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Abstract 

Background:  Muscle fatigue and pain are key symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome 
(ME/CFS). Although the pathophysiology is not yet fully understood, there is ample evidence for hypoperfusion which 
may result in electrolyte imbalance and sodium overload in muscles. Therefore, the aim of this study was to assess 
levels of sodium content in muscles of patients with ME/CFS and to compare these to healthy controls.

Methods:  Six female patients with ME/CFS and six age, BMI and sex matched controls underwent 23Na-MRI of the 
left lower leg using a clinical 3T MR scanner before and after 3 min of plantar flexion exercise. Sodium reference 
phantoms with solutions of 10, 20, 30 and 40 mmol/L NaCl were used for quantification. Muscle sodium content over 
40 min was measured using a  dedicated plugin in the open-source DICOM viewer Horos. Handgrip strength was 
measured and correlated with sodium content.

Results:  Baseline tissue sodium content was higher in all 5 lower leg muscle compartments in ME/CFS compared 
to controls. Within the anterior extensor muscle compartment, the highest difference in baseline muscle sodium 
content between ME/CFS and controls was found (mean ± SD; 12.20 ± 1.66 mM in ME/CFS versus 9.38 ± 0.71 mM 
in controls, p = 0.0034). Directly after exercise, tissue sodium content increased in gastrocnemius and triceps surae 
muscles with + 30% in ME/CFS (p = 0.0005) and + 24% in controls (p = 0.0007) in the medial gastrocnemius muscle 
but not in the extensor muscles which were not exercised. Compared to baseline, the increase of sodium content in 
medial gastrocnemius muscle was stronger in ME/CFS than in controls with + 30% versus + 17% to baseline at 12 min 
(p = 0.0326) and + 29% versus + 16% to baseline at 15 min (p = 0.0265). Patients had reduced average handgrip 
strength which was associated with increased average muscle tissue sodium content (p = 0.0319, R2 = 0.3832).

Conclusion:  Muscle sodium content before and after exercise was higher in ME/CFS than in healthy controls. Fur-
thermore, our findings indicate an inverse correlation between muscle sodium content and handgrip strength. These 
findings provide evidence that sodium overload may play a role in the pathophysiology of ME/CFS and may allow for 
potential therapeutic targeting.
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Background
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome 
(ME/CFS) is a complex and chronic disease with a world-
wide prevalence of up to 0.9% often triggered by viral 
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infections such as EBV or SARS-Cov2 [1, 2]. Patients 
suffer from severe central and muscular fatigue, sleep 
disturbance, cognitive impairment, and immune and 
autonomic dysfunction. The cardinal symptom is exer-
tional intolerance with post-exertional malaise, which 
describes a disproportionate aggravation of symptoms 
and a prolonged recovery period after physical or mental 
exertion [3]. Muscle fatigue and myalgia are key symp-
toms of ME/CFS. Muscle fatigue and fatigability can be 
measured by the assessment of hand grip strength [4]. 
Although the etiology and pathophysiology of ME/CFS 
is not fully understood yet, there is ample evidence for 
an autoantibody mediated dysregulation of the auto-
nomic nervous system and disturbed vascular regula-
tion [5–8]. Endothelial dysfunction, hypoperfusion of 
muscles and impaired cerebral blood flow are assumed 
to be key mechanisms for symptoms like fatigue, myal-
gia, post-exertional malaise and impaired cognition [9, 
10]. Patients with ME/CFS performed worse than healthy 
controls in a controlled repeated exercise study and 
showed increased intramuscular acidosis and abnormali-
ties in recovery of muscular pH after standardized exer-
cise of lower leg muscles [11, 12]. Compared to healthy 
controls, diminished proton efflux was observed in ME/
CFS patients immediately after exercise and maximum 
proton efflux was also reduced [13]. Disturbances of ions 
in skeletal muscles such as sodium overload and sub-
sequent calcium overload was hypothesized as conse-
quences of hypoxemia in ME/CFS [14]. Based on these 
assumptions, in this study we analyzed sodium content in 
skeletal muscle tissue in patients with ME/CFS.

Recent studies have established 23Na-magnetic reso-
nance imaging (MRI) as a reliable, non-invasive method 
to quantify sodium content in muscle tissue [15–17]. The 
method has been used in a broad set of study cohorts, 
such as arterial hypertension [18], acute heart failure 
[19], kidney failure [20], diabetes mellitus [21], multiple 
sclerosis [22] and muscle diseases [23, 24]. Duchenne 
muscular dystrophy and muscle channelopathy were 
associated with elevated tissue sodium [25, 26]. Some 
researchers already conducted sodium MRI studies with 
exercise or muscle strain [27, 28]. Increased levels of 
sodium content in exercised muscles were found after 
leg strain compared to baseline in healthy subjects [29, 
30]. Therefore, the aim of this study was to comparatively 
assess muscle sodium in ME/CFS and healthy controls at 
baseline and after exercise.

Materials and methods
Subjects and study design
In this pilot study, six patients with ME/CFS and six 
healthy controls were studied. All patients were recruited 
between August 2020 and November 2020 at the Institute 

of Medical Immunology at Charité where they were pre-
viously diagnosed with ME/CFS based on Canadian 
Consensus Criteria. Inclusion Criteria were: ME/CFS 
triggered by an infection, muscle pain > 5 assessed by a 
likert scale from 0 (none) to 10 (severest), a Bell Score 
from 20 to 40 [1, 31, 32], female sex (as women suffer 
more often from ME/CFS) and age 20–45 years. Healthy 
controls were age, BMI and sex matched with no history 
of illnesses and no medication, that could affect the mus-
cle function. They were required to have sedentary jobs 
and perform less than three hours of physical activity per 
week [33].

Exercise protocol
Study participants were instructed not to exercise or per-
form intense leg movements for 1  week before the MR 
examination. On examination day, patients were picked 
up from home by taxi and healthy controls used public 
transportation or car to not overstress their muscles. 
Before the subjects´ left calf was scanned at its widest 
circumference, they rested in a lying position for at least 
30 min to reach a constant distribution of the interstitial 
volume and to ensure comparable resting states of the 
muscles [34]. After the initial baseline imaging subjects 
were asked to get off the MR to perform heel raises to 
exercise the triceps surae muscle. The exercise protocol 
contained 3 min of anaerobic dynamic training [27]. Plan-
tar flexion was done by raising both heels from stand-
ing position, stand on tiptoes and return to the floor, 
against one´s own body weight with a frequency of 30/
min [13, 29, 30]. Subjects were repositioned to MR scan-
ner immediately after exercise for the second run of the 
measurement protocol. To assess muscular fatigue, hand-
grip strength was measured in all study participants with 
an electric dynamometer (CAMRY, model: SCACAM-
EH101) in two separate sessions. Patients and controls 
had to sit in an upright position and place the forearm of 
the dominant hand on a standard table in full supination. 
The handle was pulled 10 times with maximum force for 
3 s, each time followed by a 5 s relaxation phase [35, 36]. 
A second session was performed after a recovery break 
of 60 min. Heart rate and blood pressure were measured 
alongside to image acquisition before and after exertion.

MRI acquisition protocol and data processing
Imaging was performed on a clinical 3 Tesla MR 
scanner (Philips Ingenia, Software Release 5.6.1, 
Philips Healthcare, Best, The Netherlands) with 
a 23Na send/receive knee-coil (Rapid Biomedi-
cal, Rimpar, Germany) using a 2D spoiled gradi-
ent multi-echo sequence with flyback gradients (12 
echoes, echo times TE = 2.44  ms + n × 3.05  ms), rep-
etition time TR = 100  ms, flip angle FA = 90°, measured 
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resolution = 3 × 3 × 30 mm2, 132 averages, scan duration 
TA = 14  min. To assess dynamic alterations of sodium 
levels during the prolonged imaging procedure, complex 
images were stored for each individual average, in order 
to allow for retrospective averaging with smaller tempo-
ral footprints. Averaging was performed via a dedicated 
postprocessing  plugin for Horos, to enable complex aver-
aging from a user-defined subset of averages and echoes. 
The 23Na signal was averaged over the first three echoes 
of the multi-echo acquisition, acquired at TEn = 2.44 ms, 
5.49 ms and 8.54 ms, restricting the visualization to long 
T2* sodium components. Furthermore, a moving average 
filter over 80 respective average was employed, yielding 
a time-resolved reconstruction with 53 timeframes over 
the prolonged acquisition duration. Along with the sub-
jects´ calf, four calibration phantoms containing aqueous 
solutions of 10, 20, 30 and 40 mmol/L (mM) NaCl were 
scanned as reference standards [18]. Tissue water content 
was measured by 1H-MRI, using a fat-saturated inver-
sion-prepared SE sequence (inversion time, TI = 210 ms; 
TA = 6.27  min; TE = 12  ms; TR = 3000  ms; FA = 90◦; 1 
average, resolution: 1.5 × 1.5 × 5 mm3), as already con-
ducted by other scientists [19, 37].

Regions of interest (ROI) were drawn using the medi-
cal image viewer Horos (version 3.3.6) and the anatomi-
cal image (T1-weighted spoiled gradient echo sequence) 
as guideline. ROIs were drawn over noise background 
(0 mM NaCl) and over all reference phantoms and were 
measured in arbitrary units (a.u.). The respective signal 
intensities served as calibration standards by translat-
ing intensity to concentration in a linear trend analysis. 
Important ROIs enclosed (a) the largest lower leg mus-
cle (triceps surae consisting of the medial and lateral 
gastrocnemius and soleus muscle) and (b) the extensor 
muscles of the anterior compartment of the leg (tibialis 
anterior, extensor hallucis, extensor digitorum and fibu-
laris muscles), which were not exercised were used for 
internal control. Since prominent vascular structures are 
rich in sodium, they were excluded during measurement. 
The primary outcome was defined as the absolute sodium 
content in the muscle tissue. A graphical summary of the 
study methods is outlined in Fig. 1.

Statistical analysis
Continuous data are presented as means with standard 
deviation (± SD), unless stated otherwise. Using the Sha-
piro–Wilk test and Kolmogorov–Smirnov test, data dis-
tribution was tested. The 95% confidence intervals were 
calculated and p < 0.05 was considered significant for all 
statistical tests. P-values are uncorrected and considered 
descriptive due to multiple testing. Paired t-test was used 
within the groups to test the progression of sodium and 
water content in muscle tissue over time, and to compare 

the two sessions of handgrip strength measurement. 
Unpaired t-test was used to test the differences in tissue 
sodium and water content, characteristics, and handgrip 
strength between patients with ME/CFS and controls. 
Differences in decrease of sodium content after its peak 
values were assessed by comparison of linear regression 
lines, which is one use of ANCOVA. Correlations were 
assessed by linear regression model and Pearson correla-
tion coefficient. GraphPad Prism (version 9.0.2) was used 
for statistical analysis.

Results
Study population
Muscle sodium and water content at baseline and 
changes over time after lower leg muscle exercise were 
measured noninvasively and analyzed in a total of 12 
study subjects. Six patients with ME/CFS were compared 
to six matched healthy controls, the characteristics of the 
study population are shown in Table 1. Age, BMI, and sex 
did not differ between the groups, neither did behaviors 
regarding salt appetite, salty food craving and consump-
tion of beverages. All study subjects had an increase in 
heart rate and blood pressure directly after exercise. All 
subjects reported mild pain and exhaustion immediately 
after exercise. Controls had painful sore muscles for two 
days after exercise. All patients with ME/CFS reported 
post-exertional malaise following exercise.

Dynamic of sodium and water content
Image quality was satisfactory for all 12 study subjects 
and none of the images had remarkable motion arte-
facts. Dynamic progressions of tissue sodium content in 
lower leg muscles over time in patients and in controls 
are shown in Fig.  2. Directly after exercise, we found 
elevated sodium content in triceps surae, medial and 
lateral gastrocnemius. The strongest increase of tissue 
sodium content was observed in medial gastrocnemius 
muscle (patients from 10.50 ± 0.78 to 13.65 ± 0.69 at 
minute 1, + 30%, p = 0.0005; controls from 10.23 ± 1.24 
to 12.67 ± 1.28 at minute 1, + 24%, p = 0.0007) as shown 
in Fig.  2. Within the 40-min recovery period, sodium 
content decreased in these muscles. Neither ME/CFS 
patients nor controls had an increase upon exertion 
in sodium content in the extensor muscles and only a 
minor increase in the soleus, which were not involved 
in the exercise. There were no changes in tissue water 
content in any muscles of the lower leg in both groups. 
Values of tissue sodium and water content of different 
muscle compartments are outlined in Table  2. Figure  3 
shows representative 23Na images from two subjects at 
baseline, directly after exercise and 25 min after exercise. 
The increased intensities which are faintly visible in the 
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images directly after exercise correlate with an increase 
of tissue sodium content measured and expressed in mM.

Comparison of tissue sodium content in patients with ME/
CFS and controls
Baseline tissue sodium content was higher in all 5 
muscle compartments in ME/CFS compared to con-
trols (Fig.  2). The strongest difference was observed 
within the anterior extensor muscle compartment, 
with 12.2 ± 1.66  mM in patients and 9.38 ± 0.71  mM 

in controls (p = 0.0034). After exercise tissue sodium 
content increased in all exercised muscles and was 
higher in ME/CFS than in controls at all 8 time points 
during the 40-min measurement period (p < 0.0001, 
respectively). The decrease of sodium content in medial 
gastrocnemius was slower in ME/CFS than in con-
trols with + 30% versus + 17% to baseline at 12  min 
(p = 0.0326) and + 29% versus + 16% to baseline at 
15 min (p = 0.0265). No difference in tissue water con-
tent between the two groups was detected in any mus-
cle compartment at any point in time.

a b

d

c

Fig. 1  Schematic overview of methods. a Clinical 3 Tesla MR scanner with 23Na knee-coil for lower leg muscles placed in. b 23Na knee-coil 
with four calibration phantoms containing solutions of 10, 20, 30 and 40 mmol/L NaCl. c After dynamic reconstruction of the data based on a 
dedicated plugin, regions of interest (ROI) were drawn in Horos on MR images for all lower leg muscles and all calibration phantoms. d Signal 
intensities of ROIs (measured in arbitrary units) were translated to sodium content in mM using a linear trend analysis. Finally, sodium content of 
muscle tissue was assessed over time after exercise
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Handgrip strength and correlation with tissue sodium 
content
Patients with ME/CFS showed reduced maximal and 
mean handgrip strength compared to controls (fmean1 
12.6 ± 6.3  kg in patients versus 27.2 ± 4.8  kg in con-
trols; p = 0.0011) and after 60 min (fmean2 10.1 ± 5.6 in 
patients versus 26.9 ± 4.2 in controls; p = 0.0002). Fur-
ther, the recovery rate fmean2/fmean1 in patients was 
lower (p = 0.0055), while controls showed similar mean 
handgrip strength in both sessions (p = 0.5342, Fig.  4a). 
We observed an inverse correlation between fmean1 
handgrip strength and baseline tissue sodium content 
of all lower leg muscles (average of triceps, extensors, 
medial and lateral gastrocnemius and soleus; p = 0.0500, 
R2 = 0.3317, Fig.  4b), and between fmean2 handgrip 
strength and average tissue sodium content of all lower 
leg muscles after exercise (p = 0.0319, R2 = 0.3832, 
N = 12, Fig.  4c). The correlations of handgrip strength 
and the individual muscles are shown in Additional file 1: 
Fig. S1.

Discussion
To the best of our knowledge, we conducted the first 
23Na-MRI study in ME/CFS. This study provides evi-
dence that sodium content of lower leg muscles is higher 

in ME/CFS than in healthy controls at rest and after 
exercise. Furthermore, our findings indicate an inverse 
correlation between mean muscle sodium content and 
handgrip strength. Thus, sodium overload may play a 
role in the pathophysiology of ME/CFS and may allow for 
potential treatment targeting.

This study demonstrates the feasibility of monitor-
ing changes in muscle sodium content in ME/CFS and 
healthy subjects after exercise using 23Na-MRI. As 
already shown in previous studies in healthy persons, 
our study populations also had an increase in muscle 
tissue sodium content directly after anaerobic exercise 
[27, 29]. Our MR images indicate an increase of sodium 
without concomitant water increase, as it was shown 
in another study, which postulates that sodium can be 
stored non-osmotically [19]. Our findings that tissue 
sodium content in healthy controls returned to baseline 
levels approximately 40 min after muscle exercise corre-
spond to the results of a study showing a return to base-
line levels 35 min after exercise in healthy controls [30]. 
Like healthy subjects, patients with ME/CFS responded 
to exercise with an initial increase in muscle sodium con-
tent followed by a decrease over time. Since all patients 
with ME/CFS suffered from post-exertional malaise after 
exercise, we would not recommend this examination 

Table 1  Baseline characteristics

ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Mean values with standard deviation (SD) in brackets, unless stated otherwise. Questionnaire on a 
scale from 1–10 (1 = I strongly agree; 10 = I strongly disagree). P value refers to comparison of both groups

Subjects Patients with ME/CFS
(n = 6)

Controls
(n = 6)

P-value ME/CFS 
versus Controls

Sex Female Female –

Age (years) 30.3 (7.6) 27.3 (4.8) 0.4308

BMI (kg/m2) 21.6 (4.1) 23.4 (5.1) 0.5253

Bell Score [0–100] 30 (6.3) – –

Chalder Fatigue Score [0–33] 29.5 (1.4) – –

Systolic blood pressure baseline 108.0 (11.1) 115.7 (8.0) 0.1997

Diastolic blood pressure baseline 63.2 (7.5) 62.0 (2.8) 0.7295

Mean arterial pressure baseline 77.3 (8.8) 78.7 (5.1) 0.7560

Heart rate baseline 63.8 (7.9) 64.7 (6.0) 0.8411

Systolic blood pressure after exercise 119.8 (12.0) 125.5 (10.8) 0.4116

Diastolic blood pressure after exercise 72.2 (11.9) 71.0 (3.3) 0.8215

Mean arterial pressure after exercise 90.7 (8.4) 87 (4.9) 0.3777

Heart rate after exercise 76.5 (6.7) 69.8 (4.2) 0.0672

Salt questionnaire [37]

“How much do you like salty food?” 6.0 (0.9) 5.7 (2.9) 0.7961

“How often do you add more salt to your food?” 3.7 (2.0) 4.7 (3.8) 0.5819

“How much do you like salty snacks such as crisps?” 5.5 (1.4) 5.3 (3.4) 0.9146

“How often do you eat in fast food restaurants?” 2.0 (1.5) 2.3 (0.8) 0.6510

“How much money do you usually spend there?” (€) 3.8 (4.9) 7.0 (4.3) 0.2640

“How often do you drink beverages without additional flavour?” 7.7 (2.7) 6.2 (3.7) 0.4438

“How much do you drink daily?” (L) 2.1 (0.4) 2.1 (0.4) > 0.9999
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method for clinical routine as long as no implications the 
diagnostic or therapeutic management of the patients 
can be made. Nevertheless, the burden of the disease is 
high, and the identification of potential treatment targets 
may merit further scientific use of exercise testing in con-
junction with the non-invasive MRI method.

The findings of our study are in line with our recent 
hypothesis paper on the mechanisms of the energetic 

situation in muscles in ME/CFS and the underlying dis-
turbance in ion homeostasis [14]. Appropriate muscular 
perfusion as well as function of the Na+/K+-ATPase 
determine muscle fatigability. The sodium-proton 
exchanger subtype1 (NHE1) exports protons via the 
import of sodium ions. In poor energetic situations 
increased proton production raises intracellular sodium 
via NHE1, the most important proton-extruder in skeletal 

Pre 1 3 6 9 12 15 25 40
8

10

12

14

16

Triceps Surae Muscle

Time after exercise [minutes]

N
a+

[m
M

]
ME/CFS
Controls

Pre 1 3 6 9 12 15 25 40
8

10

12

14

16

Medial Gastrocnemius Muscle

Time after exercise [minutes]

N
a+

[m
M

]

ME/CFS
Controls

Pre 1 3 6 9 12 15 25 40
8

10

12

14

16

Lateral Gastrocnemius Muscle

Time after exercise [minutes]

N
a+

[m
M

]

ME/CFS
Controls

Pre 1 3 6 9 12 15 25 40
8

10

12

14

16

Soleus Muscle

Time after exercise [minutes]

N
a+

[m
M

]

ME/CFS
Controls

Pre 1 3 6 9 12 15 25 40
8

10

12

14

16

Extensor Muscles

Time after exercise [minutes] 

N
a+

[m
M

]

ME/CFS
Controls

Pre 1 3 6 9 12 15 25 40
8

10

12

14

16

Whole Lower Leg

Time after exercise [minutes]

N
a+

[m
M

]

ME/CFS

Controls 

Fig. 2  Mean tissue sodium content in lower leg muscles. Mean values in mM with standard deviation. Curves were plotted for six compartments of 
the lower leg of patients with ME/CFS and controls: triceps surae, medial gastrocnemius, lateral gastrocnemius, soleus, extensor muscles and whole 
lower leg. After exercise, tissue sodium content increased in all exercised muscle compartments in both groups. Patients showed higher tissue 
sodium content in exercised muscles compared to controls. Tissue sodium content decreased within the 40-min recovery period in both groups. In 
extensor muscles which were not exercised, patients showed continuously higher values than controls
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Table 2  Tissue sodium content and tissue water content

ME/CFS Controls

Baseline Directly after exercise 40 min after 
exercise

Baseline Directly after exercise 40 min after 
exercise

Na+ [mM]

Triceps surae

 Mean (SD) 10.83 (1.15) 12.77 (0.90) 11.43
(1.51)

9.93
(0.79)

11.58 (1.13) 10.33
(1.12)

 ∆ (%)  + 18 − 10 + 17 − 11

 P value < 0.0001 0.0090 0.0081 0.0002

Medial gastrocnemius

 Mean (SD) 10.50 (0.78) 13.65 (0.69) 11.67
(1.30)

10.23 (1.24) 12.67 (1.28) 10.75
(1.11)

 ∆ (%) + 30 − 15  + 24 − 15

 P value 0.0005 0.0182 0.0007 0.0002

Lateral gastrocnemius

 Mean (SD) 11.60 (1.58) 13.85 (2.01) 11.83
(1.54)

9.33
(0.82)

11.67 (2.01) 9.65
(1.44)

 ∆ (%) + 19 − 15  + 25 − 17

 P value 0.0060 0.0023 0.0373 0.0099

Soleus

 Mean (SD) 10.85 (1.58) 11.58 (1.34) 10.95
(1.59)

9.63
(0.58)

10.33 (1.56) 9.60
(0.89)

 ∆ (%)  + 7 − 5  + 7 − 7

 P value 0.0197 0.1334 0.3220 0.0974

Extensors

 Mean (SD) 12.20 (1.66) 11.87 (1.37) 11.77
(1.81)

9.38
(0.71)

10.10 (1.28) 9.97
(1.45)

 ∆ (%) − 3 − 1  + 8 − 1

 P value 0.5354 0.9014 0.2492 0.7796

H2O [kg/L]

Triceps surae

 Mean (SD) 1.16
(0.09)

1.16
(0.06)

– 1.16
(0.07)

1.16
(0.07)

–

 ∆ (%) 0 0

 P value 0.8590 0.7131

Medial gastrocnemius

 Mean (SD) 1.19
(0.08)

1.19
(0.05)

– 1.21
(0.07)

1.19
(0.07)

–

 ∆ (%) 0 − 1

 P value 0.8240 0.2078

Lateral gastrocnemius

 Mean (SD) 1.10
(0.10)

1.08
(0.07)

– 1.09
(0.08)

1.09
(0.06)

–

 ∆ (%) − 2 0

 P value 0.2676 0.7558

Soleus

 Mean (SD) 1.19
(0.09)

1.20
(0.06)

– 1.20
(0.08)

1.20
(0.08)

–

 ∆ (%)  + 1 0

 P value 0.4045 0.8302

Extensors

 Mean (SD) 1.22
(0.10)

1.24
(0.10)

– 1.21
(0.07)

1.23
(0.08)

–

 ∆ (%)  + 2  + 1

 P value 0.1345 0.5989

ME/CFS: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Mean values of sodium and water content with standard deviation (SD) in brackets. ∆ (%) is 
percentage of increase/ decrease after exercise and after recovery period of 40 min. P value refers to comparison of baseline values with values directly after exercise 
and values directly after exercise with values after 40 min recovery, respectively

e504340
Pencil
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muscle. Endothelial dysfunction leads to muscle hypop-
erfusion and diminished ATP generation in ME/CFS [9]. 
Sodium is removed from the muscle by the Na+/K+-
ATPase at the expense of ATP consumption. We assume 
that the removal of sodium is further impaired due to 
dysfunction of the ß2 adrenergic receptor which leads 
to an insufficient stimulation of the Na+/K+-ATPase 
[14]. High intracellular sodium can reverse the transport 
direction of the sodium–calcium exchanger (NCX) to 
import calcium instead of exporting which is also known 
from the ischemia–reperfusion paradigm [38]. Channels 
and transporters that play a role in ion transport in myo-
cytes are depicted in Fig. 5. The ensuing calcium overload 
affects the mitochondrial metabolism and the endothe-
lium, which further worsens the energetic situation in a 
vicious circle which can explain post-exertional malaise, 
exercise intolerance and chronification. Changes in intra-
cellular and mitochondrial calcium via NCX induced by 
the rise in intramuscular sodium are considered the key 
pathomechanism in the energetic and mitochondrial dis-
turbance in ME/CFS as outlined in a recent hypothesis 
paper [9, 14] but cannot be directly demonstrated with 
current methods in vivo. The demonstration of elevated 
intramuscular sodium in this study provides, however, 
evidence that the conditions for a disturbed calcium han-
dling via the NCX are indeed present in skeletal muscles 
in ME/CFS. The biological significance of these results 
is a better understanding of the pathophysiology of ME/
CFS. This is a prerequisite for developing therapeutic 

strategies for this frequent and debilitating disease for 
which no effective treatment exists so far.

The Na+/K+-ATPase exchanges three sodium ions for 
two potassium ions. Insufficient stimulation is expected 
to lead to a rise in intracellular sodium and concomitantly 
to a decrease in intracellular potassium. Here we show a 
rise in intracellular sodium post-exercise. Concerning 
potassium, there is evidence for a decrease in intracellu-
lar potassium from two publications. Reduced potassium 
efflux was found in exercising muscle in ME/CFS patients 
which can only be explained by the development of intra-
cellular hypokalemia [39]. The authors incriminated ROS 
to inhibit the Na+/K+-ATPase. In an earlier paper total 
body potassium was found decreased by about 10% in 
a group of ME/CFS patients with severe fatigue [40]. In 
this study, there was a strong inverse correlation of the 
total body potassium and the total time spent resting as a 
measure of fatigue and exhaustion. Lower plasma potas-
sium levels were also found in a recent study in patients 
with ME/CFS compared with healthy controls [41]. If 
potassium leaving the cell during the process of repolari-
zation via potassium channels is not taken up fast enough 
by the Na+/K+-ATPase in the working muscles, it reaches 
the blood stream to be renally excreted so that loss of 
potassium occurs during exercise. Thus, the indirect evi-
dence for a lowered intracellular potassium together with 
our direct demonstration of a rise in intracellular sodium 
provides very strong arguments for a diminished Na+/
K+-ATPase activity in ME/CFS.

Healthy
Control

Patient 
with 
ME/CFS 

Baseline, before exercise Directly after exercise 25 minutes after exercise

Fig. 3  23Na MR images of the lower leg of a ME/CFS patient and a healthy control. Increased sodium signals are visible in the muscle tissue directly 
after exercise in comparison to baseline and after recovery period of 25 min. The reference phantoms below the leg appear in variable intensity due 
to their sodium concentrations (from left to right: 10, 20, 30 and 40 mmol/L NaCl)
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Since it is technically not possible to measure intracel-
lular sodium during exercise the possibility exists that 
sodium rises much higher than we measured pre- and 
post-exercise. During exercise sodium loading must be 
higher compared with rest because of sodium entry via 
sodium channels in the process of excitation which adds 
to sodium import via ion transporters of whom NHE1 
may be the most important one. If this is a very dynamic 
process there may be a rise of sodium during exercise 
(reaching a steady state) over the level we see post-
exercise, but sodium does not necessarily accumulate to 
a level that it would take minutes to remove the excess. 
The rise in sodium we found post-exercise may be due 
to increased NHE1-activity post-exercise due to proton 
extrusion as a consequence of a glycolytic metabolism in 
the presence of a diminished Na+/K+-ATPase activity. 
Jones et al. reported a decreased proton extrusion imme-
diately post-exercise [13]. It is possible that NHE1 activ-
ity is diminished during exercise due to high intracellular 
sodium reducing its driving force. This is even the only 
plausible explanation for the observed reduced proton 
extrusion. It is also an argument for a higher sodium rise 
during exercise compared with post-exercise. Immedi-
ately after exercise intracellular sodium can quickly fall 
as there is no more sodium entry via sodium channels 
to restore the driving force of the NHE1. Protons can 
indeed accumulate during exercise (intracellular acido-
sis). Removing the excess via the NHE1 (after restoring 
its driving force) at rest could then cause the rise in intra-
cellular sodium we found post-exercise.

The intensity values of the 4 reference phantoms with 
different NaCl solutions allowed us to measure sodium 
content via the signal intensities. After translating inten-
sity to concentration in a linear trend analysis, we used 
mM as the unit to express tissue sodium content. How-
ever, it should be noted that with the methods of our scan 
protocol the signal decays very quickly and parts of tis-
sue sodium are no longer visible and measurable at the 
time of measurement. Therefore, our values in mM are 
lower than those from previous publications and cannot 
be directly compared to them.

We measured total sodium content in muscle tissue 
and small vessels which supply muscle tissue. Long- 
and short-lived sodium components are measurable via 
23Na-MRI. The long-lived components are assumed to 
be the mobile, liquid sodium, which is mainly extracel-
lular sodium and short-lived sodium is assumed to be 
intracellular sodium. Since only about 30% of the short-
lived sodium is still visible at TE 2.44, which we used in 
our protocol, we assume that we measured mainly the 
long-lived sodium, since a large number of short-lived 
sodium signals have already decayed [34]. Like Hammon 
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Fig. 4  a Handgrip strength measurement with 10 repeats in two 
sessions. Mean values in kg with standard deviation. Black line shows 
results of initial session and grey line of second session after 60 min. 
ME/CFS patients show lower mean handgrip strength compared to 
controls and perform worse in their second session. Mean handgrip 
strength of controls remains unchanged after 60 min. The scatter 
plot with linear regression line shows (b) an inverse correlation of 
baseline tissue sodium content in lower leg muscles (average of 
triceps, extensors, medial and lateral gastrocnemius and soleus) and 
initial mean handgrip strength (p = 0.0500, R2 = 0.3317, N = 12) and c 
an inverse correlation of average tissue sodium content in lower leg 
muscles after exercise (minutes 1–40) and mean handgrip strength of 
the second session (p = 0.0319, R2 = 0.3832, N = 12)
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et al. we focused on postexercise imaging results, which 
would not have been possible with scan protocols depict-
ing more intracellular sodium, because they take longer 
than 10 min [27]. Within this period, however, we already 
observed a decrease in sodium content. For exact differ-
entiation between intracellular and extracellular sodium, 
we recommend the realization of further studies with 
radial sequences and shorter TEs. Since the MRI method 
used has a potential clinical benefit, optimization of the 
technique for applications in larger clinical cohorts or 
even clinical routine would be desirable. To make this 
possible, we believe that one of the most important fea-
tures would be the reduction of motion artefacts through 
e.g. navigator pulses or camera control.

Limitations
Since our study was a preliminary study, it was performed 
with a very small sample. In our pilot study we found 
despite the small size significant differences between ME/
CFS and healthy controls and showed in the results the 
ranges and standard deviations as well as the individual 
measurements in the scatter plot with the linear regres-
sion line (Fig.  4). This information will be valuable for 
planning future studies on larger cohorts, possibly with 
therapeutic interventions.

Moreover, it is unclear to what extent the immobility 
of patients with ME/CFS has influenced the results. It 
is possible that results were affected by variable exercise 
intensity, muscle condition and activation. This poten-
tial bias could be prevented in further studies by using 
a purpose-built, MRI-compatible exercise apparatus for 
calf muscles. However, we established our exercise pro-
tocol after extensive literature review and internal tests, 
and we assume that sufficient load matters more than the 

type of exercise. The same exercise protocol was followed 
in all patients. The exercise was performed for 3 min to 
exhaustion and checked for correctness of performance 
and intensity by a person of the researchers’ team. The 
fact that all 12 study participants experienced muscle 
soreness or muscle pain after the exercise is also an indi-
cator for a sufficient muscle load.

All data were processed and analyzed in Horos by 
one person. Previous analyses of inter- and intra-oper-
ator variability in ROI-based measurements, however, 
revealed no significant differences between measure-
ments [17, 37, 42].

Conclusion and outlook
23Na-MRI confirms our hypothesis of increased sodium 
content in muscles of ME/CFS patients. It provides the 
opportunity to study the sodium homeostasis in patients 
with ME/CFS. Our findings lead to a better understand-
ing of the pathophysiology of ME/CFS and open up diag-
nostic possibilities and potential therapeutic targeting. 
As our results are encouraging, further research with a 
larger study population and an adapted methodology 
should be conducted.
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