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Abstract 

Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of 
cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contrib‑
uted to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils 
are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized 
biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim 
of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies 
involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models 
used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in 
the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate 
MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotox‑
icity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated 
review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive 
agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the 
most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results 
obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in 
chemotherapy in CRC.
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Introduction
Colorectal cancer (CRC) is a devastating disease with a 
high incidence and mortality rate, accounting for more 
than 10% of all cancer death in 2020, being the third most 
common cancer in men and the second in women [1, 2]. 
According to the International Agency for Research on 
Cancer, in 2018, the global cancer burden is estimated 
to have risen to 18.1 million new cases and 9.6 million 
deaths. CRC is the second largest cancer worldwide with 
881,000 deaths in 2018 [3–5]. Studies show that approxi-
mately 90% of colorectal cancer cases occur in people 
over the age of 50 and the number of patients diagnosed 
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with CRC exceeds that of patients diagnosed with lung 
cancer. CRC has a high rate of treatment success when 
it is detected in its early stages [6]. Thus the 5-year sur-
vival rate is over 90% in early-diagnosed colorectal can-
cer, but only 40% of tumors are found at a localized stage 
and approximately 56% of colorectal cancer patients die 
from the tumor. In stage IV, survival is low, only 14–16% 
at 5 years [7]. CRC is a type of cancer that affects colon 
or rectum cells and normally starts on the inner lining of 
these tissues, where the pathologist can find the so-called 
polyps [8]. Even if polyps are not strictly malignant, 
with time they can sometimes enlarge, grow and spread 
originating cancer. The most common form of CRC is 
adenocarcinoma and this review analyzed only this kind 
of tumor, not considering less frequent forms of cancer 
affecting the colon and rectal tissues, such as carcinoid 
tumors, gastrointestinal stromal tumors (GISTs), lym-
phomas, and sarcomas [9, 10]. In general, CRC does not 
cause symptoms at the initial stages, even if small blood 
loss, fatigue, lack of appetite, anemia, weight loss, stub-
born constipation, alternating with diarrhea can be pre-
sent [11]. The diagnosis of CRC is based on an accurate 
anamnesis, followed by blood tests with the research of 
carcinoembryonic tumor marker (CEA), digital rectal 
examination and colonoscopy with biopsies. In addition, 
ultrasound, computed tomography (CT) and magnetic 
resonance imaging can be used to assess the extent of the 
tumor itself and the presence or absence of distant metas-
tases [12]. More recently, clinicians are beginning to use 
the results of the molecular profile of CRC from biopsy, 
as it can serve to better define the prognosis and therapy 
of this neoplasia [13]. The therapeutic strategy is essen-
tially based on surgery, which can be assisted by chemo-
therapy and radiotherapy, alone or combined, adjuvant 
or neoadjuvant. Moreover, targeted therapy and immu-
notherapy are two recent therapeutic tools for the man-
agement of aggressive, advanced or metastatic CRC [14, 
15]. Nonetheless, these strategies have numerous adverse 
side effects, and as a result, new adjuvant therapies in the 
treatment of cancer have been sought, the naturally bio-
active compounds being known as potential anticancer 
adjuvant and complementary agents [16–19]. The study 
of natural products has always guided the field of applied 
pharmacology [20]. They have played a key role in drug 
discovery, especially for cancer and infectious diseases 
[21, 22]. In the area of cancer, since the 1940s, more than 
50% of the active molecules are unaltered or derivative 
natural products of different origins (plant, animal and 
microbial) [16, 23]. Among these, some examples are 
paclitaxel (Taxol®), vincristine (Oncovin®), vinorelbine 
(Navelbine®), teniposide (Vumon®) and various water-
soluble analogues of camptothecin (e.g. Hycamtin®) 
[24–26]. After a decline in the pharmaceutical industry’s 

search for natural products from the 1990s onwards due 
to technical barriers to screening, isolation, characteri-
zation and optimization, in recent years, technological 
and scientific development has revitalized the interest in 
them [27, 28]. According to Newman & Cragg [26], natu-
ral products still offer the best potential for discovering 
new compounds that can lead to effective agents in a vari-
ety of human diseases. Essential oils, complex mixtures 
of volatile organic compounds extracted from plants by 
steam distillation, dry distillation or a suitable mechani-
cal process without heating, possess biological and phar-
maceutical properties including anticancer activity [29]. 
Various types of malignancies are reported to be lowered 
after treatment with essential oils [30]. The current status 
of knowledge regarding their potential in the treatment 
strategies of CRC, the second deadliest (about 1 million 
per year) and third most commonly diagnosed cancer in 
the world (about 2 million cases in 2020) [1], is covered in 
this review.

Essential oils: a brief overview
Traditional uses
Humans use medicinal plants for disease treatment for 
a long time [27, 31–33]. Such a traditional method pos-
sesses more than thousands of years of history, as noted 
by ancient Persian, Indian, Chinese, Arabic, and Greek 
manuscripts [20, 34]. Among natural phytochemicals, 
EOs have attracted human attention due to their pleas-
ant aroma [35]. They have been ethnotraditionally used 
for the treatment and prevention of various diseases by 
different human cultures [36]. The application of EOs 
against neoplasia is a very promising field [37]. In 2005, 
Warnke and coauthors reported that the application 
of tea tree and eucalyptus oils has reduced tumor smell 
and inflammation in cancer patients [38]. Rosa x dama-
scena has a long history of use in traditional medicine: 
its EO could increase cell proliferation on SW742 when 
higher concentrations were used, i.e. 10  μg/mL with 
48  h of incubation time [39]. Moreover, the same work 
showed that similar effects were perceived in human 
normal fibroblasts, thus inducing the authors to suggest 
that the EO of Rosa x damascene could stimulate cell 
growth. EOs extracted from 6 sand-dune plants of Portu-
gal region (Seseli tortuosum L., Otanthus maritimus (L.) 
Hoffmanns. & Link, Eryngium maritimum L., Crithmum 
maritimum L., Artemisia campestris subsp. maritima 
(DC.) Arcang., Juniperus phoenicea var. turbinate (Guss.) 
Parl.,) reported promising cytotoxic properties [40]. In 
1997, Gould has postulated that the naturally occurring 
monoterpenes are a potential new class of potential anti-
cancer agents [41]. For example, D-limonene showed 
anticancer activity against many rodent solid tumor 
types by carcinogen detoxification and inhibition of the 
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posttranslational isoprenylation of growth-controlling 
small G proteins (p21ras) [42].

Chemical composition
Many plants produce volatile terpene substances in their 
vital processes. In addition to terpene hydrocarbons, 
some volatile molecules have various oxygen or sulphur-
containing functional group such as hydroxyl, carbonyl, 
carboxyl, thiol and others [43, 44]. The mixture of these 
compounds commonly called EOs contains more than 
twenty constituents at varying concentrations with two–
three major components [45]. EOs are characterized by 
complex chemistry due to a set of aromatic substances 
known as secondary low molecular weight metabolites 
[46]. These molecules belong to several classes of com-
pounds predominantly represented by monoterpenes 
[47], sesquiterpenes [48] and their derivatives. EOs are 
obtained by hydro- or steam distillation starting from 
different parts of the plant such as leaves, flowers, and 
stems[35]. Precisely because of their rich and varied 
chemical composition, accurate characterization by gas 
chromatography and mass spectrometry is essential.

Anticancer mechanisms of EOs: molecular evidence 
from preclinical studies
Various EOs have been studied in many types of experi-
mental models in the search for new treatments for colon 
cancer with very promising results [16, 20] (Additional 
file 1). EOs exhibit a wide range of bioactive effects like 
cytotoxicity, antiproliferative, and antimetastatic effects 
on cancer cells through various mechanisms of action 
[49]. It has been demonstrated that EOs possessed, for 
the most part, a prodigious activity directed against can-
cer cells [45]. In the case of CRC, the effect of EOs has 
been analyzed in  vitro studies on human colon cancer 
cell lines such as HT-29, Caco-2, SW480, and HCT-116, 
among others. HCT-116 cells have been the most stud-
ied since they are classified as a cell line model to study 
the molecular mechanisms involved in tumor metastasis 
[50]. The EOs’ bioactive compounds against colorectal 
cancer models are summarized in Table 1 and Fig. 1.

Cytotoxic and antiproliferative effects of EOs
The EO from rhizome of Curcuma purpurascens BI. 
demonstrated cytotoxic effects against HT-29 cells (IC50 
value 4.9 ± 0.4 μg/mL) [123]. In 2009, Sharma and cow-
orkers reported that the lemongrass EO (Cymbopogon 
flexuosus (Nees ex Steud.) W.Watson) showed promising 
anticancer activity and caused a loss in tumor cell viabil-
ity by activating the apoptotic process. The IC50  values 
were 4.2 and 4.7  μg/ml for 502,713 (colon) and IMR-32 
(neuroblastoma) cell lines, respectively [53].

Blood oranges EO, a variety of orange (Citrus × sinen-
sis), showed pro-apoptotic and anti-angiogenesis poten-
tial on colon cancer cells [124]. Volatile EO isolated from 
Artemisia campestris L. exhibited significant antitumor 
activity against the HT-29 cells and it is recommended 
for further research into the chemoprevention and treat-
ment [97, 125].

Thymoquinone (TQ) is a volatile secondary metabolite 
found in many species including Nigella sativa L. (black 
cumin) and Monarda fistulosa L. This monoterpene 
exhibited anti-proliferative activity against Caco-2, HCT-
116, LoVo, DLD-1 and HT-29 cell lines, but not against 
human intestinal FHs74Int cells [126]. More recently 
two interesting reviews extensively explored TQ effects 
in preclinical settings. The first one suggested as TQ 
could increase the efficacy of chemotherapeutic agents 
in CRC, in addition to other common cancers (i.e. lung, 
liver, breast, prostate, etc.), inducing the authors to rec-
ommend this combination strategy to fight cancer [127]. 
Similarly, the other work investigated the combination 
regimen of TQ and chemotherapy, but also examined the 
use of nanotechnologies incorporating TQ, encouraging 
clinicians to test this molecule in clinical trials [128].

Carvacrol-rich EO of Origanum onites L. was evaluated 
in twenty female BALB/c mice xenograft of colon can-
cer cells (CT26). Origanum onites EO was administered 
orally at a daily dose of 0.370 g/kg of animal body weight 
for 13 days [81]. The authors reported that colon cancer 
cells were the most sensitive to Origanum onites EO [55, 
81]. On the same line, another work obtained an IC50 of 
carvacrol corresponding to 92 µM and 42 µM for HCT-
116 and HT-29 cells, respectively [129].

EOs obtained from Rosa x damascena were studied in 
2D cell models of the RKO cell line (colorectal cancer) 
and HEK293-T cell line (human embryonic kidney), while 
for 3D cell models were used only MCF7 cell line (breast 
cancer). Indeed, in the RKO 2D cell line, the most active 
EOs were those extracted by S. tortuosum and O. mar-
itimus, which possessed an IC50 of 0.034 and 0.34 μl/mL, 
respectively. Moreover, Murata and collaborators showed 
that 1,8-cineole exerted antitumor activity on HCT-116 
and RKO cell lines [130]. The authors explored the anti-
proliferative effect of 1,8-cineole, with an IC50 > 10  mM 
for both cell lines and found induction of apoptosis via 
activation of the caspase-dependent pathway starting as 
25 mM for RKO cell lines.

The EO of Cinnamomum stenophyllum (Meisn.) Vat-
timo leaf has been shown potent cytotoxic effect on 
HCT-116 cells [131]. This effect on HCT-116 cells has 
been demonstrated by exposing cells to: a) extracts of 
3 Annona species (A. squamosa L., A. cherimola Mill., 
and the hybrid between them—Abdel Razek), b) oil and 
extracts of Eugenia uniflora L., and EO of Commiphora 
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Table 1  Chemical composition of EOs and the correlation with different CRC experimental models

Plant species Family of plants Tested
CRC cell lines

Concentration Potential 
mechanism

Main chemical 
compounds

Refs.

Lavandula
stoechas ssp. stoechas

Lamiaceae Labiatae COL-2 IC50 = 9.8 μg/mL Not available pulegone, hexahydrothy‑
mol, menthone

[51]

Annona Cheirmola
Annon squamosa
Annona Abdel Razik

Annonaceae HCT116 IC50 = 2.1 μg/mL
IC50 = 0.7 μg/mL
IC50 = 0.7 μg/mL

Not available α-pinene, β-pinene, 
α-copaene, 2-carene
isocaryophyllene, caryo‑
phyllene

[52]

Cymbopogon flex-
uosus

Poaceae HT-29
HCT-15
SW-620
502,713

IC50 = 42.4 μg/mL
IC50 = 60.2 μg/mL
IC50 = 28.1 μg/mL
IC50 = 4.2 μg/mL

Not available not available [53]

Illicium verum Asteraceae Com‑
positae

HCT-116
HT-29
CCD-18co

IC50 = 50.34 μg/mL
IC50 = 100 μg/mL
IC50 = 200 μg/mL

↑Apoptosis
↓ Metastasis

tans-anethole
elaidic acid
palmitic acid

[54]

Commiphora molmol Burseraceae HCT-116 IC50 = 19.71 μg/mL Not available 2-acetoxy-furano-diene
furanoeudesma-1,3-diene
furanoeudesma-1,4-dien-
6-one
isofuranogermacrene

[55]

Capparis spinosa L Burseraceae HT-29 Not available ↓Proliferation, ↓NF-kB
no apoptosis in HT-29 
cells
↑Cell cycle arrest 
G2/M phase

methyl isothiocyanate [56]

L. hybrid Re
L. latifolia Medikus
L. vera D.C

Lamiaceae Labiatae Caco-2 IC50 = 0.9132 mg/mL
IC50 = 0.7798 mg/mL
IC50 = 1.224 mg/mL
IC50 = 1.631 mg/mL

↑ROS/RNS, ↓Akt
↓mTOR
↓MAPK, ↓NF-κB

linalool
linalyl acetate
1,8-cineole

[57]

Cinnamomum glan-
duliferum Bark

Lamiaceae HCT-116 IC50 = 9.1 μg/mL Not available eucalyptol, terpinen-4-ol
α -terpineol

[58]

Achillea
fragrantissima

Asteraceae SW48
HCT116

IC50 = 110.1 μg/mL
IC50 = 134.6 μg/mL

Not available Artemisia ketone
camphor, α-bisabolol

[59]

Grapefruit Rutaceae HCT116 Not available Dose-dependent 
antiproliferative 
activity

nerylisovalerate, 1,8-cin‑
eole
neryl-2-methyl-butanoate
chamazulene, linalool, 
camphor
germacrene D, nerol
linalyl propionate

[60]

Artemisia dubia Wall Asteraceae IC50 = 31.25 μg/mL Not available limonene, linalyl acetate
γ-terpinene, linalool
β-pinene, bergapten

[61]

Ocimum viride Lamiaceae Labiatae HT-29
502,713
SW-620

IC50 = 0.034 μL/mL ↑DNA damage
↑Cells death
↑Apoptotis

thymol, γ -terpinene
p-cymene

[62]

Cinnamomum 
stenophyllum (Meisn.) 
Vattimo-Gil

Lauraceae HCT116 IC50 = 9.95 μg/mL Not available eugenol, safrol,
benzyl benzoate,
1,8-cineole, camphor

[63]

Citrus aurantifolia
(Christm.) Swingle

Rutaceae NIH3T3
SW-480

IC50 = 6.25 μg/mL ↑DNA fragmentation 
↑caspase-3
↑Bax/Bcl2

D-Limonene, D-Dihydro‑
carvone
α -Terpineol

[64]

Citrus limettioides Rutaceae SW480 IC50 = 50 μg/mL ↑Apoptosis d-Limonene
triacontane
α-Bisabolene
α-Farnesene
(R)-( +)-Citronellol

[65]
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Table 1  (continued)

Plant species Family of plants Tested
CRC cell lines

Concentration Potential 
mechanism

Main chemical 
compounds

Refs.

Heracleum pastinaci-
foliu
Heracleum persicum
Heracleum rechingeri
Heracleum transcau-
casicum

Apiaceae LS180 IC50 = 1.4 mg/mL Not available myristicin
(E)-anethole
hexyl butanoate
elemicin

[66]

Comptonia peregrina L Myricaceae DLD-1 IC50 = 47 μg/mL Not available β -caryophyllene, 
α-humulene,
β -myrcene

[67]

Cotula cinerea (Delile) Asteraceae HCT116 IC50 = 86.7 μg/mL
IC90 = 122.3 µg/mL

Not available trans-thujone
santolina triene, α- pinene, 
sabinene, 1,8-cineole

[68]

Leonotis nepetifolia Lamiaceae Labiatae IC50 = 16.78 mg/mL Not available germacrene D, 
α-humulene,
3-octanone, (E)-ocimene, 
(Z)-ocimene, linalool,
β -caryophyllene, 1-octen-
3-ol

[69]

Eryngium campestre 
Eryngium amethysti-
num

Apiaceae IC50 = 1.65 μg/mL
IC50 = 1.64 μg/mL

Not available germacrene D, spathule‑
nol, alloaromadendrene, 
ledol,
γ-cadinene, β -Elemene

[70]

Tagetes erecta L Asteraceae HT29 IC50 = 6.94 μg/mL Not available limonene (10.4%), 
dihydrotagetone (11.8%), 
terpinolene (18.1%),
(E)-ocimenone (13.0%)

[71]

Tetradenia riparia 
(Hochst.)

Lamiaceae Labiatae IC50 = 77.47 μg/mL fenchone (6.1%), dron‑
abinol (11.0%), aromaden‑
drene oxide (14.7%)
(E,E)–farnesol (15.0%)

Bidens sulphurea (Cav.) Asteraceae IC50 = 268.8 μg/mL (E)-caryophyllene(10.5%)
germacrene D (35.0%)
2,6-di-tert-butyl-4-methyl‑
phenol (43.0%)

Foeniculum vulgare 
Mill.,

Apiaceae Not available limonene (21.3%)
(E)-anethole (70.2%)
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Table 1  (continued)

Plant species Family of plants Tested
CRC cell lines

Concentration Potential 
mechanism

Main chemical 
compounds

Refs.

Piper betel L Piperaceae RCM-1 IC50 = 500 μg/mL Duct formation after 
treated with EO

chavicol, chavibetol, cineol, 
eugenol

[72]

Cymbopogon nadus L Poaceae octyl acetate (54.9–60.2%)
octyl butyrate (10.1–13.4%)

Syzygium aromati-
cum L

Myrtaceae eugenol, eugenyl
acetate, β-caryophyllene,
α-humulene

Alpinia galanga L Zingiberaceae 1,8-cineol, alpha-pinene, 
eugenol,
camphor, methyl cin‑
namate

Psidium guajava L Myrtaceae β-caryophyllene,
cineol

Ocimum america-
num L

Lamiaceae Labiatae limonene, 1,8-cineol,
δ-cadinene, α-pinene
α-terpineol

Ocimum tenuiflorum L camphor, cineol,
eugenol, limonene, ros‑
marinic acid

Citrus hystrix DC Rutaceae β-pinene, limonene, 
caryophyllene, sabinene, 
citronellol, 1,8-cineol

Cymbopogon
citratus (DC) Stapf

Poaceae citral, myrcene, geraniol, 
nerol,
farnesol, citronellol

Boesenbergia
rotunda (L.) Mansf

Zingiberaceae camphene, eucalyptol,
ocimen, camphor, geraniol

Citrus aurantifolia
(Christm. et Panz.)
Swings

Rutaceae D-limonene, pinene,
camphene, bergapten

Ocimum basilicum L Lamiaceae Labiatae estragole, linalool,
1,8-cineole

Curcuma
longa L

Zingiberaceae turmerone,
aromatic (ar-) turmerone

Rosa damascena Rosaceae SW742 IC50 = 10 μg/mL ↓Cell proliferation not available [39]

Pistacia atlantica Anacardiaceae Caco-2 HCT116 IC50 = 62.85 μg/mL
IC50 = 34.97 μg/mL

Not available α-pinene, sabinene, 
limonene, terpinene-4-ol, 
β-pinene

[73]

Phoebe bournei 
(Hemsl.)

Laureaceae SW480 IC50 = 41.3 l μg/mL Not available α-copaene, α-muurolene,
δ-cadinene, 1 s-calame‑
nene

[74]

Ammodaucus
leucotrichus Cosson & 
Durieu

Apiaceae HCT116 IC50 = 41.3 l μg/mL Not available perillaldehyde, D- 
limonene
α-pinene

[75]

Inula graveolens (Lin‑
naeus) Desf

Linnaeus HT29 IC50 = 24.6 μg/mL Not available bornyl acetate, corneol
caryophyllene oxide
δ-cadinol, camphene

[76]

Ocimum viride Lamiaceae Labiatae COLO 205 IC50 = 0.070, 0.058, 
0.033 μg/mL
at 24, 48, and 72 h, 
respectively

↑DNA damage 
↑mitochondrial 
membrane perme‑
ability
↑apoptosis

thymol, α-pinene
geranyl acetate
β-caryophyllene oxide

[77]
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Table 1  (continued)

Plant species Family of plants Tested
CRC cell lines

Concentration Potential 
mechanism

Main chemical 
compounds

Refs.

Artemisia indica Wild Asteraceae Caco-2 IC50 = 19.5 μg/mL Not available Artemisia ketone, germac‑
rene B borneol cis-chrysan‑
thenyl acetate

[78]

Pogostemon cablin Lamiaceae Labiatae HCT116
SW480

Not available ↑p21
↓Cyclin D1
↓CDK4

not available [79]

Eugenia uniflora Myrtaceae HCT-116 IC50 = 16.26 μg/mL
IC50 = 9.28 μg/mL

Not available curzerene, selina-1,3,7(11)-
trien-2-
one,
selina-1,3,7(11)-trien-2-one 
epoxide, germacrene B, 
caryophyllene oxide,
(E)-caryophyllene

[80]

Origanum onites L Origanum HT-29 IC50 = 0.35 μg/mL Not available terp-1-in-4-ol, sabinene
hydrate, γ-terpinene, 
p-cymene
α-terpineol

[81]

Stachys viticina Boiss Lamiaceae Labiatae Colo-205 Not available Not available endo-borneol, eucalyptol
epizonarene

[82]

Moringa oleifera Moringaceae Caco-2 ↑Cytotoxicity ↑Morphological
alterations
↑Cell blebbing and 
vacuolation
↑Autophagy
↑Cancer cell death

not available [83]

Citrus bergamia Risso 
et Poiteau

Rutaceae Human and rat 
isolated CRC cells

Not available EOs inhibited 
neuronally-mediated 
contractions in the rat 
and human CRC​

(R)-( +)-limonene
linalyl acetate
linalool

[84]

Melissa officinalis Lamiaceae Labiatae HT-29
T84

IC50 = 346 μg/mL
IC50 = 120 μg/mL

↑Cell cycle arrest
↑Apoptosis

not available [85]

Mesua ferrea Calophyllaceae HCT 116
IM1215

IC50 = 17.38 μg/mL
IC50 = 18.86 μg/mL

↑Morphological and 
biochemical changes 
in HCT 116

isoledene, elemene [86]

Origanum majorana Lamiaceae Labiatae HT-29 Not available ↑Autophagy
↑Apoptotis
↑p38, ↑MAPK

terpinen-4-ol, alpha-
terpinol
α-pinene, camphene, 
p-cymol
β-caryophyllene, bicyclo‑
germacrene, neophyta‑
diene

[87]

Thymus alternans HCT-15
HCT116

IC50 = 5–8 l μg/mL Not available (E)-nerolidol, (E)-β-
Ocimene
geranial

[88]

Mentha citrata HCT116 IC50 = 80.6 μg/mL
IC90 = 119.1 μg/mL

Not available linalool. linalyl acetate
1,8-cineole, a-terpineol

[89]

Teucrium
alopecurus

Not available ↑Apoptosis
↓Cells survival ↓Prolif‑
eration
↓Invasion
↓Angiogenesis
↓Metastasis

( +)-epi-bicyclo ses‑
quiphellandrene
α-bisabolol, Ƭ-muurolol
α-cadinol, β-phellandrene
d-limonene

[90]

Ocimum basilicum,
Mentha spicata,
Pimpinella anisum,
Fortunella margarita

Lamiaceae
Apiaceae
Rutaceae

Caco2 Sweet basil
IC50 = 0.071 mg/mL
Kumquat
IC50 = 0.1 mg/mL
Spearmint
IC50 = 0.162 mg/mL
Anise
IC50 = 0.25 mg/mL

Not available carvone in spearmint
methyl chavicol in sweet 
basil
trans-anethole in anise
limonene in kumquat

[91]
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Table 1  (continued)

Plant species Family of plants Tested
CRC cell lines

Concentration Potential 
mechanism

Main chemical 
compounds

Refs.

Pinus roxburghii Pinaceae HCT116 IC50 = 25.0 μg/mL ↑Apoptosis α-pinene
caryophyllene oxide
3-carene
β-pinene

[92]

Artemisia santonicum Asteraceae HCT116 Not available ↓Pro-inflammatory 
factors
↓Cell growth
↓Cancer cells survival

camphor, 1,8-cineole
α-thujone
borneol, 
β-thujone

[93]

Smyrnium olusatrum L Apiaceae HCT116 IC50 = 10.71 μg/mL ↑DNA fragmentation 
↑Phosphatidylserine
↑Caspase-3

isofuranodiene
germacrone
furano-4(15)-eudesmen-
1-one
furanoeremophil-1-one
1β-acetoxyfuranoeudesm-
4(15)-ene

[94]

Zataria multiflora 
Boiss

Lamiaceae Labiatae HCT116
SW48

Not available ↓Cell proliferation
↑Apoptosis

not available [95]

Zedoary Turmeric Zingiberaceae HCT116 IC50 = 101 μg/mL ↓Growth of cancer 
cells
↑Senescence
↑Apoptosis

not available [96]

Artemisia campestri Asteraceae HT-29 Not available Not available A.Campestris: β-pinene, 
limonene,, germacrene-D, 
γ-terpinene, β-myrcene, 
α-pinene, (Z)-β-ocimene
(E)-β-ocimene

[97]

Croton lechleri Cynomoriaceae LoVo IC50 = 74.95 μg/mL ↑Change in fatty acid 
composition

sesquicineole, 
α-calacorene, 1,10-di-epi-
cubenol,, β-calacorene, 
epicedrol

[98]

Allium Roseum L Alliaceae HT-29
Caco-2

IC50 = 4.64 μg/mL
IC50 = 8.22 μg/mL

Not available methyl methanethiosulfi‑
nate, 3-vinyl.1,2-dithiacy‑
clohex-5-ene
diallyl trisulfide

[99]

Chrysanthemum 
coronarium L

Asteraceae Caco-2 IC50 = 43.0 μg/mL Not available not available [100]

Beilschmiedia eryth-
rophloia

Lauraceae HT-29 IC50 = 18.9 μg/mL Not available β-caryophyllene, 
α-humulene
terpinen-4-ol, cis-β-
ocimene, sabinene, 
limonene

[101]

Machilus mushaensis Lauraceae IC50 = 3.8 μg/mL Not available n-decanal, α-cadinol [102]

Porcelia macrocarpa Annonaceae IC50 = 50.8 μg/mL Not available germacrene D, bicycloger‑
macrene

[103]

Neolitsea variabillima Lauraceae IC50 = 16.8 μg/mL Not available β-ocimene, α-cadinol,
terpinen-4-ol, τ-cadinol,
β-caryophyllene, sabinene

[104]

Diospyros discolor Ebonaceae IC50 = 10.6 μg/mL Not available (2Z,6E)-farnesol, α-cadinol, 
(E)-nerolidol, Ƭ-cadinol, 
Ƭ-muurolol,
α-humulene, 
β-caryophyllene

[105]

Machilus thunbergii Lauraceae IC50 = 3.8 μg/mL Not available n-decana, β-caryophyllene
α-humulene, β-eudesmol

[106]

Salvia libanotica Lamiaceae Labiatae HCT116 p53 + / + 
HCT116 p53-/-

Not available ↑Apoptosis
↑Caspase-3 in 
p53 + / + cancer cells 
but not
p53-/- cells

not available [107]
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Table 1  (continued)

Plant species Family of plants Tested
CRC cell lines

Concentration Potential 
mechanism

Main chemical 
compounds

Refs.

Origanum vulgare Lamiaceae Labiatae HT-29 Not available Not available 4-terpineol, thymol, 
γ-terpinene, carvacrol

[108]

Athanasia brownii Asteraceae HCT116 IC50 = 29.5 μg/mL Not available selin-11-en-4a-ol, caryo‑
phyllene oxide
humulene epoxide II
(E)-nerolidol

[109]

Afrostyrax lepidophyl-
lus,
Scorodophloeus 
zenkeri

Huaceae,
Fabaceae

IC50 = 12.4 μg/mL
IC50 = 8.5 μg/mL

Not available 2,4,5,7-tetrathiaoctane [110]

Salvia
officinalis

Lamiaceae Labiatae HT-29
Caco-2
HCT116

Not available ↑Morphological 
changes

α-thujone
1,8-cineole, camphor

[111]

Hedychium spicatum Zingiberaceae LD-1
SW620

IC50 = 26.75–
94.35 mg/mL

Not available 1,8-cineol, hedycaryol, 
β-eudesmol, Ƭ-eudesmol, 
cubenol, α-cadinol

[112]

Allium sativum Allium HT-29 c Not available ↑Apoptotis not available [113]

Moringa oleifera Moringaceae Caco-2 Toxicity% = 49.7% ↓Cell viability not available [83]

Myristica fragrans Myristicaceae Caco-2 Not available Not available myristicin, sabinene, 
α-pinene
β-pinene, β-Phellandrene
safrole, terpinen-4-ol

[114]

Callistemon citrinus Myrtaceae Colo-205 Not available Not remarkable 
activity

α-pinene, limonene
α-terpineol in leaf oil, 
1,8-cineole
α-pinene in flower oil

[115]

Eugenia egensis
Eugenia flavescens
Eugenia polystachya
Eugenia patrisii

Myrtaceae HCT-116 IC50 = 10.5–216.3 mg/
mL

↑Cell membrane 
disruption

5-hydroxy-cis-calemene
(2E,6E)-farnesol,
(2E,6Z)-farnesol
caryophylla-
4(12),8(13)-dien-5-ol-5
-ol
E–bisabolene, germacrene
D, and ishwarane

[116]

Aquilaria crassna Thymelaeaceae IC50 = 28.0 μg/mL ↑Apoptotis
↑DNA fragmenta‑
tion ↑mitochondrial 
damage

β-caryophyllene
1-Phenanthrenecarboxylic 
acid
2-naphthalene-methanol
α-caryophyllene
benzenedicarboxylic acid
Azulene, naphthalene,
cyclodecene

[117]

Nectandra leucantha Lauraceae HCT IC50 = 194.8 μg/mL Not available bicyclogermacrene
germacrene A
spathulenol, globulol

[118]

Semenovia suffruticosa Apiaceae HT-29 IC50 = 341 μg/mL Morphological 
changes

Z-β-ocimene
linalool, β-bisabolol

[119]

Piper aequale Piperaceae HCT-116 IC50 = 8.68 μg/mL Not available δ-elemene, β-pinene, 
α-pinene, cubebol, 
β-atlantol
bicyclogermacrene

[120]

Pistacia lentiscus var. 
chia

Anacardiaceae HT-29
Caco-2
CT26

IC50 = 0.1752 mg/mL
IC50 = 0.0368 mg/mL
IC50 = 0.1335 mg/mL

↓Proliferation
of colon cancer cells

α-pinene
myrcene

[121]

Faeniculum
vulgare

Apiaceae HCT-116 Not available ↓DNA damages
↓mitochondrial 
membrane potential 
loss

not available [122]

Symbols: ↑increase, ↓decrease
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myrrha (Nees) Engl., c) EO from Piper aequale Vahl, d) 
EO from Thymus roegneri K. Koch, e) EO isolated from 
the bark of Cinnamomum glanduliferum (Wall.) Meisn., 
f ) light phase obtained by molecular distillation of grape-
fruit [55, 58, 60, 80, 88, 120, 132]. The same cytotoxic 
effect has been achieved in HT-29 cells by exposing 
them to Dittrichia graveolens (L.) Greuter EO, Machilus 
thunbergii Siebold & Zucc. EO and Diospyros discolor 
Willd. flower. The latter two also exhibited antineoplas-
tic properties on a panel of cancer cells, suggesting a 
wider effect in different cancer types [105, 106, 133]. On 
the other hand, the EO of bulbs Allium roseum L. pre-
sented an antiproliferative dose-dependent effect against 
two human colon adenocarcinoma cell lines, HT-29 and 
Caco-2 [99]. Besides, the EO of Achillea fragrantissima 
(Forssk.) Sch.Bip. revealed an IC50 of 110.1 and 134.6 µg/
mL on human colorectal cancer cells (SW480 and HCT-
116) [59].

In a recent study, anticancer effects of Eryngium camp-
estre L. and Eryngium amethystinum L. were studied, 
showing IC50 values (1.65–5.32 and 1.5–2.99  µg/mL for 
E. amethystinum and E. campestre, respectively) com-
parable or close to those of the chemotherapeutic drug 
cisplatin [70]. A more selective effect was observed with 
Brocchia cinerea (Delile) Vis. EO, in two human cancer 

cell lines HCT-116 and liver cancer cell line (HePG2): 
the results indicated that such EO possessed a significant 
(66.9%) cell growth inhibition capacity in colon cancer 
cells [134].

Eucalyptol from the EO of Cinnamomum glandulif-
erum (the main compound) showed great antitumoral 
potential in HCT-116 cells with IC50 of 9.1  μg/ml [58]. 
Moreover, the molecular mechanisms of Mesua ferrea 
L. oil-gum resin extract on colon cancer cells HCT-116 
and LIM1215 were studied. The extract could negatively 
regulate the expression of multiple pro-survival proteins, 
such as survivin, xIAP, HSP27, HSP60, and HSP70, and 
increase the expression of reactive oxygen species (ROS), 
caspase-3,7 and TRAIL-R2 in HCT-116 [86].

It has been demonstrated that the EO of Salvia offici-
nalis L., showed antiproliferative effect based on cell cycle 
arrest. Through MTT test, at 72  h Caco-2, HT-29, and 
HCT-116 cells were treated with different concentrations 
of EOs, exhibiting a dose-dependent cell growth inhibi-
tion. Moreover, when analyzing all the possible combina-
tions of the 3 main compounds of the EO, i.e. α-tujona, 
eucalyptol, and camphor, the same effect was observed. 
In addition, S. officinalis EOs induced cell cycle arrest at 
the G2/M phase in Caco-2 and HCT-116 cells and the S 
phase in HT-29 cells. Concomitantly, the treatment with 

Fig. 1  Diagram with the most representative anticancer molecular mechanism of natural EOs. Legend: ↑increase, ↓decrease, Nuclear factor 
erythroid 2-related factor 2 (Nrf2), Reactive oxygen species (ROS), Deoxyribonucleic Acid (DNA), Heat shock proteins (Hsps), Interleukin (IL), Tumor 
necrosis factor (TNF), Forkhead box P3 (FOXP3)



Page 11 of 20Garzoli et al. Cancer Cell International          (2022) 22:407 	

a combination of the three main components increased 
the percentage of Caco-2 and HCT-116 cells in G0/G1 
and HT-29 cells in G2/M. It is worth highlighting that 
normal colon epithelial cell line FHC was not affected 
by the same treatment [111]. It also analyzed the effect 
on cell proliferation of Melissa officinalis L. extract on 
HT-29 and T84 human colon adenocarcinoma cells. The 
results showed that after 3 and 4 days of treatments there 
was a growth inhibition of HT-29 and T84 cells with an 
IC50 of 346 and 120 μg/mL, respectively. This antiprolif-
erative effect was associated with a cell cycle arrest in the 
G2/M phase [85].

Another study suggested that certain EOs might have 
a chemopreventive and antimetastatic effect. For exam-
ple, EOs obtained from the fruits of Illicium verum Hook. 
f. decreased cell migration ability of HCT-116 cells in a 
dose-dependent manner (25, 50, and 90 μg/mL), already 
at 24 h of treatment [50]. Differently from previous find-
ings, other EOs showed lesser anticancer effects. The 
EO of Leonotis nepetifolia (L.) R.Br. and several isolated 
compounds (hentriacontane, phyllo palmitate, stigmas-
teryl glycoside, 6,7-dimethoxy-5,3’,4’trihydroxyflavone, 
apigenin-7-O-glucoside, and luteolin-7-O-glucoside) 
showed a low cytotoxic effect on HCT-116 cells [69]. In 
addition, EOs from different Eugenia species (E. egen-
sis DC., E. flavescens DC., E. polystachya Rich., and 
E. patrisii Vahl) revealed that the most active EO was 
extracted from E. polystachya, at least in HCT-116 cell 
model. The E. flavescens and E. patrisii EOs, on the 
other hand, showed greater toxicity on normal MRC5 
cells (human fibroblasts) [116]. Overall, these results do 
not limit the possibility of improving and innovating the 
cancer therapy by EOs, rather they should be considered 
as a stimulus to search for a more successful and reliable 
therapy against CRC.

Pro‑oxidant and antioxidant effects of EOs
Oxidative stress is one of the causes of cell and DNA 
damage that can trigger the development of many dis-
eases. [21, 135–137]. The use of a pro-oxidant strategy 
has been proposed to damage the modified tissues selec-
tively [138]. Therefore, the search for bioactive com-
pounds with antioxidant capacity is a strategy to prevent 
this problem [139–141]. Numerous studies are showing 
antioxidant properties using in vitro tests such as DPPH 
or FRAP, but few exist in cell lines of human colon cancer 
(i.e. Caco-2, HCT-116, LoVo, DLD-1 and HT-29).

EOs from the bulb of Allium roseum L., rich in sulphur 
compounds as methyl methanethiosulfinate, showed an 
interesting antiproliferative activity against HT-29 and 
Caco-2 cells in a dose-dependent manner. It also showed 
antioxidant activity in FRAP and DPPH assays, and the 
ability to inhibit the production of superoxide anion in 

the above-mentioned cell lines [99]. In another study, 
the treatment of HCT-116 and HT-29 cells and pri-
mary fetal colon cells (FHC) with cinnamaldehyde and 
an ethanolic extract of cinnamon bark (Cinnamomum 
cassia  (L.) J.Presl), upregulated cellular protein levels of 
Nrf2, increased cellular levels of glutathione and pro-
tected HCT-116 cells against hydrogen peroxide-induced 
genotoxicity and arsenic-induced oxidative damage [142].

The antioxidant activity of EOs could protect DNA and 
tissues from damage caused by oxidative stress and ROS 
(reactive oxygen species) [143, 144]. A recent study in 
HT-29 cells showed that certain chemical compounds in 
EOs such as nerolidol, thymol, geraniol, methyl isoeuge-
nol, eugenol, linalool and a commercial mixture (Agolin) 
showed antioxidant as well as cytotoxic activity against 
this cell line [145]. Genoprotection against oxidative 
DNA damage was also observed for all studied com-
pounds, being thymol (at 12.5 ppm) the most protective 
compound against oxidative DNA damage. Geraniol (at 
125  ppm) also protected cells against DNA damage by 
methylation. Another study investigated the cytotoxic, 
genotoxic, and DNA protective effects of carvacrol and 
thymol in HepG2 and Caco-2 cell lines. Both compounds 
did not induce DNA chain breaks in any cell line, and in 
the presence of hydrogen peroxide, they offered signifi-
cant protection against DNA strand breaks [146].

The effects of fennel EO, Foeniculum vulgare Mill., 
were evaluated against the toxicity induced by an insec-
ticide-triflumuron in HCT116 cells [5]. When cells were 
pretreated with this EO, rich in estragole, cell viability 
was augmented while ROS generation was modulated 
by increasing CAT and SOD activities; MDA levels were 
also reduced compared to cells which were treated only 
with insecticide [122]. Although these results show that 
fennel EO has antioxidant activity and reduces DNA 
damage, it could increase the viability of a cancerous cell 
line, even if not reported by the authors.

The essential oil from Myrica rubra Siebold & Zucc. 
leaves has been showed mild antioxidant activity in a 
non-cancerous cell line from a primary culture of rat 
hepatocytes, however, it demonstrated a strong pro-
oxidative effect on Caco-2 cancer cells due to increased 
production of ROS [147]. Furthermore, this EO com-
bined with doxorubicin improved its antiproliferative 
and pro-oxidant properties in cancer cells. The chemical 
composition of M. rubra EO presents β-caryophyllene 
(43%), α-humulene (22%), humulene epoxide I (8%), 
valencene (6%), epi-α-selinene (6%), γ-muurolene (3%), 
β-caryphyllene-oxide (3%) and transnerolidol (2%) [148]. 
As a side result, it is noteworthy that this EO showed 
a significant antiproliferative effect in several intesti-
nal cancer cell lines [149]. Another study investigated 
the antioxidant capacity of carvacrol, thymol and their 
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mixture (10:1) in Caco-2 cells by measuring ROS produc-
tion. It was observed that carvacrol and the mixture at 
high concentrations induced oxidative stress, while at low 
concentrations showed protection against lipid peroxida-
tion and protein oxidation induced by hydrogen peroxide 
[150].

EOs have shown different properties to redox condi-
tions. On one hand, the antioxidant properties could 
reduce the damage associated with ROS production pre-
venting the conversion of benign cells into cancer cells, as 
well as DNA damage, but on the other hand, a pro-oxi-
dant condition could also be a strategy to attack cancer-
ous tissues (Table 2). This antioxidant-prooxidant activity 
of sesquiterpenes has been already reported [151].

Antimutagenic effects of EOs
As described in the previous section, some components 
of EOs can be considered potential antimutagenic com-
pounds since they are capable of protecting DNA against 
ROS-induced toxicity. Thymol, geraniol and fennel EOs 
have demonstrated this potential antimutagenic effect 
due to their antioxidant properties [122, 145]. The essen-
tial oil from Croton lechleri Müll. Arg. stem bark showed 
a protective efficacy in Ames test against mutagenic het-
erocyclic amines such as 2-amino-3-methylimidazo-[4,5-
f ]quinoline and 2-amino-3,4- dimethylimidazo-[4,5-f ]
quinolone [98]. It might be due to the inhibition of the 
metabolic activation via P450 and the blocking of muta-
gen access to DNA. It also showed antiproliferative prop-
erties in the LoVo and HepG2 cell lines. This EO contains 
76.93% of sesquiterpenes, being sesquicineole the major 
compound, and 18.89% of monoterpenes, being the 
limonene the major representative.

Anti‑inflammatory effects of EOs
Inflammation is initiated/mediated by oxidative stress, 
which induces cytokines (mainly TNF-α, IL-6 or IL-10) 
production in response to an external or pathophysio-
logical agent [152]. Both ROS and cytokines may activate 
different lymphocytes to encounter inflammation [153, 
154]. During the inflammatory process, other mediators, 
such as nitric oxide (NO), interleukin 1 beta (IL-1β), his-
tamine or PAF may have a role in the harmful mechanism 
[23, 155, 156]. Chronic exposure to all these mediators 
may lead to increased cell proliferation, mutagenesis, 
oncogene activation, and angiogenesis [157, 158]. Usu-
ally, plant extracts have been proved as anti-inflamma-
tory agents due to the presence of polyphenols, such as 
phenolic acids; however, EOs and monoterpenes have 
been scarcely tested as anti-inflammatory compounds 
in cancer conditions [159]. Chronic inflammation and 
its associated infections account for approximately 20% 
of cancer-related deaths [160–162]. Turmeric has been 
used as a medicinal herb for thousands of years for the 
treatment of various disorders. Although curcumin is the 
most studied active constituent of turmeric, accumulat-
ing evidence suggests that other components of turmeric 
have additional anti-inflammatory and anti-tumorigenic 
properties [163]. Some studies have shown that cur-
cumin preparations containing turmerone and turmeric 
EOs revealed that anti-inflammatory cytokines including 
IL-10 and IL-11 as well as FOXP3 were upregulated in the 
colon. The combined treatment of curcumin and turmer-
one provides superior protection from dextran sodium 
sulfate-induced colitis than curcumin alone, highlighting 
the anti-inflammatory potential of turmeric [164].

Table 2  In vitro Antioxidant activities of EOs and isolated compounds

Type of EO Tested cell lines Results Refs.

Allium roseum bulb EO HT-29
CaCo-2

↓Production of superoxide anion [99]

Cinnamaldehyde
Cinnamon bark extract

HCT-116
HT-29
FHC

↑Nrf2, ↑cellular glutathione
↓Oxidative stress

[142]

Thymol HT-29 ↑ Protection of the colonic epithelium against oxidative DNA 
damage

[145]

Geraniol HT-29 ↑Protection from DNA methylation damage [145]

Carvacrol
Thymol

Caco-2 ↑Antioxidant properties against DNA strand breaks [146]

Fennel (Foeniculum vulgare) EO HCT-116 ↑Cell viability, ↑Antioxidant properties
↑DNA protection

[122]

EO from Myrica rubra leaves Caco-2 ↑Selective pro-oxidative effect on cancer cells [147]

Thymoquinone DLD-1 ↑Pro-oxidative effects
↑Apoptosis

[126]

Carvacrol Caco-2 ↑Pro-oxidative effects at high doses
↑Antioxidant effects at low concentrations

[150]
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Myrcene and α-pinene are monoterpenes found in 
the aerial parts (leaves, twigs and berries) of Pistacia 
lentiscus L. They have been well characterized for their 
antibacterial and anti-inflammatory properties. Nonethe-
less, poor information exists on their potential antican-
cer activity. An increasing number of studies has revealed 
that EOs from P. lentiscus L. trunk resin (namely mastic 
gum) which contains α-pipene, β-pipene, β-myrcine, 
linalool, trans-caryophyllene and camphene, may exert 
anticancer activity in several types of human neoplasia, 
including prostate and colon carcinomas as well as hae-
matological malignancies [165–167]. Particularly, hex-
ane and ethanolic extracts of mastic gum were shown to 
induce p53- and p21-independent G1-phase arrest fol-
lowed by apoptosis in human colon cancer HCT-116 cells 
in vitro [168, 169].

Another research revealed a dose-dependent reduction 
of tumour cell viability induced by myrcene and α-pinene 
in Caco-2 cells. Intracellular ROS production slightly 
increased according to P. lentiscus EOs exposure, but it 
was one of the lowest ROS levels compared to other cell 
lines. Probably the reason was that the concentrations 
tested in this assay were too high (640  µg/mL) [170]. 
Previously, anti-inflammatory properties were reported 
for limonene, β-pinene and γ-terpinene, which reduced 
leukocyte migration to the damaged tissue and exhibited 
anti-inflammatory activity [171, 172].

Thymus alternans K. EO has also demonstrated anti-
inflammatory properties and antiproliferative activity in 
HCT-15 and HCT-116 cells. Such effect was specifically 
due to nerolidol, the main volatile component of T. alter-
nans [88]. This sesquiterpene was also responsible for 
the cytotoxic activity of Comptonia peregrina L. Coulter, 
a native plant from Canada used in traditional medicine 

against cancer, in the human colon adenocarcinoma cell 
line DLD-1 [88].

Table  3 summarizes the anti-inflammatory proper-
ties of the EOs tested on different colon cancer cell lines. 
Generally, monoterpenes and sesquiterpenes seem to 
be the most active compounds. These terpenes have not 
only demonstrated an anti-inflammatory effect, but also 
concomitant antiproliferative and antibacterial ones. As 
inflammation is related to oxidative stress, these results 
are well linked to those exposed in “Anti-inflammatory 
effects of EOs” section.

The synergistic anticancer effect of EOS associated 
with other bioactive compounds or conventional 
chemotherapy
The synergy between different compounds is a sought-
after effect in the fight against cancer. Such effect of the 
essential polyphenolic compounds of curcumin, the EO 
of turmeric (ETO-Cur), and the tocotrienol-rich fraction 
(TRF) of the vitamin E isomers has been evaluated in 
HT-29 and HCT-116 cells. Indeed, the combined treat-
ment, especially for ETO-Cur and TRF, showed syner-
gistic potential in the 2 cell models. Similarly, in in vivo 
studies, HCT-116 cells xenograft in SCID mice were 
treated by ETO-Cur and TRF, which synergically acted to 
inhibit tumor volume. Moreover, even changes in micro-
bial diversity were observed in xenograft mice treated 
with such EOs combination [173].

Various studies have reported that TQ could enhance 
anti-cancer potential when co-administered with sev-
eral chemotherapeutic agents while reducing their toxic 
side effects [175]. Different compounds (menthol, trans-
anethole) were investigated for the preparation of oil/
water microemulsions for the delivery of methotrexate, 
and the ability of methotrexate-loaded microemulsions 

Table 3  Anti-inflammatory effects of EOs and isolated compounds

↑increase, ↓decrease

TNF-α Tumor necrosis factor alpha, FOXP3 Forkhead box P3, PGE2 Prostaglandin E2, IL Interleukin, NO Nitric oxide

EO Tissue or cells Results References

Turmerone Mouse colon cells Anti-inflammatory
↓IL-10,↓ IL-11, ↑FOXP3

[164]

EO from leaves, twigs and berries
of Pistacia lentiscus

HCT-116 Antibacterial
↓Pro-inflammatory markers
↓NO, ↓PGE2, ↓TNF-α

[165–167]

Turmerone
Tocotrienol

HT-29
HCT-116

↓Growth of colon cancer cells [173]

Thymoquinone COLO-205
HCT-116

↓Phosphorylation of p65 protein
↓NF-κB, ↑Apoptosis

[174]

Nerolidol HCT-15
HCT-116
DLD-1

↓Pro-inflammatory cytokines
↓TNF-α, ↓IL-1β
Antiproliferative

[88]
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to inhibit cancer cell growth. Menthol and trans-anethole 
EOs led to cytotoxic microemulsions decreasing HeLa 
cells proliferation by MTT assay concluding that the oily 
component could play a role in the efficacy and safety of 
the microemulsions (for comparison α-tocopherol based-
formulations showed opposite effects with increased cell 
proliferation) [176]. EO from the leaves of M. rubra also 
demonstrated an antiproliferative effect on Caco2 cells, 
with strong prooxidative effect. In addition, this EO was 
able to improve the antiproliferative and prooxidative 
activity of doxorubicin enhancing intracellular and nuclei 
accumulation, as previous described [147].

Limitations, clinical challenges and future 
perspectives
A limitative aspect of using the EOs in CRC management 
is represented by variable concentrations of bioactive 
compounds. Many factors, including ecological and geo-
graphical conditions influence to the quality and quantity 
of EOs. The chemical composition and biological activi-
ties of EOs depend on various factors such as habitat, cli-
matic conditions, seasonality, cultivation and harvesting 
and conservation practices, the type of soil, the different 
extraction procedures [177–180] as well as a substan-
tial variability based on the part of the plant used for the 
extraction of EO. Altitude is an important factor affecting 
yield, composition, and biology of plant extracts. Satureja 
thymbra L. EO showed increased cytotoxic activity at an 
altitude of 661 m if compared to the same EO collected at 
156 m above sea level. This result was obtained using the 
sulforhodamine B assay on HCT-116 colon cancer cells 
with an IC50 of 2.45 ± 0.21  μg/mL. In this case, the EO 
composition was prevailed by carvacrol (14.30%) [181]. 
Another important therapeutic limitation derives from 
the fact that it is not known exactly and completely the 
pharmacokinetic profiles of the essential oils, and due to 
their hydrophobic nature EOs can lead to poor bioavail-
ability and pharmacodynamics issues.

Clinical challenges derived from the search for a natu-
ral therapy that includes EOs has led to attempts to find 
methods for administering the extracts. To overcome 
these issues, researchers explored the possibility to load 
nano-carriers with EOs, individually or combined with 
conventional chemotherapeutic agents. For example, A 
Carum carvi L. oil nanoemulsion system was tested on 
HT-29 cells, whereas it demonstrated a cytotoxic effect 
and apoptosis induction by increased gene expression 
of caspase-3. Besides, the authors suggested that the 
use of dietary supplements with nanoemulsions could 
potentially decrease the risk of cancer and that more 
research was needed to confirm this hypothesis [182]. 
This approach of drug delivery however has been poorly 
studied in CRC and EOs thus leaving the possibility to go 

down this route, at least in preclinical models. In order to 
improve the anticancer therapeutic potential and reduce 
the toxicity of bioactives compounds, new nanopharma-
ceutical forms for target transport such as nanoparticles, 
liposomes, nanocapsules, niosomes should be developed 
and researched [21, 22, 163, 183]. Alternatively, EOs can 
be combined with other more bioavailable compounds 
in order to harness their impact on human organism. 
For example, EOs can be used together with other plant 
natural derived products to search for an additive or a 
synergistic effect. Nonetheless, this combination scheme 
should be carefully evaluated, as sometime novel com-
pounds put inside in a complex organism can lead also to 
antagonistic effects, an activity that need to be avoided. 
Despite remarkable anticancer activity of EOs in CRC 
and cancer in general, clinical trials that face the chal-
lenge of using such preparations in humans are still lack-
ing. It is hoped that this gap will be rapidly filled in and 
that new works will explore the superb effects of EOs in 
CRC.

Conclusion
Essential oils have been used in alternative medicine for 
a very long time, due to the healing properties that have 
been studied and demonstrated. Numerous experimental 
pharmacological studies have shown that they can inhibit 
the development of cancer and deserve to be used in pre-
vention and even as adjuncts to classical chemotherapy. 
Therapeutic strategies to fight against CRC relay on sur-
gery, radiotherapy, immunotherapy, and chemotherapeu-
tic agents. EOs, defined as volatile chemical molecules 
from plants, can be potentially inserted in the last cate-
gory of curative tools for the treatment of cancer. Though 
numerous advancements have been reported in surgery 
and chemotherapy in the last decades leading to progres-
sion of patient time survival and even in the increase of 
clinical conditions of affected patients, the death rate 
of CRC is still worrying healthcare system worldwide. 
This updated review showed scientific evidence  on 
the potential anticancer effect of EOs in CRC. EOs can 
exhibit cytotoxic effects on living cells depending on 
type and concentration. In eukaryotic cells, EOs can act 
as prooxidants affecting inner cell membranes and orga-
nelles such as mitochondria. In some cases, changes in 
intracellular redox potential and mitochondrial dysfunc-
tion induced by EO can be associated with their capac-
ity to exert antigenotoxic effects. EOs can interfere with 
several molecular targets in a pleiotropic fashion, but 
undeniably the cytotoxic activity of EOs is based on 
their individual components. In general, EOs (due  to 
their lipophilic properties and low molecular weights) 
can cross cell membranes altering the phospholipid lay-
ers, increasing membrane fluidity, and leading to leakage 
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of ions and/or other cytoplasmic content, thus induc-
ing ATP reduction, alteration of pH gradient and loss of 
mitochondrial potential. In the light of these results, EOs 
can be a new therapeutic window and a potential  adju-
vant chemotherapy of CRC.
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