and triage strategy in Iran during 
deadly coronavirus disease 2019 (COVID-19) epidemic: value of humani‑
tarian teleconsultation service. J Am Coll Radiol. 2020;17(6):734–8.

	40.	 Xu Y, et al. Decision analysis model for prehospital triage of patients with 
acute stroke. Stroke. 2019;50(4):970–7.

	41.	 Ramirez-Nafarrate A, et al. Point-of-dispensing location and capac‑
ity optimization via a decision support system. Prod Oper Manag. 
2015;24(8):1311–28.

	42.	 Sy CL, et al. Process integration for emerging challenges: optimal alloca‑
tion of antivirals under resource constraints. Clean Technol Environ Policy. 
2020;22(6):1359–70.

	43.	 Yu H, et al. Reverse logistics network design for effective management 
of medical waste in epidemic outbreaks: insights from the coronavirus 
disease 2019 (COVID-19) outbreak in Wuhan (China). Int J Environ Res 
Public Health. 2020;17(5):1770.

	44.	 Tseng M-H, Wu H-C. Accessibility assessment of community care 
resources using maximum-equity optimization of supply capacity alloca‑
tion. Int J Environ Res Public Health. 2021;18(3):1153.

	45.	 Hynninen Y, Vilkkumaa E, Salo A. Operationalization of utilitarian and 
egalitarian objectives for optimal allocation of health care resources. 
Decis Sci. 2021;52(5):1169–208.

	46.	 Zhang Y, et al. Two-stage stochastic programming approach for limited 
medical reserves allocation under uncertainties. Complex Intell Syst. 
2021;7(6):3003–13.

	47.	 Wang C-H, Chen N. A multi-objective optimization approach to balanc‑
ing economic efficiency and equity in accessibility to multi-use paths. 
Transportation. 2021;48(4):1967–86.

	48.	 Tanantong T, Pannakkong W, Chemkomnerd N. Resource management 
framework using simulation modeling and multi-objective optimization: 



Page 18 of 18Ye et al. BMC Medical Informatics and Decision Making          (2022) 22:331 

a case study of a front-end department of a public hospital in Thailand. 
BMC Med Inform Decis Mak. 2022;22(1):10.

	49.	 Aydin N, Cetinkale Z. Analyses on ICU and non-ICU capacity of govern‑
ment hospitals during the COVID-19 outbreak via multi-objective linear 
programming: an evidence from Istanbul. Comput Biol Med. 2022;146: 
105562.

	50.	 Chang J, Zhang L. Case Mix Index weighted multi-objective optimiza‑
tion of inpatient bed allocation in general hospital. J Comb Optim. 
2019;37(1):1–19.

	51.	 Kaushik A, Vidyarthi DP. An energy-efficient reliable grid scheduling 
model using NSGA-II. Eng Comput. 2016;32(3):355–76.

	52.	 Wang P, et al. A multi-objective DV-Hop localization algorithm based on 
NSGA-II in internet of things. Mathematics. 2019;7(2):184.

	53.	 Kirkpatrick James N, et al. Scarce-resource allocation and patient triage 
during the COVID-19 pandemic. J Am Coll Cardiol. 2020;76(1):85–92.

	54.	 Adams JS. Towards an understanding of inequity. Psychol Sci Public Inter‑
est. 1963;67(5):422.

	55.	 Wang L, Zhang CK. Greenhouse microclimate control strategy to reduce 
costs based on improved NSGA-II optimal method. Eng Lett 2021; 29(3).

	56.	 Chen D, et al. A genetic algorithm parallel strategy for optimizing the 
operation of reservoir with multiple eco-environmental objectives. Water 
Resour Manag. 2016;30(7):2127–42.

	57.	 Guo YN, et al. Interval multi-objective quantum-inspired cultural algo‑
rithms. Neural Comput Appl. 2018;30(3):709–22.

	58.	 Li K, Hu Q, Liu J. Path planning of mobile robot based on improved 
multiobjective genetic algorithm. Wirel Commun Mob Comput. 
2021;2021:8836615.

	59.	 Ergezer H, Leblebicioglu K. Path planning for UAVs for maximum informa‑
tion collection. IEEE Trans Aerosp Electron Syst. 2013;49(1):502–20.

	60.	 Song J, Qiu Y, Liu Z. Integrating optimal simulation budget allocation and 
genetic algorithm to find the approximate pareto patient flow distribu‑
tion. IEEE Trans Autom Sci Eng. 2016;13(1):149–59.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Patient allocation method in major epidemics under the situation of hierarchical diagnosis and treatment
	Abstract 
	Objectives: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Related work
	Methods
	Mathematical modeling and design
	Objective function 1: allocation matching benefit
	Objective function 2: distance traveled
	Objective function 3: principle of fair allocation
	Model 1: patient allocation model considering supply exceeding demand
	Model 2: patient allocation model considering demand exceeds supply

	NSGA-II algorithm
	Application of simulation cases

	Results
	Parameter design
	Model parameter
	Algorithm parameters

	Contrast single-objective models and multi-objective models
	Contrast non-hierarchical and hierarchical models
	Shortage of resources in “demand exceeds supply” situation

	Discussion
	Conclusion
	Research limitations and future research directions
	Acknowledgements
	References


