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1 Introduction

Top-down (TD) model building from string theory leads to the concept of the eclectic flavor
group [1–4] that includes traditional and modular flavor symmetries in the framework of
“Local Flavor Unification” [5, 6]. Any discussion of the flavor problem should consider
both, traditional and modular flavor symmetries, as they give important restrictions on the
Kähler potential and superpotential of the theory. Spontaneous breaking of the eclectic
flavor group exhibits a subtle interplay of the vacuum expectation values (VEVs) of flavon
and moduli fields [7] that allow for a hierarchical pattern of masses and mixing angles
of quarks and leptons. While the appearance of the eclectic flavor group is automatic in
the TD approach, it could also be discussed within the bottom-up (BU) approach, where
potential modular symmetries are contained in the outer automorphisms of the traditional
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flavor group [1, 5, 6]. In general, only part of the eclectic flavor group is linearly realized
and the traditional flavor symmetry is enhanced at certain points or sub-loci in moduli
space. This provides the basis of “Local Flavor Unification” at these regions of enhanced
symmetry. Ultimately, this does lead to a flavor scheme that incorporates both the quark
and lepton sectors.

Since their introduction in BU constructions [8], most of the attempts for a descrip-
tion of flavor with modular flavor symmetries have concentrated on the lepton sector alone,
see e.g. [9–23] and references therein. Even though apparently more difficult to accomo-
date, there have been some fits of the flavor parameters that include the quark sector,
see e.g. [24–37]. Yet no clearly favored scheme has emerged. There are many choices of
flavor groups, representations of these groups as well as parameters in the action that pro-
vide reasonable fits, but one still did not find a baseline theory or a fundamental principle
through the BU considerations. Furthermore, the predictivity of these BU models may be
challenged by the arbitrariness of their Kähler potential [38]. The TD approach is much
more restrictive and it remains to be seen whether a realistic fit to the data can be achieved
at all. The present paper is meant to be a first attempt for a global description of flavor
in the quark and lepton sector from a TD perspective. It will also serve as a benchmark
scheme that allows a comparison to previous BU constructions as it will indicate which
properties of the construction and choice of parameters will be most relevant. We shall see,
for example, that nontrivial parameters in the Kähler potential (usually ignored in the BU
approach) might play an important role.

To initiate a TD construction of flavor we select a most promising scheme of a string
compactification with an elliptic fibration based on the T2/Z3 orbifold [2, 3, 5]. It leads to
the traditional flavor group ∆(54), the discrete modular flavor group Γ′3 ∼= T ′ = SL(2, 3) ∼=
[24, 3] with eclectic flavor group Ω(2) ∼= [1944, 3448]. Matter fields appear in twisted sectors
with nontrivial representations of ∆(54) and T ′. Full details of this general flavor scheme
can be found in table 2 of our previous paper [7]. The choice of the possible representations
is quite restricted, as in other TD scenarios [39–42]. It is therefore difficult to compare
this approach to BU constructions where, even for the same group T ′, typically different
representations have been chosen [15, 27, 35].

The next step in our program is the choice of a (semi-)realistic string construction with
Standard Model gauge group SU(3)×SU(2)×U(1), three families of quarks and leptons and
suitable Higgs-doublets. Here we concentrate on the constructions of refs. [43, 44] based
on T6/Z3 × Z3 orbifolds where the gauge and flavor structure has been explicitly worked
out. Several classes of models with eclectic flavor group Ω(2) have been identified, as
shown in table 3 of ref. [7]. We choose here the simplest example (class A) with properties
displayed in table 1. Twisted fields all have the same modular weight n = −2/3, transform
as 32 representations of ∆(54) and 1 ⊕ 2′ representations of the T ′ modular group.1 The
pattern of the spontaneous breaking of the eclectic flavor group has been discussed in our
earlier paper [7] (see tables 1, 2 and 3 there). The simplicity of the scheme leads to severe

1This is the simplest class of models as we have only representations of class 32, and none of 31 and
very restrictive values for modular weights both in twisted and untwisted sector.
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restrictions on superpotential and Kähler potential as we shall discuss later in sections 2.4
and 2.5. Still, it has to be stressed that the Kähler potential is not diagonal (as usually
assumed in the BU approach, with some exceptions [27, 38]) and this will be relevant for
the global fit to the data.

The model allows for a successful fit of flavor both in the quark and lepton sector. It
predicts a see-saw mechanism in the lepton sector and a “normal hierarchy” for neutrino
masses. Hierarchies for masses and mixing angles appear from a subtle interplay of aligned
flavon VEVs and the location of the modular parameter in the vicinity of fixed points, as
a result of “Local Flavor Unification”.

The paper is structured as follows. In section 2 we present the explicit string model,
matter representations (table 1), superpotential (section 2.4) and Kähler potential (2.5).
Section 3 contains the step-wise symmetry breaking and the resulting hierarchical structure
in a qualitative form. Section 4 will be devoted to the numerical analysis of the lepton
sector, which will be completed to include also quarks in section 5. In section 6 we shall
summarize our results and give an outlook to future developments. Our appendices include
details on the structure of the Kähler corrections, our numerical analysis and the full
massless matter spectrum of our model.

2 A string theory model with eclectic flavor symmetries

2.1 Model definition

Let us consider a fully consistent model based on the E8×E8 heterotic string containing
an eclectic flavor symmetry Ω(2) ∼= [1944, 3448], consisting of the traditional flavor group
∆(54), the finite modular group T ′ and a ZR9 R-symmetry. As usual, there is an addi-
tional ZCP2 CP-like modular symmetry that acts as a simultaneous outer automorphism
on all of these groups and enlarges the eclectic flavor symmetry of this setting to order
3888. The CP-like transformation is generally spontaneously broken by the VEV of the
modulus as well as by the VEVs of flavon fields thereby giving rise to CP violation at low
energies. It has been known that T6/Z3 ×Z3 (1, 1) orbifold compactifications2 of the het-
erotic string with some vanishing Wilson lines can yield an MSSM-like massless spectrum
equipped with a ∆(54) traditional flavor symmetry [43, 44, 46]. This symmetry arises from
a two-dimensional T2/Z3 orbifold sector, whose modular symmetries complete the eclectic
scenario [1–6]. It leads to a picture where the Ω(2) eclectic symmetry of this sector is
extended by three extra Z3 symmetries arising from the other compact dimensions, which
can be regarded as “shaping symmetries”.

We consider a particular string orbifold defined by the background gauge-lattice shifts

V1 =
(
−1

2 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

)
,

(
−1

6 ,−
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
2 ,

7
6

)
, (2.1a)

V2 =
(
−2

3 ,−
2
3 ,−

1
3 , 0, 0, 0, 1,

4
3

)
,

(
−5

6 ,
5
6 ,

1
6 ,

1
6 ,

1
2 ,

7
6 ,−

5
6 ,

5
6

)
, (2.1b)

2See ref. [45] for orbifold nomenclature.
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quarks and leptons Higgs fields flavons
label q ū d̄ ` ē ν̄ Hu Hd ϕe ϕu ϕν φ0 φ0

M φ0
e φ0

u φ0
d

SU(3)c 3 3̄ 3̄ 1 1 1 1 1 1 1 1 1 1 1 1 1
SU(2)L 2 1 1 2 1 1 2 2 1 1 1 1 1 1 1 1
U(1)Y 1/6 −2/3 1/3 −1/2 1 0 1/2 −1/2 0 0 0 0 0 0 0 0
∆(54) 32 32 32 32 32 32 1 1 32 32 32 1 1 1 1 1
T ′ 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 1 1 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 1 1 1 1 1
ZR9 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0
n −2/3 −2/3 −2/3 −2/3 −2/3 −2/3 0 0 −2/3 −2/3 −2/3 0 0 0 0 0
Z3 1 1 ω ω 1 1 1 1 1 ω ω2 1 1 ω2 ω2 ω2

Z3 ω2 ω2 1 1 ω2 ω2 1 1 ω2 1 ω 1 1 ω2 ω2 ω2

Z3 1 1 ω 1 1 1 1 1 1 ω2 1 1 1 1 ω ω2

Table 1. MSSM matter and flavon states of a Z3×Z3 heterotic orbifold realization of a model
endowed with Ω(2) eclectic flavor symmetry. We display quantum numbers with respect to the SM
gauge group, the traditional flavor symmetry ∆(54), the finite modular symmetry T ′, the modular
weights n and the ZR

9 discrete R-symmetry arising from the full 10D orbifold compactification.
We use the results from refs. [2, 4] to identify these quantum numbers. We provide the additional
unbroken Z3 × Z3 × Z3 symmetries (with ω := e2πi/3), arising from the compact dimensions or-
thogonal to the T2/Z3 sector where Ω(2) is realized. As shown in appendix C, the fields carry
additional gauge U(1) charges that distinguish e.g. φ0 and φ0

M . The subindices e, ν, u, d label the
flavons associated with the respective leptons and quarks. The electron and down-quark sectors
share the same flavon triplet ϕe, as discussed in section 2.4. Besides these relevant matter states,
the model contains the vectorlike exotic fields shown in table 2.

and Wilson lines

A1 = A2 =
(
−1, 1

3 ,−
1
3 ,−1, 0, 0, 4

3 ,−
2
3

)
,

(3
2 ,−

1
2 ,−

1
6 ,

1
2 ,

5
6 ,

5
6 ,−

5
6 ,−

1
6

)
, (2.1c)

A3 = A4 =
(
−1

3 ,−
2
3 , 1,

4
3 ,

1
3 ,

4
3 ,

2
3 ,−1

)
,

(1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
2 ,−

1
2 ,

1
2

)
. (2.1d)

The Wilson lines associated with the last two compact dimensions are chosen to be trivial,
i.e. A5 = A6 = 0. This is the condition for this T2/Z3 orbifold sector to yield the eclectic
flavor symmetry Ω(2). One can further show that the three extra Z3 discrete symmetries
that are left unbroken from the orbifold action on the first four compact dimensions, are
orthogonal to the Ω(2) eclectic group. From the gauge degrees of freedom, the unbroken
4D gauge group of this model is SU(3)c × SU(2)L × U(1)Y × [SU(4) × U(1)9]. By using
e.g. the orbifolder [47], one finds that the N = 1 massless matter spectrum includes
three generations of quark and lepton superfields as well as a pair of Higgs fields and
various flavons, all listed in table 1. Additionally, this model includes several vectorlike
exotics summarized separately in table 2, which decouple from the low-energy dynamics
when some singlets si develop VEVs close to the string scale. Details of the entire massless
spectrum are given in appendix C. We provide the SM gauge quantum numbers, as well
as the discrete flavor charges for all phenomenologically relevant matter states in table 1,
which we discuss in the following.
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# irrep labels # irrep labels
101 (1,1)0 si
51 (1,1)−1/3 Vi 51 (1,1)1/3 V̄i

14 (1,1)−2/3 Xi 14 (1,1)2/3 X̄i

10 (1,2)−1/2 Li 10 (1,2)1/2 L̄i

9
(
3̄,1

)
1/3 D̄i 9 (3,1)−1/3 Di

8 (1,2)−1/6 Wi 8 (1,2)1/6 W̄i

2
(
3̄,1

)
−2/3 Ūi 2 (3,1)2/3 Ui

4
(
3̄,1

)
0 Zi 4 (3,1)0 Z̄i

1
(
3̄,1

)
−1/3 Y 1 (3,1)1/3 Ȳ

Table 2. Vectorlike exotic matter states of a Z3×Z3 heterotic orbifold realization of a model
endowed with Ω(2) eclectic flavor symmetry. In parenthesis, we display the gauge quantum number
under SU(3)c × SU(2)L and the subindices denote the hypercharges.

2.2 Flavor symmetry representations

This model belongs to the category A of the models classified in table 3 of ref. [7]. The
assignment of symmetry representations under the Ω(2) eclectic flavor symmetry is fairly
simple because it is entirely determined by the modular weight n of each field under the
SL(2,Z)T group of modular transformations of the Kähler modulus T [7].3 We follow the
notation of [2] and denote generic fields by Φn to indicate their transformation behavior
under Ω(2). Quarks, leptons, and flavons ϕu,e,ν correspond to Φ−2/3 fields with modular
weights n = −2/3, while the Higgs fields and flavons φ0 form Φ0 fields with trivial modular
weights. While Φ0 fields are trivial singlets under all flavor symmetries, Φ−2/3 are flavor
triplets transforming simultaneously as 32 of the traditional flavor group ∆(54), as well as
2′⊕1 of the finite modular group T ′ [5, 6]. In addition, Φ−2/3 fields have ZR9 -charge 1 [4].

Next to the expectation value of the modulus 〈T 〉 also the VEVs of the flavon triplets
ϕi contribute to the breaking of the flavor symmetries of the model leading to the patterns
described in our previous work [7].

The generators of the three-dimensional representation 32 of the traditional ∆(54)
flavor symmetry are given by the matrices

ρ32(A) :=

 0 1 0
0 0 1
1 0 0

 , ρ32(B) :=

 1 0 0
0 ω 0
0 0 ω2

 and, ρ32(C) := −

 1 0 0
0 0 1
0 1 0

 , (2.2)

where ω := exp(2πi/3), such that for g ∈ ∆(54),

Φ−2/3
g−→ ρ32(g) Φ−2/3 . (2.3)

3As pointed out in [7], the fact that the flavor symmetry representations are entirely fixed by knowing
the modular weight might be conjectured to be a general feature of TD constructions. Other examples for
this are [42, 48–52], while virtually all BU constructions violate this rule.
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Furthermore, the superpotential W transforms under C as W C→ −W , such that the Z2
subgroup of ∆(54) generated by C corresponds to an R-symmetry. This also implies that
the superpotential transforms as a ∆(54) nontrivial singlet 1′, see also ([7], table 2).

For modular transformations,

γ =
(
a b

c d

)
∈ SL(2,Z)T , (2.4)

the transformations of the relevant matter fields and the superpotential are given by

Φ−2/3
γ−→ (c T + d)−2/3 ρ(γ) Φ−2/3 and W γ−→ (c T + d)−1W , (2.5)

with explicit representation matrices for the generators S and T of the modular group

ρ(S) := i√
3

 1 1 1
1 ω2 ω

1 ω ω2

 and ρ(T) :=

ω
2 0 0

0 1 0
0 0 1

 . (2.6)

The ZR9 R-symmetry generated by the sublattice rotation R̂ (see [4] for details) acts as

Φ−2/3
R̂−→ exp(2πi/9) Φ−2/3 and W R̂−→ ωW . (2.7)

Finally, the Z3×Z3×Z3 charges shown in table 1 can be understood by the localization of
the fields in the compact dimensions orthogonal to the T2/Z3 orbifold sector, supporting
the geometric intuition of the eclectic picture. For completeness, let us recall that the
generator of the additional ZCP2 CP-like symmetry of our TD eclectic scenario acts on the
modulus as T CP−→ −T̄ while mapping Φ−2/3

CP−→ Φ̄−2/3 [5, 6], where bars denote complex
conjugation (in agreement with results in the BU approach [53]).4

2.3 T ′ modular forms

In order to determine the structure of the effective action of the model, let us recall the
properties of the modular forms that are relevant to build the couplings among the matter
fields of table 1. For the leading terms in the superpotential we only need the modular
forms of level 3 and weight 1, which form a doublet representations of Γ′3 ∼= T ′ and can be
expressed as [2, 15]

Ŷ (1)(T ) =
(
Ŷ1(T )
Ŷ2(T )

)
=

 −3
√

2 η3(3T )
η(T )

3η
3(3T )
η(T ) + η3(T/3)

η(T )

 , (2.8)

where η(T ) is the Dedekind η function. Under a modular transformation γ ∈ SL(2,Z)T ,
this transforms as

Ŷ (1)(T ) γ−→ (c T + d) ρ2′′(γ) Ŷ (1)(T ) , (2.9)
4In general, transformations of the CP-type are accompanied by a non-trivial representation matrix and

an automorphy factor, see e.g. ([7], eq. (3)).
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where ρ2′′(γ) denotes the 2′′ representation of T ′, which can be generated by

ρ2′′(S) = − i√
3

(
1
√

2√
2 1

)
and ρ2′′(T) =

(
ω 0
0 1

)
. (2.10)

Using q := exp (2πiT ), we will make use of the “q-expansion” of Ŷ (1)(T ) given by

Ŷ1(T ) = −3
√

2 q1/3 (1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + 2q9 + . . . ) , (2.11a)
Ŷ2(T ) = 1 + 6q + 6q3 + 6q4 + 12q7 + 6q9 + . . . . (2.11b)

From these expansions, the behavior of the modular forms for large ImT can be read off:
Ŷ2(T ) → 1 while Ŷ1(T ) → 0. Hence, for large ImT , the modular form of weight 1 is
hierarchically structured.

Let us mention here the appearance of an approximate accidental symmetry because
of the special behavior of these modular forms under the transformations T → T + 3/4 and
T → T + 3/2. Using

T → T + 3/4 : q → exp (2πi(T + 3/4)) = −i q , (2.12a)
T → T + 3/2 : q → exp (2πi(T + 3/2)) = −q , (2.12b)

and the q-expansions of eqs. (2.11), we find the approximate transformations

T → T + 3/4 :
(
Ŷ1(T )
Ŷ2(T )

)
→

(
−i Ŷ1(T )
Ŷ2(T )

)
+O(q) , (2.13a)

T → T + 3/2 :
(
Ŷ1(T )
Ŷ2(T )

)
→

(
−Ŷ1(T )
Ŷ2(T )

)
+O(q) . (2.13b)

These relations will be useful to interpret some of our phenomenological observations in
section 4.

We note that, under the generator of the ZCP2 CP-like symmetry, both components of
the modular form get complex conjugated, i.e.

T
CP−→ −T̄ : Ŷ (1)(T ) CP−→ Ŷ (1)(−T̄ ) =

(
Ŷ (1)(T )

)∗
. (2.14)

2.4 Superpotential and mass matrices

Respecting gauge invariance5 as well as the correct transformation behavior under the
eclectic flavor symmetries of the model (see table 1),6 the effective superpotential to leading
order in operator mass dimension is given by

W = Ŷ (1)(T )
{
φ0
[
φ0

uHuūqϕu + φ0
dHdd̄qϕe + φ0

eHdē`ϕe +Huν̄`ϕν
]

+ φ0
Mν̄ν̄ϕe

}
, (2.15)

where henceforth we use Planck units. Here, Ŷ (1)(T ) are the modular forms discussed in
section 2.3 and, for brevity, we do not include the symmetry invariant overall couplings of

5Recall that there are additional U(1) gauge symmetries with charges not listed in table 1 but given in
appendix C.

6We stress that superpotential operators invariant under these symmetries also respect all string-theory
selection rules [54–63].
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each term. Note that by plain effective-field-theory (EFT) power counting, the neutrino
Majorana mass term induced by the flavon VEV is hierarchically larger than the Dirac
masses for all other quarks and leptons. A see-saw mechanism is thus a prediction of the
model. In addition, we remark that down-quark and charged-lepton Yukawa couplings,
as well as the Majorana mass term, all are accompanied by the same flavon triplet ϕe,
suggesting that our model exhibits a particular kind of bottom-tau unification.

Owing to the highly constraining symmetries, all superpotential terms in eq. (2.15)
have the generic structure

Φ0 . . .Φ0 Ŷ
(1)(T ) Φ1

−2/3 Φ2
−2/3 Φ3

−2/3 , (2.16)

where the triplets Φ1
−2/3 and Φ2

−2/3 denote SM matter fields, Φ3
−2/3 is a flavon triplet, and

the series of Φ0’s includes a varying number of flavon singlets and the MSSM Higgs fields.
Considering that the superpotential must transform as a nontrivial singlet 1′ of ∆(54),
see ([7], table 2), the explicit form of each mass term can be written as [2, 4]

(
Φ1
−2/3

)T
M(T, c,Φ3

−2/3) Φ2
−2/3 , (2.17)

where

M(T, c,Φ3
−2/3) := c



Ŷ2(T )X − Ŷ1(T )√
2

Z − Ŷ1(T )√
2

Y

− Ŷ1(T )√
2

Z Ŷ2(T )Y − Ŷ1(T )√
2

X

− Ŷ1(T )√
2

Y − Ŷ1(T )√
2

X Ŷ2(T )Z


. (2.18)

Here, we have expressed the three components of the flavon triplet as Φ3
−2/3 = (X,Y, Z)T

and introduced c to denote the overall coefficient of the terms.
As an example, let us illustrate here how the charged lepton mass matrix Me obeys the

general texture described by eq. (2.18). For the charged lepton sector we find the following
term in the superpotential of eq. (2.15)

We = ce φ
0 φ0

e Hd
(
Ŷ (1)(T ) ē ` ϕe

)
1′
. (2.19)

Here, we have explicitly included the symmetry-invariant overall coefficient ce, which we
take as a free parameter because its direct determination by string computations is still
beyond our reach. After inserting the VEV vd of the Hd Higgs field as well as all flavon
VEVs, the mass matrix is given by

Me = M(T,Λe, 〈ϕ̃e〉) , with Λe = ce vd 〈φ0〉 〈φ0
e〉Λϕe (2.20)

denoting the overall global scale which, effectively, is the only dimensionful parameter of
the mass matrix. Here we have introduced the dimensionless flavon triplet ϕ̃e and its VEV,
defined by

ϕe =: Λϕe ϕ̃e with ϕ̃e := (ϕ̃e,1, ϕ̃e,2, 1)T . (2.21)

– 8 –
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Without loss of generality, we can assume that the components of the (dimensionless)
flavon triplet VEV have the hierarchical structure7

0 ≤ |〈ϕ̃e,1〉| ≤ |〈ϕ̃e,2〉| ≤ 1 . (2.22)

Likewise, the neutrino masses are determined by the superpotential terms

Wν = cD φ
0Hu

(
Ŷ (1)(T ) ν̄ ` ϕν

)
1′

+ cM φ0
M

(
Ŷ (1)(T ) ν̄ ν̄ ϕe

)
1′
, (2.23)

where we have explicitly included the symmetry-invariant coefficients cD and cM, and
indicated that we have to take the ∆(54) nontrivial singlet contraction 1′ of each term.
Wν predicts a type-I see-saw mechanism for neutrino masses. Hence, the light neutrino
mass matrix is given by

Mν = −1
2 MDM

−1
M MT

D , (2.24)

where
MD = M(T,ΛD, 〈ϕ̃ν〉) and MM = M(T,ΛM, 〈ϕ̃e〉) (2.25)

are the Dirac and Majorana neutrino mass matrices which again follow the general
form (2.18). Analogously to eq. (2.21), we have defined the dimensionless flavon triplet ϕ̃ν
through

ϕν =: Λϕν ϕ̃ν with ϕ̃ν := (ϕ̃ν,1, ϕ̃ν,2, 1)T . (2.26)

From the structure of the superpotential contribution (2.23) and the see-saw neutrino
masses (2.24), we see that the overall scale of the light neutrino mass matrix is given by

Λν = Λ2
D

ΛM
=
(
cD vu 〈φ0〉Λϕν

)2
cM 〈φ0

M〉Λϕe
, (2.27)

where vu stands for the VEV of the up-type Higgs Hu.
In complete analogy with the charged-lepton sector, from the Yukawa couplings for

the up and down-quark sectors, we find that the corresponding mass matrices follow the
structure of eq. (2.18) depending as follows on the different parameters

Mu = M(T,Λu, 〈ϕ̃u〉) with Λu = cu vu 〈φ0〉 〈φ0
u〉Λϕu , (2.28a)

Md = M(T,Λd, 〈ϕ̃e〉) with Λd = cd vd 〈φ0〉 〈φ0
d〉Λϕe . (2.28b)

Analogously to the previous cases, cu and cd denote the unconstrained symmetry-invariant
coefficients of the up and down-quark Yukawa couplings, respectively. Furthermore,

ϕu =: Λϕu ϕ̃u with ϕ̃u := (ϕ̃u,1, ϕ̃u,2, 1)T . (2.29)

In summary, the superpotential contributions to the lepton masses include the follow-
ing parameters: the global mass scales Λe for charged leptons and Λν for neutrinos, the
VEV 〈T 〉 of the complex Kähler modulus, and the free components, 〈ϕ̃e,1〉, 〈ϕ̃e,2〉, 〈ϕ̃ν,1〉

7Such an ordering can always be achieved for exactly one flavon VEV by using the symmetry transfor-
mations of the S3 subgroup of ∆(54).
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and 〈ϕ̃ν,2〉, of the flavon VEVs. As we shall see, a subtle interplay among the modulus and
flavon VEVs can explain the observed lepton-mass hierarchies (cf. section 3.2) and even
yield a fit of lepton flavor data with interesting predictions (cf. section 4). We will see that
it suffices to consider real flavon VEVs to arrive at those results, which implies that the
modulus VEV 〈T 〉 is the only source of CP violation in the lepton sector. Finally, since we
aim at a global fit of flavor in both lepton and quark sectors, note that up-quark Yukawa
couplings introduce additional parameters: the global up and down-quark mass scales
Λu and Λd as well as the flavon components 〈ϕ̃u,1〉 and 〈ϕ̃u,2〉. Down-quark Yukawas in
the superpotential of our model, eq. (2.15), share the charged-lepton flavon ϕ̃e, avoiding
extra parameters but also imposing thereby severe constraints. In fact, these restrictions
challenge the compatibility of our model with observations. Fortunately, as we shall see in
section 5, this issue can be addressed by including Kähler corrections, which we now discuss.

2.5 Kähler corrections to the mass matrices

In contrast to the most common assumption of BU model building, the Kähler potential is,
in general, nontrivial.8 In string-derived TD models, we have to include the phenomenolog-
ical consequences of this fact. At leading order in the EFT expansion of the matter fields
and flavons, the Kähler potential of the model introduced in section 2.1 is given by [2]

K ⊃ − log(−iT + iT̄ )

+
∑
Ψ

[
(−iT + iT̄ )−2/3 + (−iT + iT̄ )1/3|Ŷ (1)(T )|2

]
|Ψ|2

+
∑
ϕ

[
(−iT + iT̄ )−2/3 + (−iT + iT̄ )1/3|Ŷ (1)(T )|2

]
|ϕ|2 .

(2.30)

Here we again suppress all symmetry-invariant coupling parameters, and the respective
summations run over all MSSM matter fields, Ψ ∈ {q, ū, d̄, `, ē, ν̄}, and the various flavon
triplets of the model, ϕ ∈ {ϕe, ϕu, ϕν , . . .}, see table 1. Interestingly, the canonical form of
the Kähler potential at this level is preserved in models endowed with eclectic symmetries
because matter fields are charged under a traditional flavor symmetry [2], ∆(54) in our
case, avoiding the loss of predictivity that challenges models exclusively based on modular
symmetries [38]. Consequently, corrections to this canonical Kähler potential only appear
if the traditional flavor symmetry is spontaneously broken by flavons. Couplings between
flavons and matter fields induce additional terms in the Kähler potential of the form

K ⊃
∑
Ψ,ϕ

[
(−iT + iT̄ )−4/3

∑
a

|Ψϕ|21,a + (−iT + iT̄ )−1/3
∑
a

|Ŷ (1)(T )Ψϕ|21,a

]
, (2.31)

where the subindex 1, a refers to the ath invariant singlet contraction with respect to the
whole eclectic flavor symmetry. Since the terms in eq. (2.31) are proportional to the ratio of
flavon VEVs to the fundamental scale, they represent small corrections to the leading-order

8The phenomenological consequences of noncanonical contributions to the Kähler potential have been
considered in BU models of traditional flavor symmetries (see [64, 65] for a special case and [66, 67] for the
general case) as well as modular flavor symmetries [27, 38].
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Kähler potential (2.30). For simplicity,9 we restrict ourselves here to the modular forms
Ŷ (1)(T ) that naturally appear also in the superpotential W.

Since the (Planck suppressed) next-to-leading order terms, given in eq. (2.31), can
yield noncanonical contributions if the flavons develop VEVs, let us briefly discuss the con-
sequences of such contributions. As pointed out in [38], noncanonical terms can be relevant
for the mass matrices of a model. Hence, studying the Kähler potential is important to
correctly determine the phenomenology of a model. In order to canonically normalize the
fields, the Kähler metric associated with Ψ

Kij = ∂2K

∂Ψi ∂Ψ∗j
(2.32)

needs to be diagonalized, such that

Kij =
(
U †K D

2 UK
)
ij
, (2.33)

where UK is unitary and D is diagonal and positive. Then, the canonically normalized
fields Ψ̂ read

Ψ̂ = DUK Ψ . (2.34)

Assuming a superpotential mass term(
Ψ(1)

)T
M Ψ(2) , (2.35)

we need to consider the correct normalization of each field, i.e.

Ψ̂(1) = D(1) U
(1)
K Ψ(1) and Ψ̂(2) = D(2) U

(2)
K Ψ(2) . (2.36)

When applying these transformations to the mass term one obtains(
Ψ̂(1)

)T
M̂ Ψ̂(2) , (2.37)

with a mass matrix for the canonically normalized (i.e. “physical”) fields that reads

M̂ =
(
D(1)

)−1 (
U

(1)
K

)∗
M
(
U

(2)
K

)† (
D(2)

)−1
. (2.38)

Note that since D(1) and D(2) are not unitary, the normalization of the right-handed fields
does affect the mixing matrices and should, therefore, not be neglected. That is, M̂ M̂ †

depends on the normalization of both fields, Ψ(1) and Ψ(2).
In our specific case, the mass matrices (2.20), (2.24), and (2.28) obtained solely from the

superpotential will pick up corrections from the noncanonical Kähler potential eq. (2.31).
Since both, the superpotential and Kähler potential, are expansions in powers of fields, we
may also analyze the corrections in a perturbative manner. Let us consider the part KΨ ⊂

9In principle, one might also consider contributions from modular forms with higher modular weights.
These forms are powers of Ŷ (1)(T ) and, hence, we expect that the term considered in eq. (2.31) captures
the structure of the corrections.
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K associated with a field Ψ. Explicitly introducing the symmetry-invariant coefficients κ(0)

and κ(Y ) in eq. (2.30), the leading order, i.e. bilinear, contributions are given by

KΨ ⊃
[
(−iT + iT̄ )−2/3 κ(0) + (−iT + iT̄ )1/3 κ(Y ) |Ŷ (1)(T )|2

]
|Ψ|2 . (2.39)

These terms have already been studied in [2]. It was found that the traditional flavor sym-
metry restricts them in such a strong manner that the Kähler metric becomes proportional
to the identity matrix, i.e.

K
(id)
ij = χ δij , (2.40)

where δij denotes the Kronecker delta and

χ :=
[
(−iT + iT̄ )−2/3 κ(0) + (−iT + iT̄ )1/3 κ(Y ) |Ŷ (1)(T )|2

]
. (2.41)

Therefore, the Kähler potential is indeed (apart from normalization) canonical at leading
order. That is, there are no corrections to the structure of the mass matrices at this order
(as a result of the traditional flavor symmetry).

The next-to-leading order Kähler contributions do yield corrections to the structure of
the mass matrices. From eq. (2.31), restoring coefficients, the relevant terms of the Kähler
potential are

KΨ⊃
∑
ϕ

[
(−iT + iT̄ )−4/3

∑
a

ζ(ϕ)
a |Ψϕ|21,a + (−iT + iT̄ )−1/3

∑
a

ζ(Y ϕ)
a |Ŷ (1)(T )Ψϕ|21,a

]
,

(2.42)
where the first sum runs over all flavon triplets ϕ of the theory that develop VEVs, and the
second sum over a runs over all invariant singlet contractions of the tensor products. The
coefficients ζ(ϕ)

a and ζ(Y ϕ)
a cannot be fixed by symmetry. It may, however, be argued that

they should be O(1). The explicit tensor products are given in appendix A. Some of them
yield canonical contributions to the Kähler metric, proportional to the identity matrix.
These can be absorbed in the overall normalization and, hence, would only modify χ.
However, other terms, generically denoted as K(non−id)

ij , yield noncanonical contributions
to the Kähler metric, which will be essential for phenomenology, as we will see below.
These noncanonical terms depend on the flavon VEVs and are given in eq. (A.9).

Hence, the Kähler metric of a generic matter field is given by a canonical contribution
K

(id)
ij and various noncanonical terms,

Kij = K
(id)
ij +

∑
ϕ

K
(non−id)
ij . (2.43)

Using the matrices Aij and Bij which are functions only of the flavon triplets ϕ and
the modulus T , and whose explicit forms are given in eqs. (A.4) and (A.8), the Kähler
metric can be parametrized as10

Kij ≈ χ
(
δij +

∑
ϕ

λϕ (Aij(ϕ) + κϕBij(ϕ))
)
. (2.44)

10The relation (2.44) is approximate because, as discussed in appendix A, χ receives small contributions
from the Kähler corrections that we neglect.
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We note that the overall factor χ can (and will) be eliminated by a simple rescaling of Ψ.
Here, λϕ is the ratio

λϕ = (−iT + iT̄ )−2/3 |Ŷ (1)(T )|2 ζ(Y ϕ)
1 + (−iT + iT̄ )−1 ζ

(ϕ)
1

κ(Y ) |Ŷ (1)(T )|2 + (−iT + iT̄ )−1 κ(0)
, (2.45)

which parametrizes the relative size of the correction with respect to the leading-order
term (2.39). In addition,

κϕ = ζ
(Y ϕ)
2

|Ŷ (1)(T )|2 ζ(Y ϕ)
1 + (−iT + iT̄ )−1 ζ

(ϕ)
1

(2.46)

parametrizes the ratio of the two linearly independent corrections associated with Aij(ϕ)
and Bij(ϕ). In the limit T → i∞, up to O(1) factors, λϕ scales as λϕ ≈

(
−iT + iT̄

)−2/3

while κϕ is O(1) just as |Ŷ (1)(T )|. This limit will be important in our phenomenological
considerations below.

Importantly, note that all occurring flavon triplet representations ϕ enter the Kähler
metric in exactly the same way, cf. eq. (2.44). Hence, in order to capture the effect of all
flavons on the Kähler metric in the most efficient way without parameter degeneracies, we
define two effective flavons

ϕ
(A)
eff =: Λ

ϕ
(A)
eff

ϕ̃
(A)
eff with ϕ̃

(A)
eff :=

(
ϕ̃

(A)
eff,1, ϕ̃

(A)
eff,2, 1

)T
, (2.47)

and
ϕ

(B)
eff =: Λ

ϕ
(B)
eff

ϕ̃
(B)
eff with ϕ̃

(B)
eff :=

(
ϕ̃

(B)
eff,1, ϕ̃

(B)
eff,2, 1

)T
. (2.48)

These are sufficient to represent all ϕ’s in the sense that, by definition,∑
ϕ

λϕAij(ϕ) =: λϕeff Aij(ϕ̃
(A)
eff ) , (2.49a)

∑
ϕ

λϕ κϕBij(ϕ) =: λϕeff κϕeff Bij(ϕ̃
(B)
eff ) . (2.49b)

The expansion parameter λϕeff will now be roughly (−iT + iT̄ )−2/3∑
ϕ Λ2

ϕ in the T → i∞
region, where we used

ϕ =: Λϕ ϕ̃ with ϕ̃ := (ϕ̃1, ϕ̃2, 1)T , (2.50)

while κϕeff should still be O(1).

3 Eclectic breaking and charged-lepton mass hierarchies

Let us now turn to the spontaneous breaking of the eclectic flavor symmetry in detail
and its consequences for the model introduced in section 2. We study the breaking in
two stages. First, the modulus T is stabilized at or near to a fixed point in moduli space
where the traditional flavor symmetry is enhanced; and second, one or more flavon fields
develop VEVs.
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Breaking by 〈T 〉. As we have studied before [7], depending on the value of 〈T 〉, the
∆(54) traditional flavor symmetry is enhanced to the following two linearly realized unified
flavor groups:

Ω(2) 〈T 〉=i−−−→ Ξ(2, 2) ∼= [324, 111] or Ω(2) 〈T 〉=1,i∞,ω−−−−−−−→ H(3, 2, 1) ∼= [486, 125] . (3.1)

In these cases, also a ZCP2 CP-like symmetry is left unbroken. Including this symmetry, the
enhanced traditional symmetry at the fixed points in moduli space are either H(3, 2, 1) o
ZCP2

∼= [972, 469] at 〈T 〉 = 1, i∞, ω or Ξ(2, 2) oZCP2
∼= [648, 548] at 〈T 〉 = i.

Breaking by flavon VEVs. In our model, all (matter and) flavon fields transform
as triplets 32 of the traditional flavor symmetry ∆(54) and have modular weight −2/3, see
table 1. This scenario significantly reduces the number of possible breaking patterns. At
the moduli point 〈T 〉 = i, the possible breakings read [7]

Z2
〈Φ−2/3〉←−−−−− Ξ(2, 2)

〈Φ−2/3〉−−−−−→ Z
(i)
3 , i = 1, 2 , (3.2)

where the two different Z(i)
3 correspond to inequivalent Z3 subgroups of Ξ(2, 2), associated

with different directions of flavon VEVs. On the other hand, at 〈T 〉 = 1, i∞, ω, all possible
breaking patterns are described by

Z6
〈Φ−2/3〉←−−−−− H(3, 2, 1)

〈Φ−2/3〉−−−−−→ Z
(i)
3 , i = 1, 4 or (3.3a)

H(3, 2, 1)
〈Φ−2/3〉−−−−−→ Z

(2)
3 ×Z

(3)
3

〈Φ−2/3〉−−−−−→ Z
(3)
3 . (3.3b)

Whether or not the ZCP2 CP-like symmetry is broken, depends not only on the structure
of the flavon VEVs discussed here, but also on their global phases, cf. [7]. Nevertheless,
considering the flavon VEVs to be real ensures that the ZCP2 CP-like symmetry is preserved
for 〈T 〉 = i∞.

3.1 A pattern of eclectic breaking

In this work we choose the modulus to be fixed in the vicinity of 〈T 〉 = i∞, i.e. we assume
that moduli stabilization leads to H(3, 2, 1) as unified flavor group. Hence, only the break-
ing patterns described in eqs. (3.3) are relevant in our case. Furthermore, we focus on the
breaking pattern described by eq. (3.3b). In order to better understand this breaking, let us
consider the H(3, 2, 1) generators and the flavon VEVs that lead to this breaking pattern.
The generators of the unified flavor group at 〈T 〉 = i∞ are {A,B,C,T, R̂, CP}; the modular
generator S is excluded because it does not leave the modulus invariant. For generic flavon
fields ϕ of type Φ−2/3, such as those listed for our model in table 1, the representations of
the generators are given by the traditional group matrices (2.2), ρ(T) in eq. (2.6) (including
the automorphy factor equals one), and ρ(R̂) = exp(2πi/9)13 from eq. (2.7).

As before, it is convenient to use the dimensionless flavon ϕ̃ instead of ϕ, which are
related by eq. (2.50), since an overall factor would not affect the breaking pattern of the
eclectic flavor symmetry. The first step in the breaking chain (3.3b) is achieved by setting
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Ω(2) H(3, 2, 1) Z
(2)
3 ×Z

(3)
3 Z

(3)
3

∅

∅

〈T 〉 = i∞ 〈ϕ̃〉 =

0
0
1

 〈ϕ̃〉 =

 0
λ2
1


〈ϕ̃〉 =

λ1
λ2
1


ε = e2πi〈T 〉 6= 0

Figure 1. Breaking pattern of the eclectic flavor symmetry Ω(2) of a T2/Z3 orbifold model
triggered by the VEVs of the modulus T and (dimensionless) flavons ϕ̃. All flavons transform in
the 32 representation of ∆(54), see table 1.

the dimensionless flavon VEV 〈ϕ̃〉 = (0, 0, 1)T. This VEV is left invariant only by the
generators

ρ(ABA2) =

ω 0 0
0 ω2 0
0 0 1

 and ρ(T) =

ω
2 0 0

0 1 0
0 0 1

 , (3.4)

i.e. one traditional and one modular generator. Both of them are of order three and
generate the group Z

(2)
3 × Z

(3)
3 . In a second step, one can choose a misalignment of the

flavon VEV 〈ϕ̃〉 = (0, λ2, 1)T with λ2 6= 0, which breaks the traditional Z(2)
3 symmetry

generated by ρ(ABA2), leaving only the modular Z(3)
3 symmetry unbroken. Finally, Z(3)

3
can be broken too by perturbing either the modulus VEV or the flavon VEV. In moduli
space, one must simply get slightly away from the moduli enhanced point 〈T 〉 = i∞, such
that ε := 〈q〉 = exp(2πi〈T 〉) is small but does not vanish. Note that this perturbation
breaks the ZCP2 CP-like symmetry too. In flavon space, Z(3)

3 is broken by considering the
VEV 〈ϕ̃〉 = (λ1, λ2, 1)T, which is no longer left invariant by ρ(T). This breaking process is
illustrated in figure 1.

Using this information, we realize that some useful hierarchies can arise in the model by
choosing appropriately the parameters ε, λ1 and λ2. From our previous discussion, we notice
that the vanishing of any of these parameters corresponds to a symmetry enhancement at
certain points in moduli and flavon space, where the symmetries displayed in figure 1
are left intact. If the VEV parameters are small, i.e. |ε|, |λ1|, |λ2| � 1, one can find
that the subgroups Z(2)

3 and Z
(3)
3 of H(3, 2, 1) are approximately realized. If, in addition,

those parameters have very different values, then the three groups may correspond to
hierarchically different symmetries of the model, providing thereby a plausible explanation
of the nontrivial textures of masses and mixing of particle physics. We shall focus in the
following on the possibility of arriving at a hierarchical mass structure in both the quark
and lepton sector of the SM. For phenomenological reasons, we shall assume that the flavon
VEVs follow this symmetry breaking pattern and satisfy

0 < |λ1| < |λ2| < 1 . (3.5)

Depending on the sector, we will consider the relevant flavon ϕ from table 1. For example,
in the lepton sector, the flavon fields ϕ that we can use are the ∆(54) triplets ϕe and ϕν .
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3.2 Hierarchical masses from approximate symmetries

Let us now study the hierarchical structure of fermion masses that arise in the vicinity of
the symmetry-enhanced points. Following the discussion of [68, 69], we make use of the
following relation valid for any n× n complex matrix M :∑

i1<···<ip
m2
i1 · · · m

2
ip =

∑
|detMp×p|2 , (3.6)

where mi are the singular values of M , p = 1, . . . , n is fixed, and the sum on the right-hand
side goes over all possible p×p submatricesMp×p ofM . This relation can be used to extract
the physical masses mi, i ∈ {I, II, III}, as singular values of the 3× 3 mass matrices of our
model. Moreover, we shall assume the observed hierarchical pattern mI � mII � mIII,
which implies

m2
III ≈

∑
i,j

|Mij |2 = TrM †M , (3.7a)

m2
IIm

2
III ≈

∑
|detM2×2|2 ⇒ m2

II ≈
∑
|detM2×2|2

TrM †M , (3.7b)

m2
I m

2
IIm

2
III = |detM |2 ⇒ m2

I ≈
|detM |2∑
|detM2×2|2

. (3.7c)

3.2.1 Charged-lepton and quark mass hierarchies

The explicit forms of the charged-lepton and quark mass matrices that arise from the
superpotential (2.15) are given in eqs. (2.20) and (2.28), respectively. We see that the
resulting mass textures are equal for charged leptons, up-type quarks, and down-type
quarks, but the specific masses in each sector depend on the values of the VEV parameters
of the respective flavons. Hence, the results derived in this section apply to all three sectors.

For a generic sector, in terms of the small VEV parameters λ1, λ2, and ε, the structure
of the mass matrices reads

M(〈T 〉,Λ, 〈ϕ〉) = Λ

 λ1 3 ε1/3 3λ2 ε
1/3

3 ε1/3 λ2 3λ1 ε
1/3

3λ2 ε
1/3 3λ1 ε

1/3 1

 + O(ε) . (3.8)

Here we have used the q-expansions (2.11) for the modular forms Ŷ1 and Ŷ2, valid in our
case because |ε| = |〈q〉| � 1 in the vicinity of 〈T 〉 = i∞. Using eqs. (3.7) and taking
|ε|, |λ1|, |λ2| � 1, we identify the physical masses

m2
III ≈ TrM †M ≈ Λ2 , (3.9a)

m2
II ≈

∑
|detM2×2|2

TrM †M ≈ Λ2
(
|λ1|2 + |λ2|2 + 18 |ε2/3|

)
, (3.9b)

m2
I ≈

|detM |2∑
|detM2×2|2

≈ Λ2 |λ1λ2 − 9ε2/3|2
|λ1|2 + |λ2|2 + 18 |ε2/3|

. (3.9c)
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Depending on the relations among λ1, λ2, and ε, our model leads to three possible mass
hierarchies:

(mI, mII, mIII) ≈ Λ



(
3√
2 |ε

1/3|, 3
√

2 |ε1/3|, 1
)

for |λ1|2 < |λ2|2 � |ε2/3| ,

(|λ1|, |λ2|, 1) for |ε2/3| � |λ1λ2| � |λ2|2 ,(
9
∣∣∣ ε2/3λ2

∣∣∣ , |λ2|, 1
)

for |λ1λ2| � |ε2/3| � |λ2|2 .

(3.10)

Recall that we assume |λ1| < |λ2| < 1 and aim at the observed mass hierarchies mI �
mII � mIII. Clearly, the first mass configuration in eq. (3.10) does not satisfy the condition
of hierarchical masses. The other two scenarios are compatible with our assumptions.

In the valid cases, we find the mass ratios

mI
mII
≈

∣∣∣∣λ1
λ2

∣∣∣∣ and mII
mIII

≈ |λ2| for |ε2/3| � |λ1λ2| � |λ2|2 , (3.11a)

mI
mII
≈ 9

∣∣∣∣∣ε2/3λ2
2

∣∣∣∣∣ and mII
mIII

≈ |λ2| for |λ1λ2| � |ε2/3| � |λ2|2 . (3.11b)

Interestingly enough, in both cases the ratio of the heavier masses depends only on |λ2| that,
as we saw in section 3.1, measures the amount by which the Z

(2)
3 approximate symmetry

is broken. On the other hand, the hierarchy mI/mII is governed by the breaking of the
modular Z(3)

3 approximate symmetry,11 which is broken either by the flavon parameter λ1
or by the modulus parameter ε. Since in string constructions both moduli and flavons
acquire VEVs roughly around the same scales, we consider the hierarchy pattern described
by eq. (3.11b) to be more appropriate to our scenario.

Let us concentrate now on the lepton sector. Applying eq. (3.11b) to charged leptons
(with mI → me, mII → mµ and mIII → mτ ) and comparing with their measured mass
values (see section 4 for the experimental values of lepton observables), we can fit the
flavon VEV as

〈ϕ̃e,2〉 = |λe,2| ≈
mµ

mτ
= 0.0586 . (3.12)

Analogously, the modulus VEV is constrained to be approximately

|ε1/3| ≈
√
|λe,2|2

9
me
mµ
≈ 0.00134 ⇒ Im 〈T 〉 ≈ 3.16 (3.13)

in order to yield the correct hierarchy for the two light charged leptons. We shall see
in section 4 that this approximate analytical result is compatible with a more complete
numerical analysis.

As already mentioned, the uncovered pattern for charged leptons applies equally in
our model also to the up and down-quark sector separately. This symmetric structure has
its root in the spectrum of our model, see table 1, which leads to the superpotential (2.15).
We notice that the only difference among the Yukawas is that the flavons are different
fields but have identical quantum numbers. Even more, the appearance of ϕe in the down-
quark and charged-lepton Yukawas reveals identical mass relations in both sectors. These

11This situation is similar to the BU scenarios [29, 69, 70].
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symmetries are interesting but challenge the phenomenological viability of our model. As
we shall shortly see, corrections to the Kähler potential arising from flavon VEVs alleviate
this issue.

3.2.2 Neutrino mass hierarchies

Light neutrino masses occur in our model via a seesaw mechanism. The corresponding
light neutrino mass matrix Mν has been defined in eq. (2.24). In order to write down the
explicit mass matrix, we need a closed form expression for the inverse of the Majorana
mass matrix eq. (2.25). This is up to an overall factor given by

M−1
M ∼

 λe,2 −3 ε1/3 −3λ2
e,2 ε

1/3

−3 ε1/3 λe,1 −3λ2
e,1 ε

1/3

−3λ2
e,2 ε

1/3 −3λ2
e,1 ε

1/3 λe,1 λe,2 − 9 ε2/3

 + O(λe,1 ε
2/3) . (3.14)

Since two flavons appear in the light neutrino mass matrix, we have to distinguish between
the components λe,1, λe,2 from 〈ϕ̃e〉, and λν,1, λν,2 from 〈ϕ̃ν〉 in the following. The structure
of the light neutrino mass matrix is then given by

Mν ∼

 ∆1 Σ3 ε
1/3 Σ2 ε

1/3

Σ3 ε
1/3 ∆2 Σ1 ε

1/3

Σ2 ε
1/3 Σ1 ε

1/3 ∆3

 + O(ε2/3) , (3.15)

where

∆1 = λ2
ν,1 λe,2 , ∆2 = λe,1λ

2
ν,2 , ∆3 = λe,1λe,2 , (3.16)

and

Σ1 = 3λe,1
(
λν,1λν,2 + λν,1λe,2 − λe,1λν,2

)
, (3.17a)

Σ2 = 3λe,2
(
λν,1λν,2 − λν,1λe,2 + λe,1λν,2

)
, (3.17b)

Σ3 = 3
(
− λν,1λν,2 + λν,1λe,2 + λe,1λν,2

)
. (3.17c)

By using eq. (3.7), one might find approximate (rather long) expressions for the neu-
trino masses, which depend on the various hierarchy configurations of the small parameters
λi and ε. A full classification of the large number of these hierarchies is not very enlighten-
ing. Instead, let us focus here on the more appealing scenario given by the VEV relations

|λe,1λe,2| ≈ |λν,1|2 � |λe,1| � |λν,1| ≈ |ε
1/3| � |λe,2| � |λν,2| ≈ 1 . (3.18)

For this specific case, the neutrino masses, up to their overall mass scale, approximately
read

(m1, m2, m3) ∼
(

9
|ε2/3 λ2

ν,1|
|λe,1|

, |λe,1 λe,2|, |λe,1|
)
, (3.19)

where we still satisfy that m1 � m2 � m3. The mass ratios turn out to be

m1
m2
≈ 9

∣∣∣∣∣ε2/3λe,1

∣∣∣∣∣ and m2
m3
≈ |λe,2| . (3.20)
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Hence, just as in the charged-lepton sector, the hierarchies in the neutrino masses are
governed by the amount by which the Z

(2)
3 × Z

(3)
3 approximate symmetry is broken. In-

deed, the relation between m2 and m3 coincides approximately with the hierarchy of the
heavier charged leptons, eq. (3.12). Furthermore, a direct consequence of the VEV con-
figuration (3.18) is that the difference between the lightest neutrino m1 and m2 is smaller
than the difference between the heaviest neutrino m3 and m2, i.e.

m2 −m1
m3 −m2

≈ |λe,2| < 1 , (3.21)

which corresponds to a normal-ordered neutrino spectrum. As the subsequent numerical
analysis will show, the specific VEV relations of eq. (3.18) are in fact compatible with the
best-fit scenario that allows us to reproduce all observations in the lepton sector.

4 Numerical analysis of the lepton sector

Let us now fit the parameters of our model such that it reproduces observations in the
lepton sector. We aim at the experimental observables summarized in table 3. In the top
block, we show the current values of the mass ratios and 1σ errors for the charged leptons,
evaluated at the GUT scale (for the running of these parameters, see e.g. [71]), assuming
tan β = 10, MSUSY = 10TeV, and η̄b = 0.09375, as described in [33, 73]. In the bottom
block, the best-fit values and 1σ errors of neutrino-oscillation parameters are presented, as
given by the global analysis NuFIT v5.1 [72]. These values include data on atmospheric
neutrinos provided by the Super-Kamiokande collaboration. The table contains only data
for normal ordering because a successful fit of our model with inverted ordering was not
possible. Note that the oscillation parameters are given at the low scale. It is common in
the literature on modular flavor symmetries to assume that the running from low energies
to the GUT scale of these parameters is negligible. This is justified by arguing that the
effects of the running would be smaller than the experimental errors. We shall adopt this
practice here.

The lepton sector of our model depends on a set x of 7 parameters, i.e.

x = {Re 〈T 〉, Im 〈T 〉, 〈ϕ̃e,1〉, 〈ϕ̃e,2〉, 〈ϕ̃ν,1〉, 〈ϕ̃ν,2〉, Λν} , (4.1)

which include the VEVs of the two real components of the modulus T , and the VEVs of the
four nontrivial (real) components of the flavon triplets ϕe and ϕν , and the neutrino mass
scale Λν . In addition, one might include the overall mass scale Λe of charged leptons, but
we omit it as we shall fit only the mass ratios of that sector. For each choice of the values
of the parameters (4.1) one can numerically diagonalize the charged-lepton and neutrino
mass matrices, eqs. (2.20) and (2.24). From this process one can then extract the physical
masses as well as the mixing angles and CP violation phase(s) that parametrize the lepton
mixing matrix.12

12We use the PDG convention for the parametrization of the lepton mixing matrix [74].
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observables best fit values
me/mµ 0.00474± 0.00004
mµ/mτ 0.0586+0.0004

−0.0005

∆m2
21/10−5 [eV2] 7.42+0.21

−0.20

∆m2
31/10−3 [eV2] 2.510+0.027

−0.027

sin2 θ12 0.304+0.012
−0.012

sin2 θ13 0.02246+0.00062
−0.00062

sin2 θ23 0.450+0.019
−0.016

δ`CP/π 1.28+0.20
−0.14

Table 3. Observed masses and mixing angles of the lepton sector. We show the best fit and 1σ
errors for the charged-lepton mass ratios at the GUT scale, assuming tan β = 10, MSUSY = 10TeV,
and η̄b = 0.09375; taken from [71]. We also present the best-fit values and 1σ errors for the neutrino
oscillation parameters given by the global analysis NuFIT v5.1 [72] with Super-Kamiokande data
for normal ordering.

As a quantitative measurement for the goodness of our fit, we perform a χ2 analysis.
We define a χ2 function

χ2(x) =
∑
i

∆χ2
i (x) , (4.2)

where we sum over charged-lepton mass ratios and all observables listed in table 3. For
the charged-lepton mass ratios we use

∆χi(x) = µi,exp − µi,model(x)
σi

, (4.3)

where µmodel is the prediction of the model and µexp and σ are its corresponding experi-
mental best-fit value and the size of its 1σ error, respectively. For the neutrino-oscillation
parameters, we use the profiles of the one dimensional ∆χ2 projections obtained by the
global analysis NuFIT v5.1.13 This makes a difference especially for sin2 θ23 and δ`CP , as
can be directly appreciated from figure 2. For instance, by using a conventional ∆χ2 ob-
tained from eq. (4.3), one would underestimate the goodness of the fit by multiple sigma
ranges for the second octant of θ23 and also for small values of δ`CP . For sin2 θ23 < 0.45 the
goodness of the fit would be overestimated. We included δ`CP when calculating χ2 because,
even though no values could be excluded with 5σ by now, experiments do seem to favor
some values of δ`CP over others. We numerically minimize the function χ2(x) as described
in appendix B.

This numerical scan yields a successful fit to current experimental data with an overall
χ2 = 0.08. The regions in moduli space that yield good fits, with χ2 ≤ 25, are depicted
in figure 3. As we see, there are multiple clusters that yield good fits. Interestingly, they
have roughly the same shape but are shifted by T → T + 3/4 while also 〈ϕ̃e,1〉 → −〈ϕ̃e,1〉,

13The data for the one dimensional ∆χ2 projections is conveniently accessible on the NuFIT website [72].

– 20 –



J
H
E
P
0
9
(
2
0
2
2
)
2
2
4

0.35 0.40 0.45 0.50 0.55 0.60 0.65
sin2 θ23

0

10

20

30

40

50
∆
χ

2
actual error determined by NuFit v5.1

presumed error by conventional χ2 analysis

(a)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
δ`CP/π

0

5

10

15

20

25

∆
χ

2

actual error determined by NuFit v5.1

presumed error by conventional χ2 analysis

(b)

Figure 2. Comparison of the χ2 profile determined by the global analysis NuFIT v5.1 [72] and the
presumed profile computed with eq. (4.3) in a conventional χ2 analysis for (a) sin2 θ23 and (b) δ`

CP .

Figure 3. Regions in the fundamental domain of Γ(3) that yield fits with χ2 ≤ 25. Note that a
mapping into the fundamental domain of SL(2,Z) with a modular transformation γ ∈ T ′ is not
possible for this model, since we require the flavon VEVs to be real, i.e. to respect the CP-like
symmetry. The analogous flavon VEVs after performing a T ′ transformation would in general be
complex. The colors green, yellow, and orange may be interpreted as the 1σ, 2σ, and 3σ confidence
levels, while the opaque red fades out to white until the 5σ barrier is reached. Note that there are
two disconnected 1σ regions on the right-hand side plot. In the right green region, the best point is
〈T 〉 = 0.02279 + 3.195 i, which yields χ2 = 0.08. In the left green region, 〈T 〉 = −0.04283 + 3.139 i
yields χ2 = 0.45. Therefore, the best-fit value of the model lies in the right green region.

〈ϕ̃ν,1〉 → −〈ϕ̃ν,1〉. Note that this transformation is not part of the eclectic flavor group.
It therefore turns out to be an accidental approximate symmetry of the model. This
symmetry originates from the properties under modulus shifts of the modular forms of
weight 1 that appear in our model. Namely, T → T + 3/4 results in Ŷ1(T ) → −i Ŷ1(T ),
up to O(q) corrections, as shown in eq. (2.13). Moreover, every cluster has two 1σ (green)
regions. As we shall shortly see, this bimodality is inherited by most observables. For the
two green regions of the cluster in the fundamental domain of SL(2,Z), the best-fit values
and 1σ intervals for the parameters x of the model are listed in table 4. Note that the
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right green region left green region
parameter best-fit value 1σ interval best-fit value 1σ interval
Re 〈T 〉 0.02279 0.01345→ 0.03087 −0.04283 −0.05416→ −0.02926
Im 〈T 〉 3.195 3.191→ 3.199 3.139 3.135→ 3.142
〈ϕ̃e,1〉 −4.069 · 10−5 −4.321 · 10−5 → −3.947 · 10−5 2.311 · 10−5 2.196 · 10−5 → 2.414 · 10−5

〈ϕ̃e,2〉 0.05833 0.05793→ 0.05876 0.05826 0.05792→ 0.05863
〈ϕ̃ν,1〉 0.001224 0.001201→ 0.001248 −0.001274 −0.001304→ −0.001248
〈ϕ̃ν,2〉 −0.9857 −1.0128→ −0.9408 0.9829 0.9433→ 1.0122
Λν [eV] 0.05629 0.05442→ 0.05888 0.05591 0.05408→ 0.05850

χ2 0.08 0.45

Table 4. Best-fit values and their corresponding 1σ intervals for the two green regions displayed
in the plot on the right-hand side of figure 3.

model experiment
observable best fit 1σ interval 3σ interval best fit 1σ interval 3σ interval
me/mµ 0.00473 0.00470→ 0.00477 0.00462→ 0.00485 0.00474 0.00470→ 0.00478 0.00462→ 0.00486
mµ/mτ 0.0586 0.0581→ 0.0590 0.0572→ 0.0600 0.0586 0.0581→ 0.0590 0.0572→ 0.0600

sin2 θ12 0.303 0.294→ 0.315 0.275→ 0.335 0.304 0.292→ 0.316 0.269→ 0.343
sin2 θ13 0.02254 0.02189→ 0.02304 0.02065→ 0.02424 0.02246 0.02184→ 0.02308 0.02060→ 0.02435
sin2 θ23 0.449 0.436→ 0.468 0.414→ 0.593 0.450 0.434→ 0.469 0.408→ 0.603

δ`CP/π 1.28 1.15→ 1.47 0.81→ 1.94 1.28 1.14→ 1.48 0.80→ 1.94
η1/π mod 1 0.029 0.018→ 0.048 −0.031→ 0.090 - - -
η2/π mod 1 0.994 0.992→ 0.998 0.935→ 1.004 - - -
JCP −0.026 −0.033→ −0.015 −0.035→ 0.019 −0.026 −0.033→ −0.016 −0.033→ 0.000
Jmax
CP 0.0335 0.0330→ 0.0341 0.0318→ 0.0352 0.0336 0.0329→ 0.0341 0.0317→ 0.0353

∆m2
21/10−5 [eV2] 7.39 7.35→ 7.49 7.21→ 7.65 7.42 7.22→ 7.63 6.82→ 8.04

∆m2
31/10−3 [eV2] 2.508 2.488→ 2.534 2.437→ 2.587 2.521 2.483→ 2.537 2.430→ 2.593

m1 [eV] 0.0042 0.0039→ 0.0049 0.0034→ 0.0131 < 0.037 - -
m2 [eV] 0.0095 0.0095→ 0.0099 0.0092→ 0.0157 - - -
m3 [eV] 0.0504 0.0501→ 0.0505 0.0496→ 0.0519 - - -∑
imi [eV] 0.0641 0.0636→ 0.0652 0.0628→ 0.0806 < 0.120 - -

mββ [eV] 0.0055 0.0045→ 0.0064 0.0040→ 0.0145 < 0.036 - -
mβ [eV] 0.0099 0.0097→ 0.0102 0.0094→ 0.0159 < 0.8 - -

χ2 0.08

Table 5. Comparison of the best-fit values in the lepton sector of our model against the experi-
mental data. In the columns 2–4 we present the best values from our fit with their 1σ and 3σ-error
intervals. We have added mod 1 for η1,2 because there are two disconnected 1σ regions shifted
by π, cf. figure 6. In the last three columns, we include the experimental best fit and 1σ ranges
for the charged-lepton mass ratios at the GUT scale, assuming tan β = 10, MSUSY = 10TeV, and
η̄b = 0.09375, taken from [71]. In addition, we give the best-fit values and error intervals for the
neutrino-oscillation parameters as obtained by the global analysis NuFIT v5.1 [72] with Super-
Kamiokande data for normal ordering.

best-fit values are very close to the predictions from the analytical approximate analysis
for the mass ratios given in eqs. (3.12) and (3.13).

In table 5, we summarize the best-fit values for the observables resulting from our
numerical scan. At the best-fit point, all observables (i.e. the charged lepton mass ratios,
the neutrino mass-squared differences, and the four lepton mixing matrix parameters) are
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Figure 4. Fitted regions with χ2 ≤ 25 in the space of sin2 θ23 and δ`
CP achieved in our model.

The black lines delimit the experimental 1, 2, and 3σ regions as determined by the global analysis
NuFIT. The bimodality appearing in moduli space, cf. figure 3, seems to be absent in the θ23− δ`

CP
plane, as the two green regions overlap and therefore appear as only one green region here.
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Figure 5. Projections of χ2 on the neutrino masses, which are clearly normal ordered.

within the 1σ interval of the current experimental data. In addition, even though we did
not demand it in our fit, it turns out that the results of the fit are in agreement with
the experimental bounds for the lightest neutrino mass m1, the sum of neutrino masses∑
imi, the effective mass for neutrino-less double beta decay mββ , and the neutrino mass

observable in 3H beta decay mβ , cf. [75–77], and [78], respectively.
For observables whose values have not yet been determined by experiment, our model

has the following predictions:

• As shown in figure 4, in our model θ23 is preferably found in the first octant, i.e.
θ23 < 45◦. Taking the atmospheric data provided by Super-Kamiokande into account,
this octant is currently also preferred by experiment in the case of normal ordering.
Unfortunately, for this octant, the model does not provide a prediction for the CP
violating phase δ`CP .

• The model has a rather precise prediction for the neutrino masses, especially for the
heaviest neutrino mass, cf. figure 5. At 1σ, the neutrino masses are predicted to
be 3.9 meV < m1 < 4.9 meV, 9.5 meV < m2 < 9.9 meV, and 50.1 meV < m3 <

50.5 meV.
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Figure 6. Majorana phases predicted by our model. Note that the Majorana phases are found
to be in general near CP-conserving values. The appearance of two 1σ (green) regions in this plot
stems from the bimodality found in moduli space: each green region in the plot on the right-hand
side arises from a different 1σ region of the fundamental domain of SL(2,Z) in figure 3.

Figure 7. Effective neutrino mass for 0νββ as a function of the lightest neutrino mass. The dashed
lines delimit the experimentally admissible region within 3σ for normal ordering. Gray-shaded areas
are excluded by KamLAND-Zen [77] or cosmological bounds [75, 76]. The 1σ and 2σ (green and
yellow) regions are within the bounds that next-to-next generation experiments are aiming at. For
example, the stated preliminary exclusion sensitivity of the CUPID-1T experiment goes down to
4.1 meV [79], which is indicated in the plot by a thin gray line. As for Majorana phases, cf. figure 6,
the appearance of two 1σ (green) regions in this plot is related to the bimodality in moduli space,
cf. figure 3.

• Only Majorana phases that are close to CP-conserving values are compatible with
the fit of our model. For more details, see figure 6.

• The prediction for the effective neutrino mass mββ is, unfortunately, not reachable
by the next-generation experiments for neutrinoless double beta decay. However,
potential next-to-next generation experiments, e.g. CUPID-1T [79], aim at covering
the predicted region, see figure 7.
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• We have performed a wide numerical scan and did not find any successful fit that
accepts inverted ordered neutrino masses. Hence, we observe that our model clearly
prefers normal ordering.

5 Simultaneous fit of quark and lepton sectors

So far, we have discussed only the lepton sector. It has been fitted by choosing appropriate
VEVs for the modulus T and the flavon triplets ϕe and ϕν . Let us now include in our
analysis the masses and mixings of quarks. Inspecting the superpotential (2.15), we realize
that up-type quark Yukawa couplings include an additional flavon triplet ϕu while down-
type Yukawas share the flavon triplet ϕe. Consequently, at leading order i) the structure
of the mass matrices of up and down-type quarks are equal, and ii) the masses of charged
leptons and down-type quarks differ only by their overall scale. The latter contradicts
experimental observations, but it can be amended by taking into account contributions
from the Kähler potential. As discussed in section 2.5, if flavons develop VEVs, there can be
considerable off-diagonal corrections to the Kähler metric already at next-to-leading order.

In principle, Kähler corrections can affect both leptons and quarks. However, for
simplicity, we assume that the parameters in the lepton sector yield negligible contributions
to additional terms in the Kähler potential. That is, only the quark sector will be influenced
by Kähler corrections. According to our previous discussion in section 2.5, the next-to-
leading order corrections to the Kähler metric of quark fields Ψ ∈ {ū, d̄, q} take the form
(see eq. (2.44))

Kf
ij ⊃ λ

f
ϕeff

(
Afij + κfϕeff B

f
ij

)
, (5.1)

where f ∈ {u, d, q} labels the effective flavons and Kähler parameters associated with each
quark field, explicitly defined in eqs. (2.44)–(2.49). To simplify our notation, we have
suppressed the arguments of the Kähler matrix elements, such that

Afij := Aij(ϕ̃(A),f
eff ) and Bf

ij := Bij(ϕ̃(B),f
eff ) . (5.2)

These matrix elements are quadratic in the VEVs of the components of the effective flavon
triplets. However, since these VEVs appear in the Kähler metric always accompanied by
the coefficients λfϕeff , it is convenient to use instead the parameters

αfi :=
√
λfϕeff 〈ϕ̃

(A),f
eff,i 〉 and βfi :=

√
λfϕeff 〈ϕ̃

(B),f
eff,i 〉 , (5.3)

such that
λfϕeffA

f
ij = αfi α

f
j , (5.4)

and λfϕeffB
f
ij is quadratic in βf up to O(1) factors. Note that the parameters αfi and βfi

represent a good measure of the size of the Kähler corrections.
The additional parameters of the quark sector include first the complex components

of the normalized up-type flavon triplet

〈ϕ̃u〉 =
(
〈ϕ̃u,1〉 exp(i〈ϑu,1〉) , 〈ϕ̃u,2〉 exp(i〈ϑu,2〉) , 1

)
. (5.5)
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Furthermore, the Kähler corrections introduce 9 parameters αfi , 9 β
f
i and 3 κfϕeff . In order

to simplify somewhat our fit, we impose the following constraints:

• κfϕeff = 1 for all f ∈ {u, d, q},

• αfi = βfi for all f and i ∈ {1, 2, 3}, and

• all αfi are real.

While these constraints may appear ad-hoc, we stress that the philosophy here is not to
scan the full parameter space but to demonstrate, in the first place, that there is a region in
the parameter space that indeed agrees with a realistic low energy phenomenology. Taking
the constraints into account, we arrive at a remaining set of 13 quark parameters that
we include in our numerical scan, aiming at a global fit of both leptons and quarks. The
numerical procedure to achieve the global fit is based on a χ2 minimization, analogous to the
one used in the lepton sector, which is discussed in detail in appendix B. As for charged
leptons, the experimental data we consider for quarks are the mass ratios and mixing
parameters at the GUT scale [71], assuming a running with tan β = 10, MSUSY = 10TeV,
and η̄b = 0.09375, as in refs. [33, 73]. These experimental best-fit values together with their
respective errors are presented in the last two columns of table 6b.

The resulting best-fit values are displayed in table 6. The modulus and flavon VEVs
of the model have the values shown in table 6a. We point out that the magnitude of
the Kähler corrections needed to arrive at a successful global fit all satisfy αfi < 1. Also,
the VEVs of the modulus 〈T 〉 and the lepton flavons 〈ϕ̃e,i〉 and 〈ϕ̃ν,i〉 preserve the values
obtained in the lepton fit, cf. table 5. In table 6b we compare our best fit against the
experimental values of quark and lepton observables. Our global fit of all fermion mass
ratios, mixing angles and CP phases exhibits χ2 = 0.11. Although we do not provide any
prediction in the quark sector, it is remarkable that the eclectic scenario arising from a
string compactification can fit the observed data so well.

Before concluding, let us mention some caveats of our model. First, the VEV pa-
rameters of the model included in eqs. (4.1) and (5.5) as well as the Kähler parameters
of eqs. (5.3) have been considered here to be free. However, in a full string model the
computation of the couplings and the dynamic stabilization of the VEVs are in principle
achievable. Unfortunately, these tasks have not been solved so far, remaining as open ques-
tions for our model. Secondly, notice that the values of the Kähler parameters in our fit,
displayed in table 6a, are all controllable in the sense that they arise in a Kähler potential
that is explicitly constrained by the eclectic flavor group and, moreover, their magnitudes
turn out to be smaller than unity ensuring the perturbativity of our model. Yet, because
of its complexity, the rigorous string computation of these parameters lies still beyond the
scope of our study. Finally, our focus is the flavor puzzle only, assuming that all other phe-
nomenological questions of particle physics and cosmology can be solved by some methods
introduced in many earlier influential works. For example, we have assumed that all ex-
otic matter states appearing in table 2 can acquire masses much larger than the physical
scale of the flavor sector in supersymmetric vacua [60, 80–82]. One might then argue that
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parameter best-fit value
Im 〈T 〉 3.195
Re 〈T 〉 0.02279
〈ϕ̃u,1〉 2.0332 · 10−4

〈ϑu,1〉 1.6481
〈ϕ̃u,2〉 6.3011 · 10−2

〈ϑu,2〉 −1.5983
〈ϕ̃e,1〉 −4.069 · 10−5

〈ϕ̃e,2〉 5.833 · 10−2

〈ϕ̃ν,1〉 1.224 · 10−3

〈ϕ̃ν,2〉 −0.9857

su
pe

rp
ot
en
tia

l

Λν [eV] 0.05629
αu

1 −0.94917
αu

2 0.0016906
αu

3 0.31472
αd

1 0.95067
αd

2 0.0077533
αd

3 0.30283
αq

1 −0.96952
αq

2 −0.20501

K
äh

le
r
po

te
nt
ia
l

αq
3 0.041643

(a)

observable model best fit exp. best fit exp. 1σ interval
mu/mc 0.00193 0.00193 0.00133→ 0.00253
mc/mt 0.00280 0.00282 0.00270→ 0.00294
md/ms 0.0505 0.0505 0.0443→ 0.0567
ms/mb 0.0182 0.0182 0.0172→ 0.0192

ϑ12 [deg] 13.03 13.03 12.98→ 13.07
ϑ13 [deg] 0.200 0.200 0.193→ 0.207
ϑ23 [deg] 2.30 2.30 2.26→ 2.34

qu
ar
k
se
ct
or

δq
CP [deg] 69.2 69.2 66.1→ 72.3
me/mµ 0.00473 0.00474 0.00470→ 0.00478
mµ/mτ 0.0586 0.0586 0.0581→ 0.0590
sin2 θ12 0.303 0.304 0.292→ 0.316
sin2 θ13 0.0225 0.0225 0.0218→ 0.0231
sin2 θ23 0.449 0.450 0.434→ 0.469
δ`CP/π 1.28 1.28 1.14→ 1.48
η1/π 0.029 - -
η2/π 0.994 - -
JCP −0.026 −0.026 −0.033→ −0.016
Jmax
CP 0.0335 0.0336 0.0329→ 0.0341

∆m2
21/10−5 [eV2] 7.39 7.42 7.22→ 7.63

∆m2
31/10−3 [eV2] 2.521 2.510 2.483→ 2.537

m1 [eV] 0.0042 <0.037 -
m2 [eV] 0.0095 - -
m3 [eV] 0.0504 - -∑
imi [eV] 0.0641 <0.120 -
mββ [eV] 0.0055 <0.036 -

le
pt
on

se
ct
or

mβ [eV] 0.0099 <0.8 -

χ2 0.11

(b)

Table 6. Results of a simultaneous fit of the quark and lepton sectors with χ2 = 0.11. (a) Values
of the model parameters at the best-fit point. The parameter values in the lepton sector coincide
with the modulus and flavon VEVs showed in table 4. In addition, for the quark sector we provide
the (complex) components of the flavon VEV 〈ϕ̃u〉 appearing in the superpotential, along with the
effective Kähler parameters αf

i , f ∈ {u, d, q} and i ∈ {1, 2, 3}, defined in eq. (5.3). (b) Best-fit
values of flavor observables obtained from our model. We compare them with the corresponding
experimental best-fit value; we include the experimental 1σ error. The quark-sector observables are
successfully fitted while keeping untouched the lepton-sector fit presented in table 5.

only the physical right-handed neutrinos and Higgs doublets are left massless as a result
of the existence of some unbroken (R-)symmetries either beyond the flavor sector [83–85]
or intimately linked with it [86]. As shown in those works, such symmetries could also
be relevant for proton stability and the suppression of the µ-term. In addition, relaxing
our assumption on the decoupling of the extra right-handed neutrinos in table 2 might be
instrumental to arrive at a better understanding of the relation between the Majorana and
the observable neutrino mass scales [87]. Our scheme also admits proposals to solve the
discrepancy between the GUT and string scale in heterotic models [88, 89] since it can
be embedded in anisotropic compactifications. Furthermore, heterotic orbifolds seem to
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be equipped with useful properties to achieve supersymmetry breakdown [90]. All these
aspects should be studied elsewhere in detail to complete our construction and extend it to
other relevant phenomenological questions, such as identifying the cause of inflation, the
origin of dark matter and the baryon asymmetry of the Universe.

6 Conclusions and outlook

We have studied the flavor phenomenology of the lepton and quark sectors emerging from
a specific T6/Z3 × Z3 heterotic orbifold model that gives rise to the eclectic flavor group
Ω(2). This TD scenario combines the virtues of a modular T ′ and a traditional ∆(54)
flavor symmetry, while avoiding the arbitrariness in the choice of quantum numbers of
matter fields inherent to BU constructions. The (traditional, modular and gauge symme-
try) representations of matter fields as well as their modular weights are entirely fixed by
the compactification. In our example model, SM fermions and flavons form identical flavor
triplets and exhibit equal (fractional) modular weights, cf. table 1. Hence, the structure of
the superpotential and Kähler potential are determined by the theory, guaranteeing, in par-
ticular, a canonical leading-order Kähler potential, as is most frequently assumed in the BU
approach. However, in addition, our setup also allows us to control non-canonical, higher-
order, Planck-suppressed corrections to the Kähler potential that arise after the traditional
flavor symmetry is spontaneously broken by flavons. We computed these corrections (to
next-to-leading order), which turn out to be instrumental for a successful phenomenolog-
ical fit since they contribute to the structure of mass matrices. Both, the modulus and
some of the flavons inherent to the construction must attain non-trivial VEVs in order to
break the modular and traditional components of the eclectic symmetry, as required by
phenomenology. Special values of these VEVs lead to discrete remnants of the flavor group
that can appear as approximate discrete symmetries at low energies [7].

In our string-derived example model, we have explicitly computed the leading-order
superpotential (2.15) and confirmed the canonical leading-order structure of the Kähler
potential (2.39). These results reveal that our model accommodates naturally a type-I
see-saw mechanism as explanation for the neutrino masses. We have shown that points in
moduli space perturbatively close to the symmetry-enhanced point 〈T 〉 = i∞ enjoy various
approximate symmetries as remnants of the eclectic group. Their successive spontaneous
breaking through the misaligned VEVs of the modulus and flavon fields can account for
technically natural (symmetry-protected) correct hierarchies. The tight, symmetry-based
constraints allow us to derive approximate analytical expressions for the mass hierarchies,
as explained in section 3.

In order to fully explore the phenomenology of the model, we have performed a numer-
ical analysis of the charged-lepton and neutrino sectors. We found that the 11 independent
observables listed in table 5 can be well fitted by adjusting seven free parameters corre-
sponding to the VEVs of the modulus and flavons as well as the neutrino mass scale. Their
values at the best-fit point are presented in table 4 and show that our analytical treatment
is fairly accurate. The octant of θ23, the normal ordering of neutrino masses, the observable
values of mββ , as well as the neutrino Majorana phases are predictions of the fit. These
results are illustrated in figures 4–7.
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Next-to-leading-order Kähler corrections turn out to be crucial to arrive at a model
of flavor that includes the quark sector in a phenomenologically viable manner. This is
another consequence of the highly constrained nature of TD constructions, as our example
model contains only a single non-singlet flavon field that is responsible for the structure and
hierarchies of down-quark and charged-lepton Yukawa couplings, as well as of the neutrino
Majorana mass term. This results in a particular kind of bottom-tau unification that must
be modified in order to arrive at a realistic phenomenology. We have shown that this can be
achieved thanks to the presence of next-to-leading-order Kähler corrections, which allowed
us to obtain a successful numerical fit to quark phenomenology that does not change our
predictions for the lepton sector.

In summary, we have presented for the first time a UV-complete, full string theory
model that exhibits a flavor scheme that can accomodate the experimentally observed
pattern of quark and lepton flavor phenomenology. Reducing the number of free parameters
was possible by taking into account the restrictive constraints on the effective superpotential
and Kähler potential arising from the entire, partly non-linearly realized, eclectic flavor
symmetry. Achieving the ambitious goal of a complete fit to the low-energy flavor data
was possible only as a consequence of the existence of controllable Kähler corrections.

This represents the first decisive step towards connecting the BU and TD efforts in the
quest for an ultimate theory of flavor, and demonstrates the potential of this TD approach.
It would be interesting to compare our results to the outcome of similar TD constructions,
such as the orbifold models of type B–D classified in ref. [7], orbifold constructions endowed
with a T2/Z2 sector [48, 49], or other TD scenarios that can admit three fermion generations
and metaplectic flavor symmetries [42], and also exhibit eclectic features [40]. Moreover,
quasi-eclectic models [91] offer another interesting possibility to explore in order to further
connect the BU and TD approaches.

Future efforts should aim at further reducing the number of free parameters, either by
rigorous string computations of some of the low energy parameters, or by identifying other
potentially realistic string setups that are even more constrained by symmetry. Further
attention should also be paid to the field-theoretical minimization of the flavon potential
as well as to the longstanding question of modulus stabilization.
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A Kähler potential at next-to-leading order

In order to arrive at the next-to-leading order Kähler potential, eq. (2.44), one must com-
pute the tensor products of the relevant representations (by using e.g. ref. [92]). Here we
discuss in detail the results of the computation.

The first tensor product in eq. (2.42) is given by

T1,a = [ϕ∗ ⊗ ϕ⊗Ψ∗ ⊗Ψ]1,a . (A.1)

This product has two invariant singlet contractions, i.e. a ∈ {1, 2}. For a = 1 it reads

T1,a=1 = Ψ†
 |ϕ1|2 ϕ1 ϕ

∗
2 ϕ1 ϕ

∗
3

ϕ2 ϕ
∗
1 |ϕ2|2 ϕ2 ϕ

∗
3

ϕ3 ϕ
∗
1 ϕ3 ϕ

∗
2 |ϕ3|2

Ψ . (A.2)

Here ϕi corresponds to the i-th component of the flavor triplet ϕ, or equivalently

T1,a=1 = Ψ∗i Aij(ϕ) Ψj , (A.3)

where the components of the matrix A are given by

Aij(ϕ) := ϕi ϕ
∗
j , (A.4)

and summation over repeated indices is implied. The second invariant singlet contraction,
i.e. T1,a=2 = Ψ∗j ϕi ϕ∗i Ψj , is irrelevant because it is proportional to the identity matrix and
hence its contribution to the Kähler metric can be absorbed by the symmetry-invariant
constant χ of the leading-order Kähler potential (2.40). Thus, we shall not discuss it here.

The second tensor product in the next-to-leading order Kähler potential is given by

T2,a =
[(
Ŷ (1)(T )

)∗
⊗ Ŷ (1)(T )⊗ ϕ∗ ⊗ ϕ⊗Ψ∗ ⊗Ψ

]
1,a

, a ∈ {1, 2, 3} . (A.5)

This tensor product yields three linearly-independent invariant terms, but only two of them
cannot be absorbed in (2.40). The first nontrivial term reads

T2,a=1 = Ψ∗i |Ŷ (1)(T )|2Aij(ϕ) Ψj . (A.6)

Note that this term, apart from the overall factor of |Ŷ (1)(T )|2, structurally yields the same
Kähler metric as the first tensor product (A.3). The second invariant singlet contraction
reads

T2,a=2 = Ψ∗i
(
Bij(ϕ) + |Ŷ2|2|ϕ|2δij

)
Ψj , (A.7)

where

Bij(ϕ) =


(
|Ŷ1|2 − 2 |Ŷ2|2

)
ϕi ϕ

∗
j , for i = j

−|Ŷ1|2 ϕi ϕ∗j +
√

2
(
Ŷ1 Ŷ

∗
2 ϕ
∗
i ϕk + Ŷ2 Ŷ

∗
1 ϕ
∗
k ϕj

)
, for k 6= i 6= j 6= k .

(A.8)

As before, the term proportional to δij in (A.7) can be absorbed in (2.40) and will thus be
ignored.
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Using eqs. (A.3) and (A.7), we find that the next-to-leading order contributions to the
Kähler metric (2.42) that are not proportional to δij , are given by

K
(non−id)
ij ⊃

∑
ϕ

[((
−iT + iT̄

)−4/3
ζ

(ϕ)
1 +

(
−iT + iT̄

)−1/3
ζ

(Y ϕ)
1 |Ŷ (1)(T )|2

)
Aij(ϕ) (A.9)

+
(
−iT + iT̄

)−1/3
ζ

(Y ϕ)
2 Bij(ϕ)

]
,

where we sum over all flavon triplets ϕ (with all possible modular weights) that develop
VEVs. We stress that the noncanonical contributions (A.9) arise only as a result of the
breaking of the traditional flavor symmetry by flavon VEVs, and that they are clearly
Planck suppressed.

B Numerical procedure

Let us describe here in detail the numerical procedure we follow to arrive at the fit of the
lepton sector. The goal of the numerical procedure is to explore the parameter space of
the model parameters x defined in eq. (4.1) in order to find the regions that yield values of
lepton masses and mixings that are in agreement with experimental observations. In detail,
we search for parameters that yield χ2 ≤ 25 corresponding to a compatibility with 5σ.
Moreover, we also want to identify the point in parameter space that yields the best match
to the experimental data. We therefore split the numerical analysis in two steps: i) First,
we find all minima with χ2 ≤ 25; and ii) then we explore the regions around these minima.

The first step is a typical optimization problem that can be conveniently approached
by using the non-linear optimization interface lmfit [93]. We start by picking a random
start-point in the parameter space, whose boundaries we set to

0 < |〈ϕ̃e,1〉| , |〈ϕ̃e,2〉| < 1 , 0 < |〈ϕ̃ν,1〉| , |〈ϕ̃ν,2〉| < 2 , (B.1a)
0 < |Re 〈T 〉| < 1.5 , 0 < Im 〈T 〉 < 5 . (B.1b)

As we expect the flavon VEVs to be hierarchically ordered, we sample them with a blend of
a uniform and a logarithmic distribution. Moreover, we use the analytical result |〈ϕ̃e,2〉| ≈
mµ
mτ

= 0.0586 obtained in section 3.2.1 and sample |〈ϕ̃e,2〉| only in the vicinity of this value.
To the chosen start-point, we then consecutively apply five randomly chosen minimization
algorithms included in the lmfit interface. For our setup, especially the algorithms ‘Con-
strained trust-region’ and ‘L-BFGS-B’ deliver good results. We repeat this procedure until
roughly 1000 points with χ2 ≤ 25 and no new minima are found by the algorithms.

Finally, we explore the neighborhood of each minimum using the Markov Chain Monte
Carlo (MCMC) sampler emcee [94], which is also supported by lmfit. The MCMC sampler
chooses random points with a probability function that it tries to couple to χ2. They are
therefore well suited to provide information on the vicinity of the minima and hence the
boundaries of the respective confidence levels.

Although similar methods have been thoroughly explained in other works, see e.g. [95],
we make our python code available upon request to be applied both in BU and TD con-
structions. Please, send your inquiries preferably to alexander.baur@tum.de.
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C Complete spectrum of a model with Ω(2) eclectic flavor symmetry

We provide all quantum numbers of the massless spectrum of our example T6/Z3 × Z3 heterotic orbifold model, including the
representations under GSM = SU(3)c × SU(2)L × U(1)Y , the eclectic flavor group Ω(2) = ∆(54) ∪ T ′ ∪ ZR9 (along with the associated
modular weights n), and the extra Z3

3 flavor and ‘hidden’ SU(4)×U(1)anom ×U(1)8 gauge factors.

Flavor charges ‘Hidden’ gauge charges
sector GSM ∆(54) T ′ ZR9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

U1 (1,2) 1
2

1 1 0 0 1 1 1 1 0 1 0 0 0 0 −59 32 −124 Hu

(1,2)− 1
2

1 1 0 0 1 1 1 1 0 1 0 0 0 0 59 −32 124 Hd

(1,1)0 1 1 0 0 1 1 1 1 0 −2 0 0 0 0 0 0 0 φ0

(3,1) 2
3

1 1 0 0 1 1 1 1 0 0 0 0 0 −73 −90 −24 93 U1

U2 (1,1)0 1 1 0 0 1 1 1 1 −2 −1 0 0 0 73 149 −8 −125 φ0
M

(1,1)0 1 1 0 0 1 1 1 1 −2 0 2 −38 32 42 −84 264 30 s1

(1,1)0 1 1 0 0 1 1 1 1 0 0 −7 16 −73 0 0 0 0 s2

(1,1)0 1 1 0 0 1 1 1 1 4 −1 0 0 0 73 31 56 95 s3

(1,1)0 1 1 0 0 1 1 1 1 2 0 5 22 41 −42 84 −264 −30 s5

(3,1) 2
3

1 1 0 0 1 1 1 1 −2 1 0 0 0 0 59 −32 −32 U2

(3̄,1)− 2
3

1 1 0 0 1 1 1 1 −2 0 0 0 0 −73 −90 −24 −63 Ū1

U3 (1,1)0 1′ 1 3 −1 1 1 1 1 2 0 0 0 0 146 180 48 −30 s7

(3̄,1)− 2
3

1′ 1 3 −1 1 1 1 1 2 1 0 0 0 0 −59 32 32 Ū2

(1,2)− 1
2

1′ 1 3 −1 1 1 1 1 −4 0 0 0 0 −73 28 −88 29 L1

(1,2) 1
2

1′ 1 3 −1 1 1 1 1 2 0 0 0 0 −73 −208 40 1 L̄1

T(0,1) (3,2) 1
6

32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3 − 2

3 − 40
3 −2 − 17

3
329
3

40
3

1
3 (q1, q2, q3)

(3̄,1)− 2
3

32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3 − 2

3 − 40
3 −2 − 17

3
329
3

40
3

1
3 (ū1, ū2, ū3)

(1,1)1 32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3 − 2

3 − 40
3 −2 − 17

3
329
3

40
3

1
3 (ē1, ē2, ē3)

(1,1)0 32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3 − 2

3 − 40
3 −2 − 236

3
59
3 − 32

3
280
3 (ν̄1, ν̄2, ν̄3)

(1,1)0 32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 − 4
3 − 2

3 − 2
3 − 40

3 −2 − 17
3

506
3 − 56

3 − 95
3 (s10, s13, s16)

(1,1)0 32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3

4
3

80
3 4 253

3 − 565
3

88
3 − 185

3 (ϕe,1, ϕe,2, ϕe,3)
(3,1)− 1

3
32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2

3 − 2
3 − 2

3 − 40
3 −2 − 236

3 − 118
3

64
3 − 92

3 (D1, D2, D3)
(1,2) 1

2
32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2

3 − 2
3 − 2

3 − 40
3 −2 − 236

3 − 118
3

64
3 − 92

3 (L̄2, L̄3, L̄4)
(1,1)− 1

3
32 2′ ⊕ 1 1 −2/3 1 1 1 1 0 1

3
7
3

62
3 − 11

3
127
3 53 −320 31 (V1, V2, V3)

–
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Flavor charges ‘Hidden’ gauge charges
sector GSM ∆(54) T ′ ZR9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 1 ω 1 1 − 2
3 − 2

3
10
3

44
3

140
3 − 236

3
118
3 − 64

3
92
3 (V̄1, V̄2, V̄3)

(1,2)− 1
6

32 2′ ⊕ 1 1 −2/3 1 ω 1 1 4
3

1
3 − 11

3
92
3 − 79

3 − 17
3

211
3

104
3 − 91

3 (W1,W2,W3)

T(0,2) (1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4
3 − 1

3 − 4
3 − 80

3 −4 − 34
3

481
3

176
3 − 370

3 (s17, s21, s25)
(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4

3 − 4
3

2
3

40
3 2 17

3 − 506
3

56
3

95
3 (s18, s22, s26)

(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4
3

2
3

2
3

40
3 2 17

3 − 506
3

56
3

95
3 (s19, s23, s27)

(1,1)0 3̄2 2′′ ⊕ 1 5 2/3 1 ω 1 1 − 8
3 − 1

3
2
3

40
3 2 17

3
25
3 − 232

3
275
3 (s20, s24, s28)

(3,1)− 1
3

3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4
3 − 1

3
2
3

40
3 2 236

3 − 59
3

32
3

188
3 (D4, D5, D6)

(1,2) 1
2

3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4
3 − 1

3
2
3

40
3 2 236

3 − 59
3

32
3

188
3 (L̄5, L̄6, L̄7)

(1,1)− 1
3

3̄1 2′′ ⊕ 1 2 −1/3 1 ω2 1 1 2
3

2
3

11
3 − 92

3
79
3

236
3 − 118

3
64
3 − 92

3 (V4, V5, V6)
(1,1) 1

3
3̄1 2′′ ⊕ 1 2 −1/3 1 1 1 1 2 − 1

3 − 13
3

52
3 − 85

3 − 253
3 31 56 −61 (V̄4, V̄5, V̄6)

(1,2) 1
6

3̄1 2′′ ⊕ 1 2 −1/3 1 ω2 1 1 2
3 − 1

3
5
3

22
3 − 17

3 − 109
3

41
3 − 896

3
1
3 (W 1,W 2,W 3)

T(1,0) (3̄,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω 1 ω 1 −2 0 − 5
3

56
3 − 67

3 − 56
3 − 242

3 − 160
3

152
3 (d̄1, d̄2, d̄3)

(1,2)− 1
2

32 2′ ⊕ 1 1 −2/3 ω 1 1 1 − 8
3 0 4

3
2
3

38
3 − 14

3 − 326
3

104
3

182
3 (`1, `2, `3)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω2 1 − 4
3 1 7

3
62
3

47
3

121
3

289
3 − 448

3
215
3 (ϕu,1, ϕu,2, ϕu,3)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 1 4 11
3 0 − 2

3 − 1
3

68
3 − 2

3
4
3 − 166

3 − 10
3 (s29, s37, s45)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 1 1 3 0 − 17
3 − 67

3 − 55
3

124
3 − 248

3 − 448
3

20
3 (s30, s38, s46)

(1,1)0 31 2′ ⊕ 1 −2 −5/3 ω 1 1 1 4
3 0 4

3
2
3

38
3

205
3 − 410

3
368
3

95
3 (s31, s39, s47)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω 4̄ 11
3 0 10

3
5
3

8
3 − 26

3
52
3 − 10

3 − 10
3 (s32, s40, s48)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω 1 7
3 0 10

3
5
3

8
3 − 26

3
52
3

1064
3

50
3 (s33, s41, s49)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω2 1 3 0 7
3 − 55

3 − 175
3

76
3 − 152

3 − 136
3

20
3 (s34, s42, s50)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω2 1 7
3 0 − 14

3 − 7
3

128
3

22
3 − 44

3
752
3

50
3 (s36, s44, s52)

T(1,2) (1,1)0 1 1 0 0 ω ω 1 1 8
3 − 1

3 0 −26 26
3 57 71

3
544
3 − 275

3 s53

(1,1)0 1 1 0 0 ω ω 1 1 − 10
3

2
3 0 −26 26

3 −89 62
3

112
3 − 5

3 s54

(1,1)0 1 1 0 0 ω ω 1 1 8
3 − 1

3 −2 12 − 70
3 −58 407

3 − 512
3

190
3 s55

(1,1)0 1 1 0 0 ω ω 1 1 2
3 − 1

3 0 −26 26
3 −16 155

3
280
3

280
3 s56

(1,1)0 1 1 0 0 ω ω ω 1 10
3 − 1

3 −3 −8 − 79
3 43 155

3
280
3 − 305

3 s57

(1,1)0 1 1 0 0 ω ω ω 1 − 8
3

2
3 −3 −8 − 79

3 −103 146
3 − 152

3 − 35
3 s58

(1,1)0 1 1 0 0 ω ω ω 1 4
3 − 1

3 4 −24 140
3 −30 239

3
16
3

250
3 s59

(1,1)0 1 1 0 0 ω ω ω 1 4
3 − 1

3 −3 −8 − 79
3 −30 239

3
16
3

250
3 s60

(1,1)0 1 1 0 0 ω ω ω2 1 0 − 1
3 −4 −28 − 88

3 −2 71
3

544
3

310
3 s61

–
33

–
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Flavor charges ‘Hidden’ gauge charges
sector GSM ∆(54) T ′ ZR9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

(1,1)0 1 1 0 0 ω ω ω2 1 −2 2
3 1 −6 35

3 −117 230
3 − 416

3 − 65
3 s62

(1,1)0 1 1 0 0 ω ω ω2 1 4 − 1
3 1 −6 35

3 29 239
3

16
3 − 335

3 s63

(1,1)0 1 1 0 0 ω ω ω2 1 2 − 1
3 1 −6 35

3 −44 323
3 − 248

3
220
3 s64

(1,1)− 1
3

1 1 0 0 ω ω2 1 1 − 5
3 − 1

3 1 7 −41 −104 31 56 56 V7

(1,1)− 1
3

1 1 0 0 ω ω2 ω 1 − 10
3 − 1

3 2 −12 4 −13 −151 −88 81 V8

(1,1)− 1
3

1 1 0 0 ω ω2 ω 1 1 − 1
3 5 9 −3 28 239 16 16 V9

(1,1)− 1
3

1 1 0 0 ω ω2 ω 1 1 − 1
3 5 9 −3 −45 31 56 −139 V10

(1,1)− 1
3

1 1 0 0 ω ω2 ω 1 − 5
3 − 1

3 −7 3 −1 −88 −1 −48 56 V11

(1,1)− 1
3

1 1 0 0 ω ω2 ω2 1 − 2
3 − 1

3 −1 6 −31 119 57 −128 41 V12

(1,1)− 1
3

1 1 0 0 ω ω2 ω2 1 − 2
3 − 1

3 −1 6 −31 46 −151 −88 −114 V13

(1,1)− 1
3

1 1 0 0 ω ω2 ω2 1 1 − 1
3 −3 5 37 44 207 −88 16 V14

(1,1)− 1
3

1 1 0 0 ω ω2 ω2 1 1 − 1
3 −3 5 37 −29 −1 −48 −139 V15

(1,1) 1
3

1 1 0 0 ω 1 1 1 − 7
3

2
3 6 3 − 32

3 59 − 236
3

128
3

167
3 V̄7

(1,1) 1
3

1 1 0 0 ω 1 1 1 10
3 − 1

3 −3 18 − 47
3 −16 − 317

3
536
3 − 88

3 V̄8

(1,1) 1
3

1 1 0 0 ω 1 1 1 1 2
3 −3 −21 79

3 −43 376
3 − 568

3
17
3 V̄9

(1,1) 1
3

1 1 0 0 ω 1 ω 1 − 7
3

2
3 −2 −1 88

3 75 − 332
3 − 184

3
167
3 V̄10

(1,1) 1
3

1 1 0 0 ω 1 ω 4̄ − 2
3

2
3 −4 −2 − 56

3 12 46
3 − 298

3
92
3 V̄11

(1,1) 1
3

1 1 0 0 ω 1 ω 1 −2 2
3 −4 −2 − 56

3 12 46
3

776
3

152
3 V̄12

(1,1) 1
3

1 1 0 0 ω 1 ω 1 0 2
3 1 20 67

3 −30 298
3 − 16

3
62
3 V̄13

(1,1) 1
3

1 1 0 0 ω 1 ω2 4 − 2
3

2
3 0 0 − 116

3 4 94
3 − 142

3
92
3 V̄14

(1,1) 1
3

1 1 0 0 ω 1 ω2 1 − 4
3

2
3 2 −38 − 20

3 46 − 158
3 − 424

3
122
3 V̄15

(1,1) 1
3

1 1 0 0 ω 1 ω2 1 − 4
3 − 4

3 0 0 58
3 −2 130

3
512
3

122
3 V̄16

(1,1) 1
3

1 1 0 0 ω 1 ω2 1 1 2
3 5 −17 − 41

3 −59 472
3 − 256

3
17
3 V̄17

(1,1) 1
3

1 1 0 0 ω 1 ω2 1 − 4
3

2
3 0 0 58

3 −2 130
3

512
3

122
3 V̄18

(1,2)− 1
6

1 1 0 0 ω 1 ω 1 2 − 1
3 1 20 67

3 43 391
3

152
3 − 121

3 W4

(1,2) 1
6

1 1 0 0 ω ω2 1 1 2 − 1
3 3 8 7 32 −123 −176 32 W 4

(1,2) 1
6

1 1 0 0 ω ω2 1 1 5
3 − 1

3 −4 −15 34 −1 −57 128 37 W 5

(1,2) 1
6

1 1 0 0 ω ω2 ω2 1 5
3 − 1

3 4 −11 −6 −17 −25 232 37 W 6

(1,1)− 2
3

1 1 0 0 ω 1 1 1 − 8
3 − 1

3 −3 18 − 47
3 −16 391

3
152
3 − 4

3 X1

(1,1)− 2
3

1 1 0 0 ω 1 ω 1 2 2
3 1 20 67

3 −30 − 56
3

176
3 − 214

3 X2

–
34

–
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Flavor charges ‘Hidden’ gauge charges
sector GSM ∆(54) T ′ ZR9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

(1,1) 2
3

1 1 0 0 ω ω2 1 1 − 5
3 − 1

3 1 7 −41 −31 121 80 −37 X̄1

(1,1) 2
3

1 1 0 0 ω ω2 ω 1 − 10
3 − 1

3 2 −12 4 60 −61 −64 −12 X̄2

(1,1) 2
3

1 1 0 0 ω ω2 ω 1 − 5
3 − 1

3 −7 3 −1 −15 89 −24 −37 X̄3

(3̄,1)− 1
3

1 1 0 0 ω 1 ω 1 2 − 1
3 1 20 67

3 −30 121
3

80
3

158
3 Y

(3̄,1)0 1 1 0 0 ω ω2 ω 1 1 2
3 5 9 −3 −45 90 24 −15 Z1

(3̄,1)0 1 1 0 0 ω ω2 ω2 1 − 2
3

2
3 −1 6 −31 46 −92 −120 10 Z2

(3̄,1)0 1 1 0 0 ω ω2 ω2 1 1 2
3 −3 5 37 −29 58 −80 −15 Z3

(3,1)0 1 1 0 0 ω 1 ω2 1 − 4
3 − 1

3 0 0 58
3 −2 − 47

3
608
3 − 250

3 Z̄1

T(2,0) (1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 ω2 1 1 1 − 10
3 0 2

3 − 116
3

58
3 − 79

3
158
3

424
3 − 5

3 (s65, s69, s73)
(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 ω2 1 1 1 8

3 −1 − 4
3 − 2

3 − 38
3

14
3

503
3 − 200

3
190
3 (s66, s70, s74)

(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 ω2 1 1 1 − 4
3 0 − 4

3 − 2
3 − 38

3 − 205
3

410
3 − 368

3 − 95
3 (s67, s71, s75)

(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 ω2 1 ω 1 4
3 1 − 7

3 − 62
3 − 47

3 − 121
3 − 289

3
448
3 − 215

3 (s68, s72, s76)

T(2,1) (1,1)0 1 1 0 0 ω2 ω2 ω 1 0 − 2
3 −1 6 − 35

3 −29 − 770
3

272
3

155
3 φ0

u

(1,1)0 1 1 0 0 ω2 ω2 ω2 1 2
3

1
3 1 −32 61

3 −60 301
3

128
3 − 340

3 φ0
d

(1,1)0 1 1 0 0 ω2 ω2 1 1 4
3

1
3 −2 −14 − 44

3 −74 385
3 − 136

3 − 370
3 φ0

e

(1,1)0 1 1 0 0 ω2 ω2 1 1 4
3 − 2

3 0 26 − 26
3 −57 − 602

3 − 256
3

95
3 s78

(1,1)0 1 1 0 0 ω2 ω2 ω 1 0 1
3 −3 −34 − 53

3 −46 217
3

392
3 − 310

3 s79

(1,1)0 1 1 0 0 ω2 ω2 ω2 1 2
3 − 2

3 3 8 79
3 −43 − 686

3
8
3

125
3 s82

(3,1)− 1
3

1 1 0 0 ω2 ω2 1 1 4
3

1
3 0 26 − 26

3 16 − 155
3 − 280

3
188
3 D7

(3,1)− 1
3

1 1 0 0 ω2 ω2 ω 1 0 1
3 −1 6 − 35

3 44 − 323
3

248
3

248
3 D8

(3,1)− 1
3

1 1 0 0 ω2 ω2 ω2 1 2
3

1
3 3 8 79

3 30 − 239
3 − 16

3
218
3 D9

(1,2) 1
2

1 1 0 0 ω2 ω2 1 1 4
3

1
3 0 26 − 26

3 16 − 155
3 − 280

3
188
3 L̄8

(1,2) 1
2

1 1 0 0 ω2 ω2 ω 1 0 1
3 −1 6 − 35

3 44 − 323
3

248
3

248
3 L̄9

(1,2) 1
2

1 1 0 0 ω2 ω2 ω2 1 2
3

1
3 3 8 79

3 30 − 239
3 − 16

3
218
3 L̄10

(1,1)− 1
3

1 1 0 0 ω2 1 1 1 1
3 − 2

3 −4 37 50
3 31 − 304

3 − 272
3 − 77

3 V16

(1,1)− 1
3

1 1 0 0 ω2 1 1 4̄ 0 − 2
3 −4 −2 2

3 10 − 178
3

406
3 − 62

3 V17

(1,1)− 1
3

1 1 0 0 ω2 1 1 1 2
3 − 2

3 1 20 125
3 −32 74

3
688
3 − 92

3 V18

(1,1)− 1
3

1 1 0 0 ω2 1 1 1 2
3

4
3 3 −18 47

3 16 − 214
3 − 248

3 − 92
3 V19

(1,1)− 1
3

1 1 0 0 ω2 1 1 1 2
3 − 2

3 3 −18 47
3 16 − 214

3 − 248
3 − 92

3 V20

(1,1)− 1
3

1 1 0 0 ω2 1 ω 4 0 − 2
3 0 0 − 58

3 2 − 130
3

562
3 − 62

3 V21

–
35

–
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Flavor charges ‘Hidden’ gauge charges
sector GSM ∆(54) T ′ ZR9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

(1,1)− 1
3

1 1 0 0 ω2 1 ω 1 − 2
3 − 2

3 2 −38 38
3 44 − 382

3
280
3 − 32

3 V22

(1,1)− 1
3

1 1 0 0 ω2 1 ω 1 5
3 − 2

3 5 −17 17
3 −61 248

3
448
3 − 137

3 V23

(1,1)− 1
3

1 1 0 0 ω2 1 ω 1 4
3 − 2

3 0 0 − 58
3 2 − 130

3 − 512
3 − 122

3 V24

(1,1)− 1
3

1 1 0 0 ω2 1 ω2 1 1
3 − 2

3 4 41 − 70
3 15 − 208

3
40
3 − 77

3 V25

(1,1)− 1
3

1 1 0 0 ω2 1 ω2 1 −4 1
3 −1 −20 − 67

3 30 233
3 − 272

3
118
3 V26

(1,1)− 1
3

1 1 0 0 ω2 1 ω2 1 5
3 − 2

3 −3 −21 137
3 −45 152

3
136
3 − 137

3 V27

(1,1) 1
3

1 1 0 0 ω2 ω 1 1 7
3

1
3 4 15 −34 74 29 −40 −66 V̄19

(1,1) 1
3

1 1 0 0 ω2 ω 1 1 − 1
3

1
3 −1 −7 41 31 −3 −144 129 V̄20

(1,1) 1
3

1 1 0 0 ω2 ω 1 1 − 1
3

1
3 −1 −7 41 −42 −211 −104 −26 V̄21

(1,1) 1
3

1 1 0 0 ω2 ω 1 1 2 1
3 −3 −8 −7 41 95 264 −61 V̄22

(1,1) 1
3

1 1 0 0 ω2 ω ω 1 7
3

1
3 −4 11 6 90 −3 −144 −66 V̄23

(1,1) 1
3

1 1 0 0 ω2 ω ω2 1 − 1
3

1
3 7 −3 1 15 29 −40 129 V̄24

(1,1) 1
3

1 1 0 0 ω2 ω ω2 1 − 1
3

1
3 7 −3 1 −58 −179 0 −26 V̄25

(1,1) 1
3

1 1 0 0 ω2 ω ω2 1 4
3

1
3 −2 12 −4 −60 179 0 104 V̄26

(1,1) 1
3

1 1 0 0 ω2 ω ω2 1 4
3

1
3 −2 12 −4 −133 −29 40 −51 V̄27

(1,2)− 1
6

1 1 0 0 ω2 ω ω 1 −3 1
3 3 −5 −37 29 1 48 −17 W6

(1,2)− 1
6

1 1 0 0 ω2 ω ω 1 − 4
3

1
3 1 −6 31 −46 151 88 −42 W7

(1,2)− 1
6

1 1 0 0 ω2 ω ω2 1 −3 1
3 −5 −9 3 45 −31 −56 −17 W8

(1,2) 1
6

1 1 0 0 ω2 1 1 1 2
3

1
3 3 −18 47

3 89 233
3 − 272

3
1
3 W 7

(1,2) 1
6

1 1 0 0 ω2 1 ω 1 − 2
3

1
3 0 0 − 58

3 −71 − 223
3 − 680

3
61
3 W 8

(1,1)− 2
3

1 1 0 0 ω2 ω 1 1 7
3

1
3 4 15 −34 1 −61 −64 27 X3

(1,1)− 2
3

1 1 0 0 ω2 ω 1 1 2 1
3 −3 −8 −7 −32 5 240 32 X4

(1,1)− 2
3

1 1 0 0 ω2 ω ω 1 7
3

1
3 −4 11 6 17 −93 −168 27 X5

(1,1) 2
3

1 1 0 0 ω2 1 ω 1 − 2
3 − 2

3 0 0 − 58
3 2 224

3 − 704
3

154
3 X̄4

(1,1) 2
3

1 1 0 0 ω2 1 ω2 1 2 1
3 −1 −20 − 67

3 30 − 475
3

112
3

34
3 X̄5

(3,1) 1
3

1 1 0 0 ω2 1 ω 1 − 2
3

1
3 0 0 − 58

3 2 47
3 − 608

3 − 218
3 Ȳ

(3̄,1)0 1 1 0 0 ω2 1 1 1 2
3

1
3 3 −18 47

3 16 − 37
3 − 344

3
280
3 Z4

(3,1)0 1 1 0 0 ω2 ω 1 1 − 1
3 − 2

3 −1 −7 41 31 −62 −112 5 Z̄2

(3,1)0 1 1 0 0 ω2 ω ω2 1 − 1
3 − 2

3 7 −3 1 15 −30 −8 5 Z̄3

(3,1)0 1 1 0 0 ω2 ω ω2 1 4
3 − 2

3 −2 12 −4 −60 120 32 −20 Z̄4

–
36

–
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Flavor charges ‘Hidden’ gauge charges
sector GSM ∆(54) T ′ ZR9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels
T(2,2) (1,1)0 32 2′ ⊕ 1 1 −2/3 ω2 ω 1 1 2 2

3 − 2
3

38
3 − 32

3
250
3 148 −56 −30 (ϕν,1, ϕν,2, ϕν,3)

(1,1)0 31 2′ ⊕ 1 1 −5/3 ω2 ω 1 1 0 2
3 − 2

3
38
3 − 32

3 − 188
3 −32 −104 0 (s84, s90, s96)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω2 ω ω 1 2
3

2
3 − 5

3 − 22
3 − 41

3
334
3 92 120 −10 (s85, s91, s97)

(1,1)0 31 2′ ⊕ 1 1 −5/3 ω2 ω ω 1 − 4
3

2
3 − 5

3 − 22
3 − 41

3 − 104
3 −88 72 20 (s86, s92, s98)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω2 ω ω2 1 4
3

2
3

7
3 − 16

3
73
3

292
3 120 32 −20 (s87, s93, s99)

(1,1)0 31 2′ ⊕ 1 1 −5/3 ω2 ω ω2 1 − 2
3

2
3

7
3 − 16

3
73
3 − 146

3 −60 −16 10 (s88, s94, s100)
(3̄,1) 1

3
32 2′ ⊕ 1 1 −2/3 ω2 ω 1 1 2 − 1

3 − 2
3

38
3 − 32

3
31
3 −1 −48 −61 (D̄1, D̄4, D̄7)

(3̄,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω ω 1 2
3 − 1

3 − 5
3 − 22

3 − 41
3

115
3 −57 128 −41 (D̄2, D̄5, D̄8)

(3̄,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω ω2 1 4
3 − 1

3
7
3 − 16

3
73
3

73
3 −29 40 −51 (D̄3, D̄6, D̄9)

(1,2)− 1
2

32 2′ ⊕ 1 1 −2/3 ω2 ω 1 1 2 − 1
3 − 2

3
38
3 − 32

3
31
3 −1 −48 −61 (L2, L5, L8)

(1,2)− 1
2

32 2′ ⊕ 1 1 −2/3 ω2 ω ω 1 2
3 − 1

3 − 5
3 − 22

3 − 41
3

115
3 −57 128 −41 (L3, L6, L9)

(1,2)− 1
2

32 2′ ⊕ 1 1 −2/3 ω2 ω ω2 1 4
3 − 1

3
7
3 − 16

3
73
3

73
3 −29 40 −51 (L4, L7, L10)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 − 7
3

2
3

7
3

23
3 − 85

3
112
3

130
3

512
3 − 112

3 (V28, V34, V40)
(1,1)− 1

3
32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 1 − 1

3 − 14
3

71
3

44
3 − 143

3 − 245
3 − 304

3
203
3 (V29, V35, V41)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 4
3 − 1

3
7
3 − 94

3
41
3 − 188

3 − 155
3 − 280

3
188
3 (V30, V36, V42)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 ω 1 − 7
3

2
3 − 17

3
11
3

35
3

160
3

34
3

200
3 − 112

3 (V31, V37, V43)
(1,1)− 1

3
32 2′ ⊕ 1 1 −2/3 ω2 ω2 ω 1 0 2

3 − 2
3 − 40

3 − 64
3 − 11

3
376
3 − 568

3 − 217
3 (V32, V38, V44)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 ω2 1 1 − 1
3

10
3

83
3 − 76

3 − 191
3 − 149

3
8
3

203
3 (V33, V39, V45)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 1 1 − 10
3 − 1

3 − 5
3

56
3 −3 − 62

3 − 289
3

448
3 − 98

3 (V̄28, V̄34, V̄40)
(1,1) 1

3
32 2′ ⊕ 1 1 −2/3 ω2 1 1 1 3 2

3
10
3

5
3 −36 − 14

3
146
3 − 152

3
82
3 (V̄29, V̄35, V̄41)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω 1 − 7
3 − 1

3
7
3 − 55

3 −39 − 149
3 − 115

3
208
3 − 143

3 (V̄30, V̄36, V̄42)
(1,1) 1

3
32 2′ ⊕ 1 1 −2/3 ω2 1 ω 1 3 2

3 − 14
3 − 7

3 4 34
3

50
3 − 464

3
82
3 (V̄31, V̄37, V̄43)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω2 1 2 2
3 − 2

3
116
3 0 73

3 − 28
3

88
3

127
3 (V̄32, V̄38, V̄44)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω2 1 − 7
3 − 1

3 − 17
3 − 67

3 1 − 101
3 − 211

3 − 104
3 − 143

3 (V̄33, V̄39, V̄45)
(1,1)− 2

3
32 2′ ⊕ 1 1 −2/3 ω2 1 1 1 1

3 − 1
3 − 5

3 − 61
3 39 76

3
143
3 − 296

3
16
3 (X6, X9, X12)

(1,1)− 2
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω 1 − 2
3 − 1

3
7
3

62
3 35 115

3
65
3

256
3

61
3 (X7, X10, X13)

(1,1)− 2
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω2 1 1
3 − 1

3
19
3 − 49

3 −1 28
3

239
3

16
3

16
3 (X8, X11, X14)

(1,1) 2
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 1 − 1
3 − 14

3
71
3

44
3

76
3

25
3 − 232

3 − 76
3 (X̄6, X̄9, X̄12)

(1,1) 2
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 4
3 − 1

3
7
3 − 94

3
41
3

31
3

115
3 − 208

3 − 91
3 (X̄7, X̄10, X̄13)

(1,1) 2
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 ω2 1 1 − 1
3

10
3

83
3 − 76

3
28
3

121
3

80
3 − 76

3 (X̄8, X̄11, X̄14)

–
37

–
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