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Abstract 

Deep learning (DL) and machine learning contribute significantly to basic biology research and drug discovery in 
the past few decades. Recent advances in DL-based generative models have led to superior developments in de 
novo drug design. However, data availability, deep data processing, and the lack of user-friendly DL tools and inter‑
faces make it difficult to apply these DL techniques to drug design. We hereby present ReMODE (Receptor-based 
MOlecular DEsign), a new web server based on DL algorithm for target-specific ligand design, which integrates 
different functional modules to enable users to develop customizable drug design tasks. As designed, the ReMODE 
sever can construct the target-specific tasks toward the protein targets selected by users. Meanwhile, the server also 
provides some extensions: users can optimize the drug-likeness or synthetic accessibility of the generated molecules, 
and control other physicochemical properties; users can also choose a sub-structure/scaffold as a starting point for 
fragment-based drug design. The ReMODE server also enables users to optimize the pharmacophore matching and 
docking conformations of the generated molecules. We believe that the ReMODE server will benefit researchers for 
drug discovery. ReMODE is publicly available at http://​cadd.​zju.​edu.​cn/​relat​ion/​remode/.
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Introduction
In the past few decades, the cost of a new drug from 
research and development to the market was estimated to 
be between 314 million and 2.8 billion US dollars, which 
takes more than 10 years on average [1, 2]. It is estimated 
that only 0.1% of candidates make it through preclinical 
testing to human testing and just one-fifth of those reach 
the market [3]. Therefore, there is an urgent need to sup-
plement the pipelines of drug discovery with enough 
drug candidates [4, 5]. Virtual screening (VS) approaches 
have been widely used to mine novel chemical enti-
ties from in-house or commercial compound libraries 
based on either molecular docking toward a known tar-
get structure or similarity to known active compounds. 
Although VS-based drug discovery approaches can iden-
tify active compounds, they are limited by the chemical 
libraries used.

Contrary to VS, de novo drug design can create mol-
ecules that do not exist in the known compound libraries. 
De novo drug design approaches usually create molecule 
structures from given objectives and have the advantage 
of exploring a much wider chemical space beyond exist-
ing compound libraries. During the last decades, various 
traditional de novo drug design approaches have been 
developed, and they can be divided into two catego-
ries: structure-based [6–11] and ligand-based [12–14]. 
In structure-based approaches, the three-dimensional 
(3D) structures of targets are utilized to infer the infor-
mation related to important protein–ligand interactions 
[9, 15–18], and have been emerged as valuable tools in 
the design of novel inhibitors toward important targets 
[19–22]. Ligand-based approaches usually use the col-
lections of compounds that are known to bind to specific 
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targets to guide the generation of novel structures [13, 14, 
23–26].

Recently, machine learning (ML) methods, especially 
DL methods, have brought many new breakthroughs to 
the field of de novo drug design, and numerous de novo 
drug design methods based on different DL architectures 
have been developed [27, 28], such as recurrent neu-
ral networks (RNN) [29–32], variational autoencoders 
(VAE) [33–35], generative adversarial networks (GAN) 
[36] and reinforcement learning (RL) [37–39]. Never-
theless, unlike the majority of traditional de novo design 
methods, most of these DL-based generative algorithms 
are ligand-centric and represent molecules as either 1D 
SMILES strings or 2D molecular graphs. A clear short-
coming of these representations is that the generative 
models cannot capture the critical conformation of 3D 
molecular geometry toward a specific protein target, 
and the generated molecules may be only subject to the 
ligands in the training set. Therefore, these methods are 
not suitable for the design of novel chemical entities in a 
target-specific task.

To generate active chemical entities, a feasible strat-
egy is to incorporate the 3D molecular geometry into the 
generative model. There has been a series of studies [34, 
40–49] attempting to incorporate 3D molecular geome-
try into DL-based generative architectures. These models 
typically transform molecules into 3D conceptual graphs 
(such as voxels [49], mesh shapes [34, 40] or 3D molecu-
lar graphs [43, 45–47]) of molecules, and use pharmaco-
phore matching coefficients or docking scores to guide 
the process of molecule generation. However, the appli-
cation of these DL algorithms is difficult due to the data 
availability, computational resource cost, open-source 
nature of the code, or lack of user-friendly tools.

Based on these premises, we developed the ReMODE 
server, the first web server to perform the target-specific 
tasks with our newly-developed DL-based algorithm 
RELATION [49]. RELATION is trained with two sets 
of 3D grids of training data: ligand-only (source dataset) 
and ligand-target binding complexes (target dataset). 
The BiTL (bidirectional transfer learning) was specifi-
cally designed to capture the subtle relations between 
these two datasets, and extract and transfer the desired 
geometric features of strongly bounded ligands from the 
ligand-target binding complexes to a ligand-only latent 
space for efficient molecular generation.

We have trained the RELATION models using the data 
of 23 targets, and users can select a target in the list to 
create the generative task and generate molecules rap-
idly in the ReMODE server. However, in the practical 
application of a generative model, these randomly gen-
erated molecular set sometimes cannot meet the needs 

of drug design, and researchers prefer to control the dif-
ferent properties of the molecular set and create some 
customizable tasks. For this purpose, the conditional 
models of all protein kinases were also trained and inte-
grated into the ReMODE server, which allows users to 
create the multi-property constraints task and fragment-
based design task in the “Physicochemical properties” 
and “Structure features” modules. Other key modules of 
ReMODE are the “Pharmacophore features” and “Bayes-
ian Optimization”, and the use of these two modules 
will generate molecules with favorable pharmacophore 
matching scores and docking conformations, and these 
molecules will have greater potential as drug candidates.

To sum up, with the multifunctional modules men-
tioned above, our ReMODE server is believed to have a 
greater capacity to assist medicinal chemists in perform-
ing customizable de novo drug design and accelerat-
ing the drug research and discovery process. ReMODE 
is implemented as a publicly available web server with 
a user-friendly interface and can be freely accessed at 
http://​cadd.​zju.​edu.​cn/​relat​ion/​remode/.

Materials and methods
The generative model in ReMODE
The framework of RELATION model [49] was selected 
as the main backend of the ReMODE server. The RELA-
TION network [49] consists of two parts: the private and 
shared encoders based on 3D-convolutional neural net-
work (CNN); the captioning decoder based on caption-
ing long short-term memory (LSTM). The RELATION 
model was trained with the ZINC dataset and protein–
ligand complex dataset simultaneously, the ZINC dataset 
contains massive structural storage of compounds, and 
the protein–ligand complex dataset contains the binding 
information of protein–ligand complexes. If only a large-
scale ZINC set is used to train the generative model, 
the generated molecules cannot focus on our desirable 
properties. And for the protein–ligand complex dataset, 
the number is too few to train a valid generative model. 
So the transfer learning was used in the training of the 
generative model, and the ZINC dataset and the ligand–
protein complexes were set as the source domain and 
target domain, respectively [50–53]. Herein we adopted 
DSN (Domain Separation Networks) [54], a bidirectional 
transfer learning method based on the DL framework, 
in which the latent space contains not only the shared 
embedding between the two domains but also the unique 
features. That is to say, we intended to bidirectionally 
transfer the characteristics of ligands and ligand–protein 
complexes to a latent space for generation. This bidirec-
tionally transfer endows ReMODE to generate molecules 
with both novelty and 3D geometry features [49].

http://cadd.zju.edu.cn/relation/remode/
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Framework of ReMODE
To extend or build upon existing server functionality, 
we modified the basic framework of the RELATION 
model. To enable the ReMODE server to generate mol-
ecules with desirable properties and fragment/scaffold/
structure, CVAE (Conditional variational autoencoder) 
was utilized to control multiple physicochemical proper-
ties and structural features by imposing them on a latent 
space. In Bayesian Sampling module, AutoDock Vina [55] 
docking scores were selected as the black-box objective 
function of BO (Bayesian Optimization) process. In BO 
process, sparse GP was used for modelling the surro-
gate model, expected improvement was used as acquisi-
tion function [33, 56]. And for pharmacophore modules, 
LigandScout 4.4.7 [57, 58] was used as the scoring func-
tion. The pharmacophore properties were constructed 
from the LigandScout Pharmacophore Database. The 
pharmacophore properties in CVAE was set to ‘Rela-
tive Pharmacophore-Fit’, and the maximum number of 
omitted features was set to ‘1’ for the iscreen tool pro-
vided with LigandScout 4.7.7. The hyper-parameters and 
framework details available in ReMODE were recorded 
in supplementary data and listed in Additional file  1: 
Tables S1–S4.

Data processing
The source dataset was prepared based on the ZINC 
Clean Lead database [59, 60]. We removed the mole-
cules containing charged atoms or atoms besides carbon, 
nitrogen, oxygen, sulfur, fluorine, chlorine, bromine and 
hydrogen. Then molecules with molecular weight (MW) 
ranging from 200 to 600 and predicted logP from -2 to 
6 were selected as the source dataset. Furthermore, 23 
protein–ligand complexes and protein kinase inhibitors 
(PKIs) set and were (IC50 < 50 nM) collected from Bind-
ingDB [61], ChEMBL [62] and PDB data bank [63] were 
used as the target dataset of ReMODE. Same as our past 
research [49], the two datasets were represented as the 
3D-grid format, with each atom in the 3D-grid described 
by 19 physicochemical properties (a 4D tensor for net-
work). These data can be downloaded from our server 
(http://​cadd.​zju.​edu.​cn/​relat​ion/​remode/​doc/). We also 
built a drug-target network between target and PKIs 
[64, 65], and therefore users can model the target-spe-
cific drug design task from the perspective of network 
[66–69].

Web server implementation
The ReMODE server is a publicly accessible server, which 
could be accessed through a web browser, and the back-
end was developed using the Python web framework of 
Django and deployed on an elastic compute service from 
Aliyun running an Ubuntu Linux system. The web access 

was enabled via the Nginx web server and the interac-
tions between Django and proxy server were supported 
by uwsgi. This application was developed based on the 
Model-View-Template (MVT) framework. The model 
layer maps the business objects to the database objects, 
and the storage and management of the submitted job 
data were implemented by SQLite3. The view layer is a 
business logic layer, responsible for performing the access 
to the ReMODE models, delivering the generated mol-
ecules to be shown on the template layer. The template 
layer provides the visualization of results, page render-
ing, integration of documentation, etc. The downloaded 
files, analysis result and pre-trained models were stored 
in the server. PyTorch was used in the construction of the 
ReMODE model. Additionally, the RDKit package was 
employed to provide various cheminformatics support. 
The server has been successfully tested on the recent ver-
sion of Microsoft Edge, Google Chrome and Apple Safari.

Results and discussion
As designed, ReMODE allows users to perform custom-
izable target-specific design tasks, as described below. 
The key examples and step-by-step instructions on how 
to create a task in the ReMODE server are provided in 
the ‘Help’ section of the website (available at: http://​cadd.​
zju.​edu.​cn/​relat​ion/​remode/​help/). The algorithms of the 
different modules have been documented in Additional 
file 1. The detailed view of the ReMODE server is shown 
in Fig. 1.

Creation of unconditional generation task
In unconditional generation task, all the protein targets 
in list have a pretrained generative model. If the switch 
‘Optimization’ is off, users can select a target from the 
list, then enter the task name, email address, and the 
number of molecules to be generated quickly to quickly 
generate the target-focused molecules.

Creation of conditional generation task
The ReMODE server allows the user to create conditional 
target-specific tasks. In conditional tasks, we made CVAE 
(conditional Variational Auto-Encoder) framework of 
ReMODE more suitable for multi-constraint control. 
CVAE can incorporate the information of molecular 
properties in the encoding process and manipulate them 
in the decoding process. Users can turn on the switch 
‘Optimization’ to select one of the conditional modules 
from ‘Physicochemical properties’, ‘Pharmacophore fea-
tures’ or ‘Structure features’ options.

In the “Physicochemical properties” module, the 
framework was used to generate target-focused mol-
ecules satisfying four target properties at the same time: 
MW (molecular weight), logP (partition coefficient), 

http://cadd.zju.edu.cn/relation/remode/doc/
http://cadd.zju.edu.cn/relation/remode/help/
http://cadd.zju.edu.cn/relation/remode/help/
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QED (quantitative estimate of drug-likeness), and SA 
(synthetic accessibility). This module allows users to get a 
number of molecules with the specific values of MW and 
LogP within given ranges, and with the optimized values 
of QED and MW. It was also possible to adjust a single 
target property without changing the others.

In the “Pharmacophore features” module, users can 
generate molecules with pharmacophore constraints. The 
pharmacophore properties in CVAE was set to ‘Relative 
Pharmacophore-Fit’ to a pharmacophore model, and the 
maximum number of omitted features is set to ‘1’ for the 
iscreen tool in LigandScout [57, 58]. The pharmacophore 
models used for each were collected from the LigandS-
cout Pharmacophore Database (http://​www.​intel​igand.​
com/​pharm​db/), which is based on many years of experi-
ence in pharmacophore creation and has been assembled 
manually and quality checked carefully.

The “Structure features” module is designed to perform 
fragment-based generation, and it allows users to upload 

a fragment/scaffold/sub-structures as the starting points 
for creating fragment-based design task. The uploaded 
SMILES string is used as the caption data in the latent 
space, and collected the latent points within 5 Euclidean 
distances to the caption data. These latent points contain 
the 3D geometry features of protein–ligand complex and 
can be decoded to molecules with high structural simi-
larity to the uploaded structure.

Creation of Bayesian sampling generation task
The ‘Bayesian Optimization’ module allows users to gen-
erate the target-focused molecules with high docking 
scores and favorable docking conformations. Bayesian 
optimization is performed in the latent space to find mol-
ecules that score highly under a specified Autodock Vina 
docking function, and the detailed procedure of Bayesian 
Optimization is recorded in Additional file 1: Table S3.

Fig. 1  Detailed view of the ReMODE server: A Introduction of the protein kinases profiling and DL-based algorithms in the ReMODE server; B 
Details of the target-specific creation interface with various functional modules; C Example of an analysis result of generated molecules; D Details 
page for the different dataset used in model training, and the download links are also provided

http://www.inteligand.com/pharmdb/
http://www.inteligand.com/pharmdb/
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Model validation
In this section, we conducted a comprehensive evalua-
tion of the generated molecules from each selected pro-
tein kinase in list to examine the performance of different 
modules (in the “Physicochemical properties” modules, 
the “MW” was set to 250 to 750, the “logP” was set to 
− 2 to 8, and the “QED” and “SA” were set to off) in the 
ReMODE server.

We first tested some basic metrics of different modules, 
such as the validity, novelty, and uniqueness of the gen-
erated molecules. The results in Additional file 1: Figure 
S1 show that the introduction of CVAE will lead to the 
decrease of validity in some modules (“Physicochemical 
properties”, “Structure features” and “Pharmacophore 
features”). Therefore, in order to improve user experi-
ence, when the users select these modules, the server will 
call the background generative model and will not stop 
running until the number of valid molecules required by 
users is generated.

The main function of our ReMODE server is to per-
form the target-specific generation task for each selected 
target in list, so we need to determine whether the gen-
erated molecules are target-focused. If the molecular set 

generated from a selected target demonstrates a high 
biochemical similarity to the reported PKIs of this target, 
but low similarity to other targets, then the generative 
model can be considered to be highly target-focused. The 
FCD (Fréchet ChemNet Distance) was used to inspect 
whether the generated molecules are diverse and have 
similar chemical and biological properties compared 
with the PKIs dataset. From the heatmap of the five mod-
ules in Fig. 2A and Additional file 1: Figure S2, it can be 
clearly seen that the generated molecular set with more 
favorable FCD values to the inhibitors of the selected tar-
get than the other targets, indicating that the molecules 
generated by ReMODE are target-focused.

In addition to the target-focused properties of the gen-
erated molecules, the binding affinities of the generated 
molecules to the target should also be considered. The 
Autodock Vina scores and the similarity of PLIF (pro-
tein–ligand interaction fingerprint) were set as the met-
rics to preliminarily investigate the binding affinities of 
the generated molecules. As shown in Fig. 2C and Addi-
tional file 1: Figure S3, the docking scores of the gener-
ated molecules for each selected target show a similar 
distribution to those of the target PKIs. Moreover, the 

Fig. 2  Statistics of the generated molecules for 23 different target-specific tasks. A The FCD values of the generated molecules for the 23 protein 
targets (‘Bayesian optimization’ module), and the order and information of the targets in the horizontal and vertical coordinates are the same as 
those in the horizontal coordinates of B, C. B The average SNN of PLIF between the generated molecules and the PKIs set (‘Bayesian optimization’ 
module). C The docking score distribution of the generated molecules and the PKIs set (‘Bayesian optimization’ module). The detailed evaluations of 
the other modules are available in Additional file 1
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similarities of nearest neighbor (SNN) of PLIF between 
the generated molecules and PKIs were also calculated to 
inspect the conformations of the docking complexes. In 
Fig. 2B and Additional file 1: Figure S4, it can be found 
that the similarities of PLIF of the docking conformations 
between the generated molecules and the PKIs are higher 
than 70%. In summary, we can find that the molecular set 
generated for each selected target demonstrates favorable 
docking scores and docking conformations, and we may 
have higher probability to select candidates with high 
binding affinities.

Due to the special properties of the molecules gen-
erated by the modules “Pharmacophore features” and 
“Structure feature”, we evaluated the molecules generated 
by the two modules separately. In Additional file 1: Fig-
ure S5A, it can be found that the molecules generated by 
the “Pharmacophore features” module have higher phar-
macophore scores than those generated by the others 
modules. This suggests that, by turning on the “Pharma-
cophore features” modules, the generated molecules can 
have enhanced matching to the preset pharmacophore 
models. To evaluate the “Structure feature” in fragment-
based drug design, we randomly selected a molecule in 
each PKI dataset of 23 targets as the input structure, 
and investigated the SNN distribution between the gen-
erated molecules and the input structure. As shown in 
Additional file  1: Figure S5B, the average SNN between 
the generated molecules and the input structure is close 
to 0.7 for all 23 targets, indicating that the “Structure 
feature” module can achieve the fragment-based design 
according to an input structure.

Case study of de novo design of EGFR inhibitors
The above “Model validation” section has given an over-
view of the overall performances of all the 23 targets. In 
this section, we choose EGFR (Epidermal growth factor 
receptor) [70] as a case study to show the performance of 
the different modules in the ReMODE server.

With the introduction of different condition vectors (in 
our model, the customized properties of molecules we 
want to control were represented as the condition vec-
tors) in the CVAE framework, the customized proper-
ties are directly involved in the encoder and decoder, and 
the sampling latent vector is composed of the customed 
properties and molecules. In this case study, the results of 
the multi-property constraint generation using “Physico-
chemical properties” and “Pharmacophore features” are 
shown in Fig. 3A–C. The QED, SA and pharmacophore 
score distributions of the generated molecules indicate 
that these modules in the ReMODE server are able to 
constrain the properties based on the customized prop-
erty settings by users.

DL-based de novo drug design is usually applied in the 
initial stage of the discovery of novel drug candidates. 
Computational approaches such as molecular docking or 
other VS methods were normally used to select molecules 
with required properties from the generated compound 
library, and the top-ranked molecules were then selected 
for structural modification, synthesis and biological 
evaluation. The docking scores of the molecules toward 
EGFR are shown in Fig. 3C, where most molecules gener-
ated by the ‘Bayesian optimization’ module exhibit better 
docking scores of around − 9 to − 8 kcal/mol. However, 
the molecules generated by the other modules have the 
docking scores of around − 8 to − 7 kcal/mol, indicating 
that the molecules generated by the BO-based architec-
ture are more likely to succeed in the following screening.

For the fragment-based generation in the “Structure 
features” module, the network of unconditional gen-
eration was selected as the basic architecture. Then, the 
input molecule (fragment/scaffold) will be decoded into 
the latent space as an anchor vector. Finally, a certain 
number (the number of generated molecules defined by 
users) of vectors are randomly sampled within a Euclid-
ean distance of 5 around the anchor vector and decoded 
into a molecule set for users. The results in Fig. 3D and 
Additional file 1: Figure S3A can prove that our “Struc-
ture features” can carry out fragment-based drug design 
by setting a molecular structure as an anchor to discover 
compounds with the same substructure or high similarity 
in the chemical space.

The 10,000 valid molecules generated by the ‘Bayesian 
optimization’ module were used for further assessment. 
In Fig.  4A, the t-SNE plot demonstrated that molecules 
generated by the ReMODE server have a great overlap 
distribution to EGFR TKIs in the chemical space. The 
binding patterns of the generated molecules and PKIs in 
the protein pockets are shown in Fig. 4B. The superposi-
tion in the protein pockets showed that the two molecu-
lar sets occupy a similar space of the binding pockets and 
have similar docking conformations. The hydrogen bond, 
ionic attraction, and surface contact that occur in the 
binding conformations are counted as protein–ligand fin-
gerprints. In Fig. 4C, the generated molecules and com-
pounds also have highly similar binding patterns in the 
pockets of EGFR.

Conclusion
Although the powerful performance of DL technology 
in de novo drug design is widely recognized in both 
academia and industry, the satisfactory user-friendly 
tools are still limited. In current work, we presented 
ReMODE, a highly automated and efficient DL-based 
de novo drug design web server. The basic functions of 
the ReMODE sever can perform target-specific tasks 
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for the 23 protein targets. Meanwhile, our ReMODE 
server also integrates four extended modules ‘Physico-
chemical properties’, ‘Structure features’, ‘Pharmaco-
phore features’, and ‘Bayesian sampling’, and users can 
easily create customizable generation tasks such as 
multi-property optimization, fragment-based design, 
or pharmacophore constraints design via these mod-
ules. To some extent, ReMODE still has some limita-
tions. Currently, ReMODE only supports protein target 
in list, and does not allow users to upload their own 

targets to generate target-focused molecules. Since 
the training ReMODE model requires a large number 
of protein–ligand complexes, it is not convenient to 
upload these data through the website. In the future, 
more advanced DL-based algorithms will be added to 
the ReMODE server, making it more versatile and user-
friendly for users. ReMODE aims to be the first open 
accessible DL-based target-specific design platform 
and more functional modules will be implemented into 
this platform. We believe that our ReMODE web server 

Fig. 3  (A-C) The properties distribution of the 5000 valid molecules generated by the modules “Physicochemical properties” (A, B), “Pharmacophore 
features” (C), and “Bayesian sampling” (C) are compared with those generated by the unconditional generation task. D The scaffold of erlotinib was 
selected as the input molecule for the “Structure features” module to perform fragment-based design. Annotation: MW1-LOGP: the MW and logP 
range were set to 150–400 and -2–6, and no optimization for QED and SA; MW-LOGP: the MW and logP range were set to 200–600 and 0–4, and no 
optimization for QED and SA; QED1-SA: the MW and logP range were set to 200–600 and -2–6 and optimization for QED was turned on; QED-SA1: 
the MW and logP range were set to 200–600 and -2–6, and optimization for SA was turned on
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would facilitate DL-based de novo drug development 
and benefit the discovery of novel bioactive candidates.
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