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ORIGINAL RESEARCH

Reactive power optimization 
of a distribution network with high‑penetration 
of wind and solar renewable energy and electric 
vehicles
Biao Xu1, Guiyuan Zhang1   , Ke Li1*, Bing Li1, Hongyuan Chi2, Yao Yao1 and Zhun Fan1 

Abstract 

As high amounts of new energy and electric vehicle (EV) charging stations are connected to the distribution network, 
the voltage deviations are likely to occur, which will further affect the power quality. It is challenging to manage high 
quality voltage control of a distribution network only relying on the traditional reactive power control mode. If the 
reactive power regulation potentials of new energy and EVs can be tapped, it will greatly reduce the reactive power 
optimization pressure on the network. Keeping this in mind, our reasearch first adds EVs to the traditional distribution 
network model with new forms of energy, and then a multi-objective optimization model, with achieving the lowest 
line loss, voltage deviation, and the highest static voltage stability margin as its objectives, is constructed. Meanwihile, 
the corresponding model parameters are set under different climate and equipment conditions. Ultimately, the 
optimization model under specific scenarios is obtained. Furthermore, considering the supply and demand relation-
ship of the network, an improved technique for order preference by similarity to an ideal solution decision method 
is proposed, which aims to judge the adaptability of different algorithms to the optimized model, so as to select a 
most suitable algorithm for the problem. Finally, a comparison is made between the constructed model and a model 
without new energy. The results reveal that the constructed model can provide a high quality reactive power regula-
tion strategy.

Keywords:  Renewable energy, Electric vehicle, Multi-objective optimization, Pareto front, Reactive power 
optimization
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1  Introduction
Renewable energy has characteristics of sustainability, 
cleanliness and, often, inexhaustible supply. Research 
has shown that renewable/new energy systems can not 
only meet active load demand of the power grid, but 
also achieve rapid reactive power regulation using power 
electronic devices connected to the network [1–3]. How-
ever, with large-scale renewable energy connecting to 

the distribution network, the existence of many power 
electronic devices in the power network can cause severe 
reactive power impact, which can seriously affect power 
quality and power system voltage stability [4]. In addi-
tion, because of the influence and unpredictability of the 
natural environment, there will be a great uncertainty in 
the reactive power regulation of the distribution network 
for new energy.

To achieve carbon neutrality, the demand for electric 
vehicles (EVs) increases in association with the need for 
emission reduction. EVs may participate in regulating 
the output of the power grid and trading energy with 
the grid based on vehicle to grid (V2G), to help realize 
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benign interaction between EVs and the power grid. The 
bi-directional charging technology of EVs has great flex-
ibility. A certain number of EVs connected to the distri-
bution network can not only solve the problem of power 
storage, but also make a positive impact on the reactive 
power regulation of the distribution network. Therefore, 
to accelerate the transformation of energy structure and 
improve the overall reactive power regulation ability of 
the network, EVs may be used to optimize the reactive 
power regulation [5].

Reactive power optimization is a complex multi-
objective optimization problem (MOP) with nonlin-
ear, non-convex and discrete optimization variables [6] 
considering EVs and new energy types. In general, the 
traditional interior point or Newton method would be 
employed to optimize such kind of reactive power regula-
tion model. The idea of these methods is to transform the 
MOP into a single objective optimization problem with a 
series of linear weights. However, it is impossible to give 
a relatively optimal control scheme for an MOP [7–10]. 
In contrast, it is more convenient to solve a complex 
multi-objective reactive power optimization problem 
with a multi-objective evolutionary algorithm (MOEA) 
based on Pareto front (PF). Also, the results of an MOEA 
are easier to understand.

Research in different fields has different approaches 
to reactive power optimization, and there is a variety 
of studies, especially in modeling. In [11], a three-stage 
relaxation-weightsum-correction based probabilistic 
reactive power optimization model is proposed, while 
[12] employs a mixed integer convex programming 
model in reactive power optimization. Both are uti-
lized to address the uncertainties of wind power output. 
The pioneering work in [13] explores a cold-start linear 
branch flow model named modified DistFlow to obtain 
results with better accuracy, whereas [14] presents a 
novel comprehensive planning framework and optimizes 
from the perspective of technical, economic, and envi-
ronmental benefits by considering distributed generation 
(DG) and EVs.

These different approaches have led to different meth-
ods being applied in reactive power optimization. In [15], 
a fully distributed reactive power optimization algorithm 
is shown to obtain the global optimum solution of non-
convex problems easily, while [16] employs a decentral-
ized voltage regulation method aimed at mitigating 
real-time nodal voltage variations. An improved particle 
swarm optimization algorithm is presented to minimize 
the sum of power consumption and investment cost of 
new reactive power compensation equipment in [17]. 
In [18], a multi-objective dimension-based firefly algo-
rithm is applied to optimize power losses, emission and 
cost in power systems. An efficient optimization method 

named hybrid multi-objective moth-flame optimization 
is proposed to solve the established MOP in [19]. To seek 
the optimal solutions for minimizing voltage deviation 
and network power losses, a meta-heuristic algorithm is 
proposed in [20]. However, there is still a lack of optimi-
zation on reactive power regulation when EVs are con-
nected to distribution network.

This paper presents a reactive power optimization 
model where there is high penetration of wind, photo-
voltaic (PV) and EVs. Because of the rapid increase of 
the utilization rate of new energy and EVs, their impacts 
on reactive power optimization in a distribution net-
work have reached a level that cannot be ignored. Most 
researchers are focused on single factor affecting the dis-
tribution network rather than multiple factors. This focus 
may lead to results not representing reality.

Therefore, in this paper, the recent Dual-Population-
Based Evolutionary Algorithm for Constrained Multi-
objective Algorithm (c-DPEA) is applied to tackle the 
established constrained MOP [21] and compared to other 
excellent MOEAs. First, on the basis of reactive power 
optimization considering a single objective, we present a 
compromise solution with MOEAs on MOPs. Then, an 
improved decision-making method, namely an improved 
technique for order preference by similarity to an ideal 
solution (TOPSIS), is proposed. It adjusts the importance 
of each objective according to the environmental impact 
in practical application. As a result, different objectives 
can be set with different importance weights to get more 
realistic solutions.

The rest of this paper is organized as follows. In Sect. 2, 
an advanced EV model is added to the traditional distri-
bution network with new energy, while Sect. 3 introduces 
the optimization principle of c-DPEA and other algo-
rithms, and presents the specific reactive power optimi-
zation application design process. The various standard 
node systems are used to simulate and test the distri-
bution network connected with new energy and EVs in 
Sect. 4. Finally, Sect. 5 summarizes the work.

2 � Mathematical model of reactive power 
optimization

2.1 � Reactive power regulation model of wind power
The wind turbine model based on a doubly-fed induc-
tion generator (DFIG) is modified from [22], and shown 
in Fig. 1. DFIG converts the mechanical power captured 
by the wind turbine into electrical power. Meanwhile, it 
is fed into the grid by the DFIG stator and rotor through 
a back-to-back converter system, which is comprised of a 
rotor side converter and a grid side converter. According 
to the Betz equation, the input mechanical power Pm is 
directly related to the wind speed, as:
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where ρ is the air density, R means the radius of the wind 
turbine, V refers to the wind speed, CP is a value related 
to blade tip speed ratio, λ, and pitch angle, β. λ can be 
expressed as:

where ωm represents the rotation speed of the wind 
turbine.

In the ideal case, the active power can be considered as 
the maximum power point for tracking control (MPPT) 
[23], which is provided as follows.

where Pbase
w  and vbasew  are the rated output and wind speed 

of the wind turbine, respectively.
However, the total reactive power fed into the grid 

is only related to the stator and the grid side converter 
rather than the rotor [24]. Thus, the total reactive power 
is given by:

where Qg,max and Qg,min mean the upper and lower 
bounds of the reactive power injected into the power 
grid, respectively. Similarly Qs,max and Qs,min refer to the 
upper and lower bounds of the reactive power regula-
tion range of the wind turbine stator side, while Qc,max 
and Qc,min are the upper and lower bounds of the reactive 
power regulation range of the grid side converter.

DFIG capacity limits are obtained by considering the sta-
tor and rotor maximum allowable currents, referred to as 

(1)Pm =
1

2
CpρπR

2V 3

(2)� =
ωm × R

V

(3)Pg =

0, vw vinw orvw voutw

Pbase
w

vw−vinw
vbasew −vinw

, vinw ≤ vw < vbasew

Pbase
w vbasew ≤ vw ≤ voutw

(4)
{

Qg,max = Qs,max + Qc,max

Qg,min = Qs,min + Qc,min

the rated stator and rotor currents in steady state, whereas 
the generator total capacity limits are obtained by adding 
rotor power to the stator power. Thus, the reactive power 
regulation range of the stator side is affected by the maxi-
mum current constraints of the stator and rotor sides, as 
shown in (5)–(7).

where Qs1,max and Qs1,min refer to the upper and lower 
bounds of the reactive power regulation range of the 
wind turbine stator side under the maximum current 
constraint of the rotor side. Qs2,max and Qs2,min are the 
upper and lower bounds of the reactive power regulation 
range of the wind turbine stator side under the maximum 
current constraint of the stator side. Ls and Lm mean the 
stator inductance and excitation inductance, respectively. 
Ir,max and Is,max are the maximum current values of the 
rotor side and stator side, s is the rotor slip, ω1 is the 
angular velocity of synchronous rotation, and Us is the 
stator voltage.

The reactive power of the grid side converter is limited by 
its capacity and the transmitted active power:

where Sc,max is the capacity of the grid side converter.

2.2 � Reactive power regulation model of PV
The flow of PV generation is shown in Fig. 2. Small-scale 
PV is related to some environmental factors, such as the 
current solar irradiation and temperature [25]. The active 
power output Ppv is considered as MPPT in the ideal state. 
Thus, Ppv can be presented as:

where Pbase
pv  refers to the rated total power of PV con-

nected to the distribution network, αpv is the temperature 

(5)
{

Qs,max = min
{

Qs1,max,Qs2,max

}

Qs,min = max
{

Qs1,min,Qs2,min

}

(6)
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Fig. 1  Power generation model of DFIG
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conversion coefficient of PV, T is the temperature at the 
current recording time, Tref means a set reference tem-
perature value, and spv is the solar irradiation at the cur-
rent time.

The electric energy generated by PV is usually direct 
current (DC), and it is thus necessary to use a PV inverter 
to convert it into alternating current (AC) with the same 
frequency as the distribution network. Therefore, the 
influence of inverter capacity and active power output 
should be considered when calculating the regulation 
range of PV reactive power output, shown as:

where Qpv,max and Qpv,min refer to the upper and lower 
bounds of reactive power regulation range of the PV 
equipment. Spv is the capacity of the PV inverter.

2.3 � Reactive power regulation model of EVs
EVS can be regarded as small energy storage equipment. 
In addition, the converters of EV charging piles have good 
flexibility in regulating active and reactive power. There-
fore, the addition of EVs can adapt to the development 
of reactive power optimization in a distribution network. 
While establishing a two-way charging relationship with 
the distribution network, EVs can provide significant reac-
tive power regulation. A simplified working principle of 
the EVs is shown in Fig. 3. The electric energy in the power 
grid is three-phase AC. Thus, there are converter circuits 
in the EV charging piles to convert AC into DC, and then 
provide DC electric energy to the high-frequency DC-DC 
power converters. The battery energy management system 
will further optimize the DC input to the battery. When 
the EVs are connected to the charging piles, they can act 
as generators in the distribution network if the remaining 
energies exceed a certain threshold. Otherwise, the distri-
bution network will transmit energies to charge the EVs 
[26]. The relationship between active power and converter 
parameters can be obtained as follows:

(10)


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where Pcar is the input or output active power of the EV, 
and Vs and Vc are the grid and charging piles voltages. δ is 
the phase difference between Vs and Vc , ω is the angular 
frequency of the AC system, and Lc is the total interface 
inductance, including the line inductance and the charger 
filter inductance between the charger and the grid.

The reactive power regulation range of EVs is similar to 
PV, shown as:

where Qcar,max and Qcar,min represent the upper and lower 
bounds of reactive power regulation range of EVs. Scar is 
the capacity of the converters in the charging piles.

2.4 � Objective function
There are three objectives to be optimized in this research. 
Line loss minimization belongs to the economic index of 
the power grid, while voltage deviation [27] minimization 
and static voltage stability margin maximization [28] are 
the indices affecting power grid performance and secu-
rity. However, there is a hidden contradiction between the 
objectives. In order to obtain a PF with excellent conver-
gence and diversity, an MOEA is used to handle the three 
objectives, and a Pareto optimal set is selected under cer-
tain circumstances. Particularly, in order to minimize the 
three objectives simultaneously, it is necessary to convert 
the maximized static voltage stability margin first. One of 
the methods is to convert it into solving the reciprocal of 
the minimum singular value of the minimum convergent 
power flow Jacobian matrix. In short, the minimization of 
function f3 is equivalent to the maximization of the static 
voltage stability margin. The equations of the three objec-
tive functions are presented as follows.

(11)Pcar =
VsVcsin(δ)

ωLc

(12)

{

Qcar,max =
√

(Scar)
2 − (Pcar)

2

Qcar,min = −
√
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2 − (Pcar)

2

Fig. 2  Schematic diagram of PV generation

Fig. 3  Schematic diagram of bi-directional charger for EVs
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where f1 , f2 and f3 mean the power losses, voltage devia-
tion and singular value reciprocal of the Jacobian matrix 
of the system, respectively. Vi and Vj refer to the voltage 
amplitudes of the ith and jth nodes. θij is the phase angle 
difference between the ith and jth nodes, gij presents the 
admittance between the ith and jth nodes, Ni and NL 
mean the total node set and all branch set, V ∗

j  is the rated 
voltage of the jth node, and δmin represents the minimum 
singular value of the system Jacobian matrix.

2.5 � Constraint condition
IN the process of reactive power optimization, the scope 
of each parameter and condition should be taken into 
consideration [29].

(1)	Power flow equality constraints:

where PGi and QGi represent the active power and reac-
tive power of the ith generation node, respectively. PDi 
and QDi are the active power and reactive power demand 
of the ith node. bij refers to the susceptance between the 
ith and jth nodes, N0 presents the node set except the 
balance node, and NPQ is the PQ node set.

(2)	Generator constraints:

where Qmin
Gi  and Qmax

Gi  are the lower and upper limits of reac-
tive power regulation of the ith generator. QGi refers to the 
reactive power currently injected into the grid by the ith 
generator and Vmin

Gi  and Vmax
Gi  are the lower and upper limits 

of output voltage of the ith generator. VGi is the current out-
put voltage of the ith generator, and NG is the generator set.

(3)	 Generation ramp constraint (GRC): In addition 
to meeting the constraints of reactive power out-
put and voltage, the generation units also need to 
meet certain constraints on regulation active power 

(13)
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(14)
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PGi − PDi − Vi
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Vj(gijcosθij + bijsinθij) = 0, i ∈ N0

QGi − QDi − Vi
∑

j∈Ni
Vj(gijsinθij − bijcosθij) = 0, i ∈ NPQ

(15)
{

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i ∈ NG

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i ∈ NG

output [30, 31].where O means the set of operating 
generation units at the cth control interval, and Rj

(c) is the downward ramp rate of the jth genera-
tion unit. �Pmin

j (c) represents the minimum active 
output of the jth generation unit in the cth control 
interval, and PD(c + 1) means the total active power 
demand of the power grid at the (c + 1)th interval.

	 where �Prate
j  means the maximum ramp rate of the 

jth generation unit, �Pout
j (c) denotes the regulation 

power output of the jth generation unit at the cth 
control interval, and �T  refers to the time cycle of 
generation units dispatch.where O means the set of 
operating generation units at the cth control interval, 
and Rj(c) is the downward ramp rate of the jth gener-
ation unit. �Pmin

j (c) represents the minimum active 
output of the jth generation unit in the cth control 
interval, and PD(c + 1) means the total active power 
demand of the power grid at the (c + 1)th interval.

(4)	 Start-stop constraint:

where O means the set of operating generation units at 
the cth control interval, and Rj(c) is the downward ramp 
rate of the jth generation unit. �Pmin

j (c) represents the 
minimum active output of the jth generation unit in the 
cth control interval, and PD(c + 1) means the total active 
power demand of the power grid at the (c + 1)th interval.

(5)	Reactive power compensation device and trans-
former tap constraint:

where Qmin
Ci  and Qmax

Ci  refer to the lower and upper lim-
its of the capacity of the ith reactive power compensation 
device. Tmin

h  and Tmax
h  mean the lower and upper limits 

of the regulation range of the hth transformer tap. Nc is 
the set of reactive power compensation devices, and NT 
denotes the set of transformer taps.

(6)	Security Constraint:

(16)
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≤ �Pratej
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 where Vmin
i  and Vmax

i  are the lower and upper voltage lim-
its of the ith node. Sl is the apparent power of the lth line 
and Smax

l  is the transmission power limit of the lth line.

3 � Optimization framework and algorithm 
comparison

3.1 � Brief description of the optimization process 
of c‑DPEA, CCMO and WOF

In general, constrained multi-objective optimization 
problems (CMOP) are more challenging than uncon-
strained MOPs [32–35]. In the constrained environment, 
some search spaces will be directly excluded by the con-
straint factors, and the algorithm can only search for 
optimization over a narrow feasible region, or even make 
all search spaces infeasible in extreme cases, resulting in 
a final failure to get the optimization results [21, 36].

In order to address this kind of CMOP, c-DPEA is 
applied for reactive power optimization. The main inno-
vation of this algorithm is that two populations are used 
to co-evolve for the problem. They deal with the infea-
sible solutions in different ways. Population 1 can find 
better points in infeasible regions more conveniently and 
quickly, while the optimization process of population 2 
can approach the front faster. This kind of co-evolution 
obtains a win–win result, as it emphasizes convergence 
and diversity in two different populations.

A co-evolutionary constrained multi-objective optimi-
zation framework (CCMO) also proposes the idea of two 
populations [37]. This framework evolves one population 
to solve the original CMOP and evolves another to solve 
a helper problem derived from the original. It is worth 
noting that the two populations will share their useful 
information by their own optimizer separately.

A weighted optimization framework (WOF) is 
employed to deal with this problem here [38]. A WOF 
can be seen as a generic method that can be used with 
any population-based meta-heuristic algorithm. This 
algorithm is intended to solve multi-objective optimiza-
tion problems with a large number of decision variables.

3.2 � Application design of algorithms in reactive power 
optimization of a distribution network

(1)	How to handle variables, especially the discrete ones:

Reactive power optimization includes continuous vari-
ables and discrete variables. These need to be discussed 
separately in iteration. Continuous variables can be 

(19)
{

Vmin
i ≤ Vi ≤ Vmax

i , i ∈ NPQ

|Sl | ≤ Smax
l , l ∈ NL

iterated according to normal optimization, while discrete 
variables need to be rounded by continuous spatial val-
ues. In addition, for the values of the discrete variables, 
the upper and lower bounds of the continuous spaces 
correspond to the upper and lower bounds of discrete 
variables. For example, the decision variables are set to 
17 in the 33-bus system, including several new energy 
outputs, charging and battery change stations, reactive 
power compensation devices and a group of transformer 
taps. Then, the upper and lower bounds of reactive power 
can be calculated from Sect. 2.

(2)	How to evaluate the fitness function:

It is necessary to consider the objectives and con-
straints in reactive power optimization in an actual distri-
bution network. In the process of optimization iteration, 
the individuals must satisfy the condition provided in 
(13) to calculate the power flow. Consequently, the fitness 
function can be designed as:

where T is the set of objective functions, and t rep-
resents the tth objective value in the set of objective 
functions. ft

(

xi
)

 and ffit,t
(

xi
)

 are the values of the 
objective and fitness functions, respectively. η is a pen-
alty coefficient which is often set as a larger constant, 
and q is the number of objectives that do not meet the 
constraints.

For example, the reactive power optimization flow 
chart of c-DPEA for the model is shown in Fig.  4. The 
power flow to obtain the solution set of the objective 
function value needs to be calculated first. Then the 
method of adjusting the fitness function (18) is employed. 
Finally, the algorithm enters the next iteration.

3.3 � Application for improved TOPSIS in comparing 
optimization results of different algorithm

In some real situations, the importance of different objec-
tives will change with different factors. Similarly, differ-
ent algorithms may have different optimization results 
because of the change of real parameters. We propose 
an improved adaptive Technique for Order Preference by 
Similarity to an Ideal Solution (TOPSIS) decision method 
to compare the optimization results of the different algo-
rithms in different cases.

Line loss and voltage deviation can be the minimum 
index in the decision method. However, the static voltage 
stability margin should be the maximum index. The maxi-
mum index needs to be transformed into the minimum 
index by the method of finding the reciprocal. If there are 

(20)ffit,t

(

xi
)

= ft

(

xi
)

+ ηq, t ∈ T
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n objects to be evaluated and m indices to be evaluated, an 
evaluation matrix can be obtained, as:

The general calculation of the decision method is as 
follows:

(21)Z =







z11 · · · z1m
...

. . .
...

zn1 · · · znm







(22)

Z+ = (max{z11, z21, . . . , zn1}, max{z12, z22, . . . , zn2},

. . . , max{z1m, z2m, . . . , znm})

(23)

Z− = (min{z11, z21, . . . , zn1}, min{z12, z22, . . . , zn2},

. . . , min{z1m, z2m, . . . , znm})

(24)D+
i =

√

√

√

√

m
∑

j=1

(

Z+
j − zij

)2
, i = 1, 2, . . . , n

(25)D−
i =

√

√

√

√

m
∑

j=1

(

Z−
j − zij

)2
, i = 1, 2, . . . , n

where Z+ means the maximum value and Z− is the mini-
mum value. D+

i  refer to the distance between the ith 
evaluation object and the maximum value, while D−

i  is 
the distance between the ith evaluation object and the 
minimum value. Si is the non-normalized score of the ith 
evaluation object.

For the objective function of the three very small indi-
cators mentioned above, the value of the objective func-
tion needs to be transformed into the maximum index. 
Then, TOPSIS can be employed to judge the advantages 
and disadvantages of the different algorithms. It is worth 
noting that the result range of Si must satisfy the condi-
tion of 0 < Si < 1 . The larger Si is, the closer it is to the 
objective maximum. A threshold will be set in this pro-
cess. When the Si obtained from TOPSIS is greater than 
the threshold and less than 1 after the optimization, the 
scores of this specific algorithm will be increased by 1. 
The higher the score is, the higher the matching degree 
between the algorithm and the optimization model is.

The weights of line loss, voltage deviation and static 
voltage stability margin are set as w1 , w2 and w3 , respec-
tively. There is a PV coefficient k1 , which changes with the 
increase or decrease of solar irradiation or temperature 
difference. Similarly, the wind power coefficient k2 varies 
according to the wind speed. k1 and k2 affect the weight 
w2 of voltage deviation by a feedback link. At the same 
time, a line loss threshold will be set. If the optimization 
result is less than this threshold, the line loss weight will 
be increased according to a certain proportion. Finally, 
two or three objective weights are imported to calculate 
the fitness score of the algorithm.

4 � Example analysis
4.1 � Simulation model
The topology of the 33-bus system is shown in Fig. 5. In 
this work, the installed capacities of DFIG and PV are set 
as 300 kW and 21 kW, respectively, while the total capac-
ity of EV charging and battery change station is 80 kW. 
The active power output of the wind turbine affected by 
wind speed can be divided into three stages, with vinw  , voutw  
and vbasew  set as 3  m/s, 25  m/s and 12  m/s, respectively. 
The initial solar irradiation is 600 W m−2 in the PV sys-
tem, the temperature conversion coefficient is 0.2 and the 
temperature difference can be regarded as a fixed value of 
2 °C. New types of energy are affected by different envi-
ronmental factors, so the initial parameter differences are 
explained in Tables 1 and 2.

(26)Si =
D−
i

D+
i + D−

i

Fig. 4  Flow chart of c-DPEA for reactive power optimization
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EV is a great uncontrollable factor, and can be 
regarded as an uncertain load or a small battery. Here 
we have 3 and 6 EV charging and battery change sta-
tions in the 33-bus system and 118-bus system, respec-
tively. However, the number of EVs in each station is 
set to 10 and the power of a single EV is 0–10 kW, so 
the total power of EVs at each station will always be 
within the range of 0–100  kW. Then, the state of EV 
batteries will be determined by its own state of charge 
(SOC). The EVs are in charging state within the SOC of 
0–60% while they are in transmission state within SOC 
of 60–100%.

The default population and iteration are 50 and 
50, respectively, so the optimization results can be 
obtained quickly. However, it is necessary to increase 

the respective population and iteration to 200 and 50 
in the three-objective optimization, so that compre-
hensive results can be obtained and the error can be 
reduced to some extent. In this work, the three algo-
rithms are independently applied in the same software 
environment.

The optimization variables include reactive power com-
pensation devices, transformer taps, new energy genera-
tors, EV charging and battery change stations, while the 
variations of wind speed and solar irradiation are only set 
to several regular stages. More practical problems will be 
gradually realized in subsequent research.

4.2 � Analysis of optimization results
The PF obtained by different algorithms for bi-objective 
and three-objective in the IEEE 33-bus system are shown 
in Figs.  6 and 7, respectively. It is seen from Fig.  6 that 
CCMO and c-DPEA can find better PF in the optimiza-
tion process. By comparison, the optimization degree 
of WOF is lower than the other two. The PF of WOF is 
much narrower than those of CCMO and c-DPEA. WOF 
has the most dominated solutions in several simulation 
experiments. From Table  3, the HV and spacing also 
present the outstanding uniformity of c-DPEA and poor 
uniformity of WOF. For CCMO, it has the character-
istic of being mediocre. Its HV and spacing are inferior 
to c-DPEA although it can obtain good PF. In the three-
objective optimization in Fig.  7, the optimized Pareto 
surface (PS) of CCMO is concentrated in a small area in 
the middle while WOF has the advantage of uniform dis-
tribution. By contrast, c-DPEA shows the advantages of 
fast optimization speed, uniform PS and great optimiza-
tion degree. From Table 4, the indices of c-DPEA cover 
almost all the optimal values for both the 33-bus and 
118-bus systems. In this regard, c-DPEA gives satisfac-
tory results with excellent equilibrium and stability. Its 
results are moderate while being optimized as much as 
possible.

Here, 0.7 is set as the threshold and the initial score 
of each algorithm is 0. Fifty individuals in the optimized 
population are randomly selected to calculate the fitness 
degree. If the fitness degree is greater than the threshold, 
the score is increased by 1. In order to reduce contin-
gency and error, the optimization results of four differ-
ent systems are added to calculate the fit. All data in the 
tables are average values. Tables  5 and 6 shows the fit 
scores of bi-objective and three-objective, respectively. In 
Table 5, c-DPEA shows the advantages in a small distri-
bution network while WOF shows its advantages in the 
118-bus system. Although CCMO has excellent scalabil-
ity in PF, its score in practical model is not satisfactory. 

Fig. 5  Topologies of the IEEE 33-bus system

Table 1  Parameters of wind and PV generators and EVs in the 
IEEE 33-bus distribution system

Number Wind speed
(m s−1)

Solar 
irradiation
(W m−2)

Active power
(kW)

Reactive 
capacity
(kVar)

PV equipment

1 600 12.00 [− 17.23,17.23]

2 700 14.00 [− 15.65,15.65]

3 800 16.00 [− 13.60,13.60]

4 900 18.00 [− 10.82,10.82]

Wind power generation

1 9 200.00 [− 136.60,151.11]

2 11 266.67 [− 92.13,121.48]

3 13 300.00 [− 69.90,106.67]

EV charging and battery change station

1  − 42.80 [− 67.59,67.59]

2  − 49.02 [− 63.22,63.22]

3  − 31.93 [− 73.35,73.35]
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In Table  6, the average fit scores of c-DPEA are slightly 
higher than those of the other two algorithms. However, 
CCMO has the best performance in the 39-bus system. 
These data directly prove that c-DPEA is still more stable 

Table 2  Parameters of wind and PV generators and EVs in the 
118-bus distribution system

Number Wind speed
(m s−1)

Solar 
irradiation
(W m−2)

Active 
power
(kW)

Reactive 
capacity
(kVar)

PV equipment

1 350 7.00 [− 21.91,21.91]

2 450 9.00 [− 21.17,21.17]

3 550 11.00 [− 20.20,20.20]

4 650 13.00 [− 18.97,18.97]

5 750 15.00 [− 17.44,17.44]

6 850 17.00 [− 15.49,15.49]

7 950 19.00 [− 12.96,12.96]

8 1050 21.00 [− 9.38,9.38]

Wind power generation

1 9 200.00 [− 136.60,151.11]

2 11 266.67 [− 92.13,121.48]

3 13 300.00 [− 69.90,106.67]

4 15 300.00 [− 69.90,106.67]

5 17 300.00 [− 69.90,106.67]

6 19 300.00 [− 69.90,106.67]

EV charging and battery change station

1  − 52.03 [− 60.77,60.77]

2  − 38.09 [− 70.35,70.35]

3  − 58.54 [− 54.52,54.52]

4  − 29.22 [− 74.47,74.47]

5 64.20 [− 47.74,47.74]

6  − 58.44 [− 54.64,54.64]

Fig. 6  PF comparison of the different algorithms for bi-objective in 
IEEE 33-bus system

Fig. 7  PF comparison of the different algorithms for three-objective 
in the IEEE 33-bus system

Table 3  Indices comparison of the three algorithms for 
bi-objective in different systems

The significance of bold means the optimal value among the datum in the same 
row

Index System c-DPEA CCMO WOF

HV 33-bus 0.0592 0.0565 0.0391

118-bus 0.0092 0.0090 0.0095
Spacing 33-bus 1.1271e−04 2.0299e−04 2.8984e−04

118-bus 2.3498e−04 2.0475e−04 2.7083e−04

Table 4  Indices comparison of the three algorithms for three-
objective in different systems

The significance of bold means the optimal value among the datum in the same 
row

Index System c-DPEA CCMO WOF

HV 33-bus 0.0057 0.0054 0.0053

118-bus 8.1802e−04 8.1715e−04 8.5152e−04
Spacing 33-bus 1.5148e−04 2.5288e−04 1.9351e−04

118-bus 1.8061e−04 2.2140e−04 4.2970e−04

Table 5  Average fit scores of bi-objective for different 
algorithms

The significance of bold means the optimal value among the datum in the same 
row

System c-DPEA CCMO WOF

14-bus 19.4 18.2 11.6

33-bus 19.0 17.6 16.0

39-bus 18.4 18.8 14.2

118-bus 20.2 19.8 23.4
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and suitable in different situations than the other two 
algorithms when the number of objectives is different.

In Tables  7 and 8, the work is divided into three dif-
ferent cases. The first case shows the influence of new 
energy and EVs while the last two consider only one of 
them. In longitudinal comparison, the indices of c-DPEA 
largely become the optimal solutions in the first case for 
both the 33-bus and 118-bus systems, as C-DPEA has 
better comprehensive capability and evenness. In other 

Table 7  Results of the IEEE 33-bus system in different 
circumstances

The significance of bold means the optimal value among the datum in the same 
row

Algorithm Indices New energies 
and EVs and 
algorithms

New 
energies and 
algorithms

EVs and 
algorithms

c-DPEA HV 0.0592 0.0352 0.0170

Spacing 1.1271e−04 1.1571e−04 1.1312e−04

CCMO HV 0.0565 0.0347 0.0170

Spacing 2.0299e−04 2.0301e−04 1.4139e−04
WOF HV 0.0391 0.2728 0.0141

Spacing 2.1984e−04 2.2875e−04 1.7113e−04

Table 8  Results of the IEEE 118-bus system in different 
circumstances

The significance of bold means the optimal value among the datum in the same 
row

Algorithm Indices New energies 
and EVs and 
algorithms

New 
energies and 
algorithms

EVs and 
algorithms

c-DPEA HV 8.1802e−04 8.1631e−04 8.1622e−04

Spacing 1.8061e−04 1.9787e−04 1.8345e−04

CCMO HV 8.1715e−04 8.1642e−04 8.0769e−04

Spacing 1.7140e−04 1.9871e−04 1.6630e−04
WOF HV 8.5152e−04 8.3113e−04 8.3282e−04

Spacing 4.2970e−04 4.7741e−04 3.8431e−04

Fig. 8  Effects of different wind speed on c-DPEA optimization (three-objective) a Line loss; b Voltage deviation; c Static voltage stability margin

Table 6  Average fit scores of three-objective for different 
algorithms

The significance of bold means the optimal value among the datum in the same 
row

System c-DPEA CCMO WOF

14-bus 20.0 18.2 11.6

33-bus 11.6 11.0 9.0

39-bus 18.4 18.8 14.6

118-bus 19.8 19.0 13.8
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words, this algorithm can exert its excellent optimization 
ability in the face of these situations. From the perspec-
tive of horizontal comparison, the case with only EVs has 
good performance in spacing. This is because the addi-
tion of EVs may reduce the reactive power optimization 
pressure of a distribution network. Thus, some losses of 
the distribution network will be greatly reduced with new 
energy and Evs. This directly affects the economy and 
security of the distribution network in practice.

In Figs. 8 and 9, the effects of different wind speeds and 
solar irradiation in the optimization results are shown. 
The simulation is carried out when other variables are 
consistent. In Fig.  8, the three objectives decrease sig-
nificantly with the increase of wind speed, especially in 
the range of 5–13  m/s. The change trend of the three 
objectives is not obvious for the increase of solar irradia-
tion in Fig. 9. However, the three objectives still have an 

Fig. 9  Effects of different solar irradiation on c-DPEA optimization (three-objective) a Line loss; b Voltage deviation; c Static voltage stability margin

Fig. 10  Optimization results of reactive power compensation device 
not connected to distribution network by c-DPEA

Fig. 11  Optimization results of reactive power compensation device 
connected to distribution network by c-DPEA
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overall downward trend. Their variations occur around 
the average values, but the deviation rates are not high. 
Thus, c-DPEA is fully applicable to this distribution net-
work model. Although there are various influencing fac-
tors such as climate in real life, this algorithm can get the 
results stably and quickly.

Figures 10 and 11 compare the results with and without 
the reactive power compensation devices in the distribu-
tion network. The initial conditions of the two situations 
are the same based on c-DPEA. In order to draw a more 
complete and clearer graph, 5000 individuals and 50 iter-
ations are set in the two different situations. Figure  10 
is obtained by ignoring the reactive power compensa-
tion device, and its distribution approximates a smooth 
surface while the solutions are evenly distributed. For 
the optimization results with a reactive power compen-
sation device shown in Fig.  11, the distribution change 
of the solution is small and is concentrated in a narrow 
long band compared with the former. The data show that 
the optimal values of line loss and voltage deviation after 
adding a reactive power compensation device are slightly 
higher than those without the device. In contrast, the 
optimal results of the latter are obviously better than the 
former in solving the maximum value of the static volt-
age stability margin. Consequently, c-DPEA can be used 
in general situations in the multi-objective optimization 
task of a real distribution network. It can obtain different 
optimization priority results in the face of optimization 
requirements in different situations.

5 � Conclusion
To show the adaptability of MOEAs to a distribution net-
work with new energy and EVs, this paper constructs a 
large framework, summarized as follows:

(1)	 The distribution network model with new energy 
and EVs is built to reflect the reactive power regula-
tion potential in various types of distribution net-
work.

(2)	 Several MOEAs are applied to the above model. 
Moreover, their operational process and applica-
bility to specific models are described in detail. 
Comparing with different algorithms, both CCMO 
and WOF are slightly inferior to c-DPEA from dif-
ferent indices. c-DPEA has the characteristic of 
stable adaptation in optimization problems among 
different environments. The comprehensive capac-
ity of c-DPEA and the evenness of its PF are shown 
in Sect. 4. However, its advantages in large systems 
are not as significant as those in small systems, 
especially in the 39-bus system. It also explains that 
there are a certain number of dominated solutions 
in PF for c-DPEA.

(3)	 An adaptive strategy is added to the improved 
TOPSIS method with the precision of a distribu-
tion network model. The strategy can change the 
priority of an objective according to its actual needs 
during the optimization, with the more important 
objectives receiving more attention.

(4)	 This research also attempts to examine and verify 
whether the proposed model is affected by vari-
ous environmental factors, e.g., the change of wind 
speed and solar irradiation, or the addition and 
deletion of reactive power compensation devices. 
Taking c-DPEA as an example, it shows that the 
model has a good ability to adapt to the actual 
changeable environment.

In summary, the rational use of the proposed method 
can provide an alternative idea for the multi-objective 
optimization of a distribution network in the future.
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