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1 Introduction

It has been suggested that orbital angular momentum carried by participants in off-central
heavy ion collisions (HIC) can result in spin polarization of final state particles [1, 2]. Re-
alistic model calculations have indicated that significant vorticity is present in quark-gluon
plasma (QGP) produced in HIC [3–5]. Theoretical predictions of final particle spin po-
larization have been made based on a spin-orbit coupling picture [6–8]. Such a picture is
indeed consistent with early experimental measurement of Lambda hyperon global polar-
ization [9]. However, recent measurement of Lambda hyperon local polarization [10] shows
an overall sign difference from theoretical predictions [11–13]. Different explanations have
been proposed to understand the puzzle [14, 15], yet no consensus has been reached.

Recently it has been realized that shear can also contribute to spin polarization [16, 17].
In particular, it has been found based on a free theory analysis that spin responds to ther-
mal vorticity and thermal shear in the same way. Phenomenological implementations have
shown the right trend toward the measured local polarization results [18–22]. However, as
we shall show in this paper, the contribution discussed so far is still incomplete. Vorticity
and shear differ in one important aspect: the former does not change the particle distri-
bution while the latter necessarily does. The redistribution of particles by shear flow leads
to an extra contribution to spin polarization. The extra contribution can be consistently
described in the framework of quantum kinetic theory (QKT), see [23] for a review and
references therein. Rapid development of QKT has been made to include collisional term
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systematically via self-energy over the past few years [24–37]. The QKT is formulated using
the Wigner function, whose axial component can be related to spin polarization. The axial
component of Wigner function for fermion in a collisional QKT is given by [28, 37, 38]1

Aµ = −2π~
[
aµfA + εµνρσPρuσDνf

2(P · u+m)

]
δ(P 2 −m2), (1.1)

with P and u being momentum of particle and flow velocity. aµfA is a dynamical contri-
bution [38–42]. Dν is a covariant derivative acting on the distribution function f defined as
Dν = ∂ν−Σ>

ν −Σ<
ν

1−f
f . The partial derivative term is what has been considered so far, the

extra contribution comes from self-energies Σ>/<. Naively one may expect the self-energy
term to be suppressed by powers of coupling in a weakly coupled system described by the
QKT. In fact this is not true. In a simple relaxation time approximation, the self-energy
contribution can be estimated as δf

τR
. The appearance of δf follows from the fact that

the self-energy contribution in the covariant derivative vanishes in equilibrium by detailed
balance. The combination δf

τR
can be further related to ∂f0 by kinetic equation with f0

being local equilibrium distribution. Consequently the self-energy contribution is at the
same order as the derivative one, with the dependence on coupling completely canceled
between 1

τR
and δf .

A second question we attempt to address is the gauge dependence of spin polarization.
Since theoretical calculation is usually done in the QGP phase while experiments measure
particle after freezeout. The gauge dependence is only present in the partonic level calcu-
lations. On general ground, we expect that it is a gauge invariant spin polarization that is
passed through freezeout. However, (1.1) is expressed in terms of self-energy, which is in
general gauge dependent. It is necessary to include gauge link contribution to restore gauge
invariance. Since collisions are mediated by off-shell particles, it is essential to consider
quantum gauge field fluctuations in the gauge link. The quantum gauge field fluctuation
also feels the flow via interaction with on-shell fermions. It turns out that there is a sim-
ilar contribution associated with the gauge link, which is also at the same order as the
derivative one. As a conceptual development, we generalize the definition of gauge link to
the Schwinger-Keldysh contour, in which the collisional QKT is naturally derived. We also
adapt the straight path widely used for background gauge field to the Schwinger-Keldysh
contour to allow for consistent treatment of quantum gauge field fluctuations.

The aim of the paper is to evaluate the two contributions mentioned above. We
illustrate the calculations by using a massive probe fermion in a massless QED plasma.
While the method we use is applicable to arbitrary hydrodynamic flow, we consider the
plasma with shear flow only for simplicity. The paper is organized as follows: in section 2,
we briefly review the classical limit of QKT, which is the Boltzmann equation widely
used in early studies of transport coefficients. By solving the Boltzmann equation we
determines the particle redistribution in the presence of shear flow. The information of
particle redistribution will be used to calculate the self-energy contribution and the gauge
link contribution in sections 3 and 4 respectively. Analytic results can be obtained at the

1The definitions of Wigner function in [28] and [37] differ by a sign. We use the latter definition.
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leading logarithmic order. The results will be discussed and compared with the derivative
contribution in section 5. Finally we summarize and provide outlook in section 6.

2 Particle redistribution in shear flow

We consider a QED plasma with Nf flavor of massless fermions in a shear flow. The shear
flow relaxes on the hydrodynamic scale, which is much slower than the relaxation of plasma
constituents, thus we can take a steady shear flow. The presence of shear flow leads to
redistribution of fermions and photons, which gives rise to off-equilibrium contribution to
energy-momentum tensor responsible for shear viscosity. The kinetic equation addressing
this problem has been written down long ago [43–45]. The kinetic equation is simply the
Boltzmann equation with collision term given by elastic and inelastic scatterings. Recently
a QKT for QED has been derived using Wigner function formalism by one of us assuming
the lowest order distribution functions being unpolarized [37]. The QKT reduces to the
Boltzmann equations for unpolarized distributions in [43–45] when specialized to QED.
It also allows for study of polarization effect in next order correction systematically. In
particular it links the distribution function f in (1.1) with the unpolarized one satisfying
the Boltzmann equation. For simplicity we keep to the leading-logarithmic (LL) order,
for which the inelastic scatterings are irrelevant. The resulting Boltzmann equations for
fermion and photon read respectively

(∂t+ p̂ ·∇x)fp =−1
2

∫
p′,k′,k

(2π)4δ4(P +K−P ′−K ′) 1
16p0k0p′0k

′
0

×
[
|M|2Coul,f

(
fpfk(1−fp′)(1−fk′)−fp′fk′(1−fp)(1−fk)

)
+ |M|2Comp,f

(
fpf̃k(1+ f̃p′)(1−fk′)− f̃p′fk′(1−fp)(1+ f̃k)

)
+ |M|2anni,f

(
fpfk(1+ f̃p′)(1+ f̃k′)− f̃p′ f̃k′(1−fp)(1−fk)

)]
, (2.1a)

(∂t+ p̂ ·∇x) f̃p =−1
2

∫
p′,k′,k

(2π)4δ4(P +K−P ′−K ′) 1
16p0k0p′0k

′
0

×
[
|M|2Comp,γ

(
f̃pfk(1−fp′)(1+ f̃k′)−fp′ f̃k′(1+ f̃p)(1−fk)

)
+2Nf |M|2anni,γ

(
f̃pf̃k(1− f̃p′)(1− f̃k′)−fp′fk′(1+ f̃p)(1+ f̃k)

)]
. (2.1b)

We have used fp and f̃p to denote distribution functions for fermions and photon carrying
momentum p respectively. |M|2 is partially summed amplitude square with the subscripts
“Coul”, “Comp” and “anni” indicate Coulomb, Compton and annihilation processes respec-
tively. The subscripts f and γ distinguish the fermionic and photonic amplitude squares,
whose explicit expressions we shall present shortly. The overall factor 1

2 on the r.h.s. com-
ing from spin average and

∫
p ≡

∫ d3p
(2π)3 . When there is imbalance between electron and

position, there should be a separate equation for position. We restrict ourselves to neutral
plasma, in which the positron distribution is identical to that of anti-fermion.
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Now we can work out the redistribution of particles in the presence of thermal shear,
given by solution to the Boltzmann equation. We solve (2.1) in a gradient expansion.
The l.h.s. starts at the first order when the spacetime derivatives act on local equilibrium
distributions. The same local equilibrium distributions give a vanishing r.h.s. at zeroth
order in gradient by detailed balance. From linear response, we expect the deviation from
equilibrium distribution to be proportional to thermal shear thus is first order in gradient.
A first order r.h.s. arises as the collision term linearized in the deviation from equilibrium
distributions. We can parametrize the local equilibrium distribution by thermal velocity
βµ = βuµ as f (0)

p = 1
eP ·β+1 and f̃ (0)

p = 1
eP ·β−1 and the thermal shear is given by

Sij = 1
2 (∂iβj + ∂jβi)−

1
3δij∂ · β. (2.2)

When only thermal shear is present, we can evaluate the l.h.s. as

p̂i∇if (0)
p = −f (0)

p (1− f (0)
p )∂iβj

pipj
Ep

= −f (0)
p (1− f (0)

p )SijIpijp,

p̂i∇if̃ (0)
p = −f̃ (0)

p (1 + f̃ (0)
p )∂iβj

pipj
Ep

= −f̃ (0)
p (1 + f̃ (0)

p )SijIpijp, (2.3)

with Ipij = p̂ip̂j − 1
3δij being a symmetric traceless tensor defined with 3-momentum p. We

have also replaced PiPj by its traceless part by traceless property of Sij . Following the
method in [44], we parametrize the deviation of distributions by

f (1)
p = f (0)

p (1− f (0)
p )f̂p, f̃ (1)

p = f̃ (0)
p (1 + f̃ (0)

p ) ˆ̃fp, (2.4)

with the superscripts (0) and (1) counting the order of gradient. To linear order in gradient,
the parametrization adopts simple relations for the collision term

fpfk(1−fp′)(1−fk′)−(p,k↔ p′,k′) = f (0)
p f

(0)
k (1−f (0)

p′ )(1−f (0)
k′ )(f̂p+ f̂k− f̂p′− f̂k′),

fpf̃k(1+ f̃p′)(1−fk′)−(p,k↔ p′,k′) = f (0)
p f̃

(0)
k (1+ f̃

(0)
p′ )(1−f (0)

k′ )(f̂p+ ˆ̃fk− ˆ̃fp′− f̂k′),

fpfk(1+ f̃p′)(1+fk′)−(p,k↔ p′,k′) = f (0)
p f

(0)
k (1+ f̃

(0)
p′ )(1+ f̃

(0)
k′ )(f̂p+ f̂k− ˆ̃fp′− ˆ̃fk′). (2.5)

By rotational symmetry, we expect

f̂p = SijI
p
ijχ(p), ˆ̃fp = SijI

p
ijγ(p). (2.6)
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Using (2.5) and (2.6), we obtain a linearized Boltzmann equation from (2.1):

− fp(1− fp)SijIpijp = −1
2

∫
p′,k′,k

(2π)δ4(P +K − P ′ −K ′) 1
16p0k0p′0k

′
0
Sij

×
[
|M|2Coul,f

(
Ipijχp + Ikijχk − I

p′

ijχp′ − I
k′
ij χk′

)
fpfk(1− fp′)(1− fk′)

+ |M|2Comp,f

(
Ipijχp + Ikijγk − I

p′

ij γp′ − I
k′
ij χk′

)
fpf̃k(1 + f̃p′)(1− fk′)

+|M|2anni,f

(
Ipijχp + Ikijχk − I

p′

ij γp′ − I
k′
ij γk′

)
fpfk(1 + f̃p′)(1 + f̃k′)

]
,

− f̃p(1 + f̃p)SijIpijp = −1
2

∫
p′,k′,k

(2π)δ4(P +K − P ′ −K ′) 1
16p0k0p′0k

′
0
Sij

×
[
|M|2Comp,γ

(
Ipijγp + Ikijχk − I

p′

ijχp′ − I
k′
ij γk′

)
f̃pfk(1− fp′)(1 + f̃k′)

+|M|2anni,γ

(
Ipijγp + Ikijγk − I

p′

ijχp′ − I
k′
ij χk′

)
f̃pf̃k(1− fp′)(1− fk′)

]
, (2.7)

where we have used short-hand notations χp = χ(p) and γp = γ(p). Sij is arbitrary, thus
we can equate its coefficient on two sides. The resulting tensor equations can be converted
to scalar ones by contracting with Ipij . The flavor dependence in the amplitude squares can
be expressed in terms of elementary amplitude squares as

|M|2Coul,f = 2Nf |M|2Coul

|M|2Comp,f = |M|2Comp, |M|2Comp,γ = 2Nf |M|2Comp

|M|2anni,f = 1
2 |M|

2
anni, |M|2anni,γ = Nf |M|2anni, (2.8)

with

|M|2Coul = 8e4 s
2 + u2

t2

|M|2Comp = 8e4 s

−t

|M|2anni = 8e4
(
u

t
+ t

u

)
.

The factor 2Nf in Coulomb case comes from scattering with Nf fermions and anti-fermions.
For scattering between identical fermions, the symmetry factor 1

2 in the final state is com-
pensated by an identical u-channel contribution to the LL accuracy. Similarly the factor
2Nf in the Compton case comes from scattering of photon with Nf fermions and anti-
fermions. The factor Nf in photon pair annihilation corresponds to Nf possible final
states and 1

2 in fermion pair annihilation is a final state symmetry factor.
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Figure 1. χe4 ln e−1/(2π)3 versus p/T for massless QED with Nf = 2. Solid and dashed lines cor-
respond to numerical solution and approximate analytic solution (2.11). At low p, the approximate
solution is slightly below the numerical one.

The phase space integrations are performed in appendix A. The results turn the lin-
earized Boltzmann equations (2.7) into

f (0)
p (1−f (0)

p )2p
3 = e4 lne−1 1

(2π)4

[
8Nf

π3 cosh−2 βp
2

(
6χp+p((−2+βptanh βp

2 )χ′p−pχ′′p)
)

72p2β3

+2χp−γp
p

π2

8β2
4π
3 f (0)

p (1+ f̃ (0)
p )

]

f̃ (0)
p (1+ f̃ (0)

p )2p
3 = e4 lne−1 1

(2π)4 4Nf
γp−χp
p

π2

8β2
4π
3 f̃ (0)

p (1−f (0)
p ). (2.9)

The second equation of (2.9) is algebraic. It is solved by

γp − χp
(2π)3 = 1

e4 ln e−1
2β2

π2Nf
p2 1 + f̃

(0)
p

1− f (0)
p

. (2.10)

The first equation is differential and need to be solved numerically. In the limit βp � 1,
the differential terms are subleading, reducing it to an algebraic equation. Combining
with (2.10), we find the following asymptotic solution

χ(p→∞)
(2π)3 = 1

e4 ln e−1
3(1 + 2Nf )β2p2

4π2N2
f

. (2.11)

We have combined χp and γp with 1
(2π)3 in (2.10) and (2.11). It is convenient as the same

factor will appear in phase space integration measure. The numerical solution is obtained
with the boundary condition (2.11) and χ(p = 0) = 0.2 In fact, it has been pointed
out in [44] that the ansatz χp, γp ∼ p2 gives very good approximation to the numerical
solution. Figure 1 compares (2.11) with numerical solution, confirming this point. As a
further check, we calculate shear viscosity for plasma at constant temperature. In this case

2A series analysis of the differential equation in (2.9) around p = 0 indicate χ(p) ∼ p2.

– 6 –



J
H
E
P
1
2
(
2
0
2
2
)
0
3
0

K '

K

P'P 2,μ

2,β 1,α

1,⋁

Q

Figure 2. Self-energy of probe fermion from Coulomb scattering with medium fermion. The
massive probe fermion carries momentum P and the massless medium fermions run in the loop.

Tij = ηTSij . Expressing Tij using kinetic theory, we obtain

η = 1
15

∫
p
p
[
4Nffp(1− fp)χp + 2f̃p(1 + f̃p)γp

]
. (2.12)

Integrations with numerical solution reproduces the corresponding entries in table I of [45].
Integrations with approximate solution (2.10) and (2.11) gives results with an error of
about 1% for Nf = 1 and about 3% for Nf = 2. We will simply use the approximate
solution in the analysis below.

3 Self-energy correction

In the previous section, we have determined the redistribution of constituents in plasma
with thermal shear. Now we introduce a massive probe fermion to the plasma and study
its polarization in the shear flow. To this end, we need to calculate self-energy correction
to axial component of its Wigner function (1.1). In general both Coulomb and Compton
scatterings contribute to the self-energy.3 Following [26], we take the heavy probe limit
m � eT so that the Coulomb scattering dominates in the self-energy. The Coulomb con-
tribution to the self-energy diagram is depicted in figure 2. We evaluate the self-energy as4

Σ>(P ) = +e4Nf

∫
P ′,K′,K

(2π)4δ4(P +K − P ′ −K ′)γµS>(P ′)γνD22
µβ(−Q)D11

αν(−Q)

× tr[γαS<(K)γβS>(K ′)], (3.1)

with
∫
P =

∫ d4P
(2π)4 and Q = P ′−P . Σ< can be obtained by the replacement >↔<, 11↔ 22.

The propagators in (3.1) are given by

S>(P ) = 2πε(p0)(/P +m)(1− fp)δ(P 2 −m2),
S>(K) = 2πε(k0) /K(1− fk)δ(K2),

D22
µβ(−Q) = igµβ

Q2 , D11
αν(−Q) = −igαν

Q2 . (3.2)

3For probe fermion, pair annihilation is irrelevant.
4Σ>(x, y) is defined by −e2〈 /A(x)ψ(x)ψ̄(y) /A(y)〉.
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We have indicated propagators of medium fermions by an underline. S< can be obtained
by the replacement 1 − fk → −fk. Feynman gauge is used for photon propagators. The
component of self-energy contributing to polarization is Σ>λ = 1

4tr
[
Σ>(P )γλ

]
. The traces

involved in this component are evaluated as

tr
[
γµS>(P ′)γνγλ

]
= 4

(
P ′µgνλ + P ′νgµλ − P ′λgµν

)
2πε(p′0)δ(P ′2 −m2)(1− fp′),

tr
[
γαS<(K)γβS>(K ′)

]
= 4

(
KαK ′β +KβK ′α −K ·K ′gαβ

)
(2π)2ε(k0)ε(k′0)

× δ(K2)δ(K ′2)(−fk)(1− f ′k). (3.3)

Note that the LL contribution arises from the regime q � P,K, we may replace ε(p′0) '
ε(p0) = 1 for probe fermion and ε(k0)ε(k′0) ' ε(k0)2 = 1. Below we assume an equilib-
rium distribution for probe fermion for illustration purpose. Relaxation of this assumption
only involves unnecessary complication. It can be important for realistic modeling of phe-
nomenology, which will be studied elsewhere. The medium fermions is off-equilibrium,
with the distribution determined in the previous section. The combination needed for
polarization is −fpΣ>

k (P )− (1− fp)Σ<
k (P ). Using (3.1) and (3.3), we obtain

− fpΣ>
k (P )− (1− fp)Σ<

k (P )

= −16e4Nf

∫
d3kd3q

1
(2π)5 δ(p0 + k0 − p′0 − k′0) 1

8p′0k0k′0
[2kkP ·K − qkP ·K] 1

(Q2)2

×
(
fp(1− fp′)fk(1− fk′)− fp′(1− fp)fk′(1− fk)

)
= −16e4Nf

∫
d3kd4q

1
(2π)5 δ(p0 − p′0 + q0)δ(k0 − k′0 − q0) 1

8p′0k0k′0

[
kkP ·K ′ + k′kP ·K

]
× 1

(Q2)2Sij
(
Ikijχk − Ik

′
ij χk′

)
f (0)
p f

(0)
k (1− f (0)

p′ )(1− f (0)
k′ )

≡ SijRijk. (3.4)

We have inserted a factor of 2 corresponding to fermions and anti-fermion in the loop and
kept term up to O(q2) in the square bracket. In the second equality, we have used the
assumption that only the distribution of medium fermions is off-equilibrium. Rijk involves
complicated tensor integrals of ~k and ~k′. They are evaluated by first converting to ten-
sor integrals of ~q by rotational symmetry and δ(k0 − k′0 − q0), which correlates ~k and ~q.
The resulting tensor integrals of ~q are further performed with rotational symmetry and
δ(p0 − p′0 + q0). Details of the evaluation can be found in appendix B. In the end, we find
the following component relevant for spin polarization

Ai = 2πε
ijkpjRmnkSmn

2(p0 +m) δ(P 2−m2) ' − 1
p0 +m

(I2 + I3)ε
imlpnplSmn

p5 δ(P 2−m2)Cf , (3.5)
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with

I2 =
π2 cosh−2 βp0

2

(
(15p4 − 87p2p2

0 + 72p4
0) ln(p0−p

p0+p) + 8p5

p0
− 126p3p0 + 144pp3

0

)
72β

+
3 cosh−2 βp0

2

(
(12p2p0 − 12p3

0) ln p0−p
p0+p + 28p3 − 28p5

3p2
0
− 24pp2

0

)
ζ(3)

8β2 ,

I3 = −

(
(p4 − 9p2p2

0 + 8p4
0) ln p0−p

p0+p −
38p0p3

3 + 16p3
0p
) (
π2 − 9 tanh βp0

2 ζ(3)
)

4β (1 + cosh(βp0)) . (3.6)

and Cf = 3Nf (1+2Nf )
4π2N2

f
. We reiterate that the self-energy correction scales as ∂f (0), with the

dependence on coupling cancels as follows: e4 from vertices and ln e−1 from LL enhance-
ment combine to give 1

τR
∼ e4 ln e−1, which is canceled by a counterpart in f (1) ∼ ∂f (0)

e4 ln e−1 .
Before closing this section, we wish to comment on the gauge dependence of (3.6).

We illustrate this with a comparison of Feynman gauge and Coulomb gauge. Let us
rewrite (3.1) as

Σ> = e2
∫
Q
γµS>(P ′)γνD22

µβ(−Q)D11
αν(−Q)Π<αβ(Q), (3.7)

with Π<αβ(Q) being the off-equilibrium photon self-energy. In the presence of shear flow,
the self-energy can be decomposed into four independent tensor structures as

Π<αβ(Q) = PαβT Π<
T + PαβL Π<

L + PαβTTΠ<
TT + PαβLTΠ<

LT . (3.8)

Here PT/L are transverse and longitudinal projectors defined by

PαβT = Pαβ − PαµP βνQµQν
q2 , PαβL = Pαβ − PαβT , (3.9)

with Pαβ = uαuβ − gαβ . PαβTT and PαβLT are emergent projectors owning to the shear flow,
which are constructed as5

PαβTT = PαρT SρσP
σβ
T , PαβLT = PαρL SρσP

σβ
T + (L↔ T ). (3.10)

Note that photon self-energy is gauge invariant but propagator is not. Now we illustrate
gauge dependence is generically present by using Feynman and Coulomb gauges.

For LL accuracy, we can simply use bare photon propagators in (3.7). For spacelike
momentum Q relevant for our case, we have a simple relation D11

αβ = −D22
αβ = −iDR

αβ . The
retarded propagator in Feynman and Coulomb gauges have the following representations

Feynman : DR
αβ = P Tαβ

−1
Q2 +

(
Q2

q2 u
αuβ − q0(uαQβ + uβQα)

q2 + QαQβ

q2

)
−1
Q2

Coulomb : DR
αβ = P Tαβ

−1
Q2 +

(
Q2

q2 u
αuβ

)
−1
Q2 . (3.11)

5The obvious structure constructed by sandwiching Sρσ with two PL is not independent.
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Using (3.8) and (3.11), we easily seen contribution to Σ> from Π<
T and Π<

TT are identical
in two gauges. For contribution from Π<

L and Π<
LT , we use Ward identity ΠαβQα = 0 and

transverse conditions PαβT/LQa = 0, P abT uα = 0 to find the following structures, which are
present only in Feynman gauge

Π<
LP

αβ
L uαuβQµQν , Π<

LP
αβ
L uαuβuµQν + (µ↔ ν), Π<

LTP
αβ
L uαQµP

T
βν + (µ↔ ν). (3.12)

We have also confirmed the gauge dependence of self-energy contribution by explicit cal-
culations.

4 Gauge link contribution

The gauge dependence we found in the previous section should not be a surprise. The rea-
son is the underlying quantum kinetic theory is derived using a gauge fixed propagators. For
Wigner function of the probe fermion, its gauge dependence can be removed by inserting a
gauge link. If the gauge field in the link is external, i.e. a classical background, the gauge
link simply becomes a complex phase. However, when we consider self-energy of fermions
arising from exchanging quantum gauge fields, we need to worry about ordering of quantum
field operators from expanding the gauge link and interaction vertex. A systematic treat-
ment of the ordering is still not available at present. We will follow a different approach.
Since we have already obtained the axial component of Wigner function without gauge link,
we will find correction from expanding the gauge link that contributing at the same order.

When fluctuations of quantum gauge fields appear both in the interaction vertices and
in the gauge link, it is natural to order them on the Schwinger-Keldysh contour. The
latter is also the base of collisional kinetic theory in the recent development of quantum
kinetic theory. However we immediately find the well-known straight path for the gauge
link becomes inadequate for the Wigner function joining points on forward and backward
contours. To find a proper generalization in Schwingwer-Keldysh contour, let us take a
close look at the gauge transformation of the bare Wigner function S<(x, y):

S<(x, y)→ e−ieα2(y)S<(x, y)eieα1(x), (4.1)

with α1,2 being gauge parameters on contour 1 and 2 respectively. If there is only classical
background field, the gauge fields on contour 1 and 2 are the same, we may take α1 = α2.
In this case, placing the straight path on either contour is equivalent. This is no longer
true when quantum fluctuations are present. We propose to use double gauge links

S̄<(x, y) = ψ1(x)ψ̄2(y)U2(y,∞)U1(∞, x), (4.2)

with Ui(y, x) = exp
(
−ie

∫ x
y dw ·Ai(w)

)
and the i = 1, 2 identifying the forward and back-

ward contours respectively. Assuming quantum fluctuations vanishes at past and future
infinities, we easily arrive at the gauge invariance of (4.2). We have not specified the paths
for the gauge links appearing in (4.2). A natural choice would be to take the straight line
joining x and y and extending to future infinite. This is illustrated in figure 3. When there
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x
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1

2

Figure 3. Path for the gauge link in the Schwinger-Keldysh contour. The path in the full spacetime
dimension is determined by a straight path joining x and y, which is extended to future infinity.

zx y

w

Figure 4. Diagram for gauge link contribution with the propagator connecting one quantum gauge
field in the medium and the other in the gauge link. The dashed semi-circle denotes the gauge link.
The shear gradient enters through the photon self-energy. In LL approximation, only one insertion
of the self-energy is needed.

is only classical background gauge field, A1 = A2 so that the two gauge links in (4.2) cancel
partially, leaving a phase from the straight path between x and y.

Now we are ready to evaluate possible corrections associated with the gauge link. Note
that we need a correction of O(∂f0). Such a contribution can arise from the diagram in
figure 4. We shall evaluate its contribution to axial component of Wigner function below.
Note that the diagram in figure 4 contains one quantum fluctuation of gauge field from
the link and the other from the interaction vertex. Both fluctuations can occur on either
contour 1 or 2, and they need to be contour ordered. Enumerating all possible insertions
of the two gauge fields along the Schwinger-Keldysh contour, we obtain

−e2S11(x, z)γλS<(z, y)
(∫ x

∞
dwµD11

λµ(z, w) +
∫ ∞
y

dwµD<
λµ(z, w)

)
+e2S<(x, z)γλS22(z, y)

(∫ x

∞
dwµD>

λµ(z, w) +
∫ ∞
y

dwµD22
λµ(z, w)

)
, (4.3)

where the two lines corresponding to the vertex coordinate z taking values on contour 1
and 2 respectively and the two terms in either bracket corresponding to link coordinate w
taking values on contour 1 and 2 respectively. The relative sign comes from sign difference
of vertices on contour 1 and 2. D>/<

λµ stands for resummed photon propagators in medium
with shear flow.
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Using S11 = −iSR + S< and S22 = S< + iSA and the representation

SR = ReSR + i

2
(
S> − S<

)
' i

2
(
S> − S<

)
,

SA = ReSR −
i

2
(
S> − S<

)
' − i2

(
S> − S<

)
, (4.4)

we obtain S11 ' S22 ' 1
2 (S> + S<) with ReSR ignored in the quasi-particle approximation.

Similar expressions can be obtained for DR. Plugging the resulting expressions into (4.3),
we have

−e
2

2

[
S>(x, z)γλS<(z, y)

∫ x

y
dwµD<

λµ(z, w)− S<(x, z)γλS>(z, y)
∫ x

y
dwµD>

λµ(z, w)
]

−e
2

2 S
<(x, z)γλS<(z, y)

∫ x

y
dwµ

(
D<
λµ(z, w)−D>

λµ(z, w)
)

−e2S11(x, z)γλS<(z, y)
∫ x

∞
dwµ

1
2
(
D>
λµ(z, w)−D<

λµ(z, w)
)

−e2S<(x, z)γλS22(z, y)
∫ ∞
y

dwµ
1
2
(
D>
λµ(z, w)−D<

λµ(z, w)
)
. (4.5)

The first line is very similar to what we have considered in self-energy correction. The other
lines are all proportional to the photon spectral density ρλµ(z, w) = D>

λµ(z, w)−D<
λµ(z, w),

which is medium independent, thus the other lines are subleading compared to the first
one. Below we keep only the first line.

The spin polarization of probe fermion comes from axial component of the Wigner func-
tion. We apply Wigner transform to the first line of (4.5). Since the two terms are simply re-
lated by>↔<, we focus on the evaluation of the first term. Its Wigner transform is given by

− e2

2

∫
s,z,w

eiP ·s
∫
P1,P2,Q

S>(P1)γλS<(P2)D<
λρ(−Q)e−iP1·(x−z)−iP2·(z−y)+iQ·(z−w). (4.6)

The z-integration imposes momentum conservation as
∫
z e

i(P1−P2+Q)·z = δ(P1 − P2 + Q),
which allows us to simplify the remaining exponentials as eiP ·se−iP1·(x−y)+iQ·(y−w). The
w-integration is performed along the straight line∫ x

y
dwρe−iQ·(w−y) =

∫ 1

0
dtsρe−itQ·s ' sρ, (4.7)

where we have used Q ·s� 1. The condition corresponds to exchange of soft photon, which
is necessary for LL enhancement as we already know from the self-energy calculations. We
finally replace sρ → −i ∂

∂Pρ
to arrive at

ie2

2
∂

∂Pρ

∫
Q
S>(P )γλS<(P +Q)D<

λρ(−Q). (4.8)

For the axial component, we need the following trace

1
4tr

[
(/P +m)γλ

(
/P + /Q+m

)
γµγ5

]
= −iεαλβµPαQβ . (4.9)
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Collecting everything, we obtain the following contributions to axial component of Wigner
function

−e
2

2
∂

∂Pρ

[ ∫
Q

(
(1− fp)fp′D>

λρ(Q)− fp(1− fp′)D<
λρ(Q)

)
εαλβµPαQβ(2π)2

× δ(P 2 −m2)δ(P ′2 −m2)
]
, (4.10)

with P ′ = P+Q. We further use explicit representation of photon propagators in Feynman
gauge

D>
λρ(Q) = (−1)2Nfe

2
∫
K
tr[ /Kγα /K ′γβ ](1− fk)(−fk′)

−igλα
Q2

igρβ
Q2 (2π)2δ(K2)δ(K ′2), (4.11)

with K ′ = K −Q. For the purpose of extracting LL result, we have used bare propagators
for photons. The factor of 2Nf arises from equal contributions from Nf flavors of fermion
and anti-fermion in the medium. A similar expression for D<

λµ(Q) can be obtained by
interchanging K and K ′ in (4.11). Plugging (4.11) into (4.10), we have

+Nf
∂

∂Pρ

[ ∫
d3kd4Q

(2π)52k2p′02k′
(
−(1− fp)fp′(1− fk)fk′ + fp(1− fp′)fk(1− fk′)

)
× 4(KλK

′
ρ +KρK

′
λ) 1

(Q2)2 δ(2K ·Q)εαλβµPαQβδ(P 2 −m2)δ(P ′2 −m2)
]
. (4.12)

It has a similar structure with loss and gain terms as the self-energy counterpart (3.4),
thus a result proportional to the shear gradient is expected when we take into account
redistribution of particles through f → f (0) + f (1). The remaining task of evaluating the
phase space integrals are tedious but straightforward with method sketched in the previous
section. Here we simply list the final results with details collected in appendix C

Ai = 1
(2π)Cf

9ζ(3)
2β4 (J1 + J2 + J3 + J4)ε

imlpnplSmn
2p5 fp(1− fp)δ(P 2 −m2), (4.13)

with

J1 = 8πβ2p3

p0
,

J2 = −8πβ2p5

p3
0

,

J3 = −
4πβ2

(
8p5 − 56p3p2

0 + 66pp4
0 + (6p4p0 − 39p2p3

0 + 33p5
0) ln p0−p

p0+p

)
9p3

0
,

J4 = −−1 + eβp0

1 + eβp0

2πβ3(−2p2 + 11p2
0)
(
−4p3 + 6pp2

0 + (3p3
0 − 3p2p0) ln p0−p

p0+p

)
9p2

0
. (4.14)
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5 Discussion

Let us put together different contributions6

Ai∂ = 2π
2(p0 +m)ε

imlpnplSmnfp(1− fp)δ(P 2 −m2),

AiΣ = −Cf
1

(p0 +m)p5 ε
imlpnplSmn(I2 + I3)δ(P 2 −m2),

AiU = 1
2π

9ζ(3)
2β4 Cf

1
2p5 ε

imlpnplSmn(J1 + J2 + J3 + J4)fp(1− fp)δ(P 2 −m2). (5.1)

The first two lines come from partial derivative and self-energy terms in (1.1) respectively.7

The third line comes from the gauge link contribution. The first one is known in the
literature [16, 17]. The second and third ones are the main results of the paper. The
expressions of I and J can be found in (3.6) and (4.14).

It is instructive to take limits to gain some insights from the long expressions. We
consider the limit p0 � T , which allows us to replace in (3.6) the cosh functions by
Boltzmann factors and tanh function by unity. Similarly fp(1 − fp) can also be replaced
by Boltzmann factor. The limits further allows us to neglect the second line in I2 and J1
through J3. On top of this, we consider separately non-relativistic m� p and relativistic
limit m� p. For the former m� p, we have

Ai∂ '
π

2mεimlpnplSmne
−βp0δ(P 2 −m2),

AiΣ ' −
9ζ(3)Cf
5βm2 εimlpnplSmne

−βp0δ(P 2 −m2),

AiU ' −
11ζ(3)Cf

5βm2 εimlpnplSmne
−βp0δ(P 2 −m2). (5.2)

The fact that the non-relativistic limit is regular in p is a non-trivial: it follows from a
cancellation between powers of p from expansion of I’s and J ’s in the numerator and p5 in
the denominator in (5.2), which holds separately for self-energy and gauge link contribution.
Since we expect the spin polarization to be well-defined in the non-relativistic limit. The
regularity of the results serves as a check of our results. For the relativistic limit m� p,8

we have

Ai∂ '
π

p
εimlpnplSmne

−βp0δ(P 2 −m2),

AiΣ '
(2π2 − 135ζ(3))Cf

9βp2 εimlpnplSmne
−βp0δ(P 2 −m2),

AiU ' −
9ζ(3)Cf

2βp2 εimlpnplSmne
−βp0δ(P 2 −m2). (5.3)

The regularity of the results is also non-trivial in that the logarithmically divergent factor
ln p0−p

p0+p as p
m →∞ is compensated by a vanishing prefactor in both self-energy and gauge

6Note that we have assumed the probe fermion has an equilibrium distribution fp = f
(0)
p .

7In arriving at the first line, an identity similar to (2.3) needs to be used.
8Note that we can still have m� eT such that Ignoring Compton scattering is justified.
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BU/B∂

BΣ+BU/B∂

Figure 5. BM/B∂ versus p/T for probe fermion mass m = 100MeV at T = 150MeV for Nf = 2.
BM are defined by Ai

M = BM εimlpnplSmn with M = ∂,Σ, U .

link contributions in the relativistic limit. It is worth mentioning that in both limits AiΣ and
AiU have opposite sign to Ai∂ . The magnitude of AiU is larger(smaller) than AiΣ in the non-
relativistic(relativistic) limit. In the limit p0 � T we consider, AiΣ and AiU are suppressed
by the factor 1

βm or 1
βp compared to Ai∂ . The suppression factor can be easily understood

from (5.1): Ai∂ depends on the temperature through the factor fp(1 − fp), which arises
from our local equilibrium assumption on the distribution function of the probe fermion.
The other two contributions originate from collisions between probe fermion and medium
fermion, thus is characterized by at least one power of temperature, giving rise to a factor
T
p0

or T
p , which is consistent with the explicit limits we have. The medium dependence is

also reflected in the constant Cf , which encodes the field content of the medium. In view of
application to spin polarization in heavy ion collisions, the contributions from self-energy
and gauge link depend on the numerical factors. We plot in figure 5 three contributions
for phenomenologically motivated parameters, with the caveat that our QED calculation
is only meant to provide insights to QCD case. We take m = 100MeV, T = 150MeV and
p in the range of a few GeV. The plot shows for a combined contribution from self-energy
and gauge link leads to a modest suppression of the derivative contribution.

6 Summary and outlook

We have revisited spin polarization in a shear flow and found two new contributions. The
first one is the self-energy contribution arising from particle redistribution in the shear
flow. We illustrate it with a massive probe fermion in a massless QED plasma. It is found
that the self-energy contribution is parametrically the same as the derivative contribution
considered in the literature.

The self-energy contribution is gauge dependent. In order to restore the gauge in-
variance of spin polarization, we have proposed a gauge invariant Wigner function, which
contains double gauge links stretching along the Schwinger-Keldysh contour. This allows us
to include gauge field fluctuations in both forward and backward contours, which is needed
for consistent description of gauge field mediated collisions. We have found a second con-
tribution associated with the gauge link, which is also parametrically of the same order.
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Both contributions come from particle redistribution in the medium due to the shear
flow. The particle redistribution is determined in a steady shear flow, thus the two con-
tributions correspond to non-dynamical ones. A complete description of spin polarization
still lacks a dynamical contribution corresponding to the term aµfA in (1.1). Note that
aµfA satisfies its own kinetic equation following from next order gradient expansion of the
QKT, cf (103) of [37], with a collision term necessarily involving non-local collisions. Such
a contribution has been identified recently in [46]. It is worth pointing out that current
phenomenological studies seem to indicate an insufficient magnitude from the derivative
contribution as compared to measured spin polarization data [19, 20]. The suppression
from the new contributions found in this workseems to point to an important role by the
dynamical contribution. Initial efforts have already been made already in [47, 48].

For phenomenological application, several generalizations of the present work are
needed: first of all it is crucial to generalize the QED analysis to QCD case. Such a general-
ization in collisionless limit has been made in [49, 50]. In the collisional case, we expect the
redistribution of both quarks and gluons to play a role; secondly going beyond the LL order
is necessary to understand the significance of Compton and annihilation processes in the
spin polarization problem; last but not least it is also important to relax our assumption
of the equilibrium distribution for the probe fermion. These will be reported elsewhere.
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A Phase space integrations in Boltzmann equation

In this appendix, we perform the phase space integral of the r.h.s. of (2.7). As we remarked
earlier, the actual integral equation we solve is with Sij replaced by Ipij . We first rewrite
the integral measure as∫

p′,k′,k
(2π)4δ4(P +K − P ′ −K ′) =

∫
d3kd3qdq0

(2π)6 δ(p0 − p′0 + q0)δ(k0 − k′0 − q0), (A.1)

with Q = P ′ − P = K −K ′. We then decompose the vector ~q and ~k as

~q = q cos θp̂+ ~q⊥, ~k = k cos θ′p̂+ ~k⊥, (A.2)

with θ(θ′) being angles between ~q(~k) and ~p. This allows us to rewrite the integration
measure as ∫

d3kd3q =
∫
q2dqd cos θdφqpk2dkd cos θ′dφkp, (A.3)

where φqp and φkp are azimuthal angles of ~q and ~k.
The evaluation of the integral simplifies significantly in the LL approximation, which is

known to arise in the region q � p, k such that we can perform an expansion in q [44]. Let
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us do a power counting in q. The two delta functions can be used to eliminate integration
of q0 and one factor of q, which can be counted effectively as 1

q2 . The remaining power
counting depends on the scattering processes. To be specific, we illustrate with Coulomb
scattering amplitude

|M|2Coul,f = 8e4 s
2 + u2

t2
= 16e4 4p2k2

(q2
0 − q2)2

(
1− cos θ′

)2
. (A.4)

It contains a factor 1
q4 . On the other hand, the combination Ipijχp + Ikijχk − I

p′

ijχp′ − Ik
′
ij χk′

can contribute a factor of q as it vanishes in the limit q0, q → 0. Combining with q4 in the
phase space, we obtain an overall power 1

q . This appears to be more severe than logarithmic
divergence. However, we will find an extra factor of q in the actual evaluation. To be safe,
we keep correction up to O(q) in the phase space integration.

We will first perform angular integrations using two delta functions, which can be
written as

δ(p0 − p′0 + q0) ' δ
(
−q cos θ − q2

2p sin2 θ + q0

)
,

δ(k0 − k′0 − q0) ' δ
(
q cos Ω− q2

2k sin2 Ω− q0

)
, (A.5)

where Ω is the angle between ~q and ~k and corrections to the arguments higher order in q
have been ignored. We first perform the azimuthal angle integration∫

dφqpdφkpδ(k0−k′0−q0) =
∫
dφ̄d∆φδ

(
q cosΩ− q2

2k sin2 Ω−q0

)
(A.6)

' 2π 2
q(1+ q0

k )
1

(−cos2 θ′+2cosθ′ cosΩ+1−cos2 θ−cos2 Ω)1/2 .

Here φ̄ and ∆φ are the average and difference of φqp and φkp. The delta function fixes ∆φ
through cos Ω = cos θ cos θ′+ sin θ sin θ′ cos ∆φ. The square root constrains the integration
domain of cos θ′ as: cos θ cos Ω − sin θ sin Ω < cos θ′ < cos θ cos Ω + sin θ sin Ω. The other
delta function is easily integrated to give∫

d cos θδ(p0 − p′0 + q0) ' 1
q
(
1− q0

p

) . (A.7)

Combining (A.6) and (A.7) with 1
16p0k0p′0k

′
0
, we obtain a simpler expression

2π 2
q(1 + q0

k )
1

(− cos2 θ′ + 2 cos θ′ cos Ω + 1− cos2 θ − cos2 Ω)1/2
1

q
(
1− q0

p

) 1
16p0k0p′0k

′
0

' 2π 2
q2

1
(− cos2 θ′ + 2 cos θ′ cos Ω + 1− cos2 θ − cos2 Ω)1/2

1
16p2k2 . (A.8)

It remains to perform the tensor contractions

Ipp ≡ Ipij
(
Ipijχp − I

p′

ijχp′
)

= 2
3χp −

(
(p̂ · p̂′)2 − 1

3

)
χp′ ,

Ipk ≡ Ipij
(
Ikijχk − Ik

′
ij χk′

)
=
(

(p̂ · k̂)2 − 1
3

)
χk −

(
(p̂ · k̂′)2 − 1

3

)
χk′ . (A.9)
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Using the following relations

p̂ · p̂′ = p+ q cos θ
p+ q0

, p̂ · k̂ = cos θ′, p̂ · k̂′ = k cos θ′ − q cos θ
k − q0

, (A.10)

and expanding χp′ = χp + q0χ
′
p + 1

2q
2
0χ
′′
p, χk′ = χk − q0χ

′
k + 1

2q
2
0χ
′′
k, we find the following

types of integrals∫
cos θ′ cosn θ′

(− cos2 θ′ + 2 cos θ′ cos Ω + 1− cos2 θ − cos2 Ω)1/2 , (A.11)

with n = 0, 1, 2, 3, 4. These integrals evaluate to polynomials in cos θ cos Ω and sin θ sin Ω,
whose values are already fixed by delta functions. We can then perform integrations over
q0 and q in order. It turns out that all the potentially 1

q divergence vanish after integration
over q0. This occurs because the integrand is odd in q0, leaving a logarithmic divergence.
The divergence can be rendered finite by screening effect through self-energy of soft photon.
Fortunately to extract the LL result, we can simply impose cutoffs in the integral

∫ T
eT

dq
q

without explicit inclusion of self-energy, which gives the LL enhancement factor ln e−1 [44].
Another significant simplification arises because terms depending on χk and its derivatives
vanish identically. It follows that the remaining k-integration can be performed explicitly,
turning the integro-differential equation into a differential equations. We have for the
contribution to r.h.s. from Coulomb scattering

π3 cosh−2 βp
2

(
6χp + p(−2 + βp tanh βp

2 )χ′p − pχ′′p
)

72β3p2 . (A.12)

B Evaluation of self-energy contribution

We reproduce Rmnk defined in (3.4) below for convenience

Rmnk = −16e4Nf

∫
dq0d

3qd3k
1

(2π)5 δ(p0 − p′0 + q0)δ(k0 − k′0 − q0)[kkP ′ ·K ′ + k′kP
′ ·K]

× 1
(Q2)2

1
8p′0k′0k0

(
Ikmnχk − Ik

′
mnχk′

)
f (0)
p f

(0)
k (1− f (0)

p′ )(1− f (0)
k′ ). (B.1)

Defining

Tkmn =
(
k0k
′
k + k′0kk

) (
Ikmnχk − Ik

′
mnχk′

)
,

Tjlmn =
(
kjk
′
l + k′jkl

) (
Ikmnχk − Ik

′
mnχk′

)
,

we can rewrite the tensor structures in (B.1) as

[kkP ′ ·K ′ + k′kP
′ ·K]

(
Ikmnχk − Ik

′
mnχk′

)
= p′0Tkmn − p′lTklmn. (B.2)

By rotational symmetry and the fact the ~k and ~q is correlated by δ(k0 − k′0 − q0), we can
convert

∫
d3kδ(k0 − k′0 − q0) (Tkmn and Tklmn) to tensors of ~q. Note that Tmnk(Tklmn) is
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traceless and symmetric in mn and Tklmn is also symmetric in kl, they can be decomposed
using the tensor basis constructed out of ~q with the same symmetry properties as∫

d3kδ(k0 − k′0 − q0)Tkmn = A3I
q
mnqk +B3

(
qmδnk + qnδmk −

2
3δmnqk

)
,∫

d3kδ(k0 − k′0 − q0)Tjlmn = A4I
q
mnqjql +B4I

q
mnq

2δjl (B.3)

+ C4

(1
2 (qmδnjql + qnδmjql + j ↔ l)− 2

3δmnqjql
)

+D4q
2
(
djmδln + δjnδlm −

2
3δmnδjl

)
.

The coefficients are scalar functions of ~q, which can be evaluated by contracting (B.3) with
the tensor basis (

2
3q

2 4
3q

2

4
3q

2 20
3 q

2

)(
A3
B3

)
=
(
K31
K32

)
,

2
3q

4 2
3q

4 4
3q

4 4
3q

4

2
3q

4 2q4 4
3q

4 0
4
3q

4 4
3q

4 14
3 q

4 20
3 q

4

4
3q

4 0 20
3 q

4 20q4



A4
B4
C4
D4

 =


K41
K42
K43
K44

 , (B.4)

with

K31 =
∫
d3kδ(k0 − k′0 − q0)

(
k0~k
′ · ~q + k′0

~k · ~q
) [(

(k̂ · q̂)2 − 1
3

)
χk − (k → k′)

]
,

K32 '
∫
d3kδ(k0 − k′0 − q0)

[(
4k′0~k · ~q −

2
3k0~k

′ · ~q − 2
3k
′
0
~k · ~q

)
− (k ↔ k′)

]
,

K41 '
∫
d3kδ(k0 − k′0 − q0)2~k · ~q~k′ · ~q

[(
(k̂ · q̂)2 − 1

3

)
χk − (k → k′)

]
,

K42 '
∫
d3kδ(k0 − k′0 − q0)2k0k

′
0q

2
[(

(k̂ · q̂)2 − 1
3

)
χk − (k → k′)

]
,

K43 '
∫
d3kδ(k0 − k′0 − q0)

[(2
3
~k · ~q ~k′ · ~q + 2(~k · ~q)2k

′
0
k0

)
χk − (k ↔ k′)

]
,

K44 '
∫
d3kδ(k0 − k′0 − q0)8

3k0k
′
0q

2 [χk − χk′ ] . (B.5)

We have again dropped terms higher order in q. For later use, we perform a counting of
the leading order result of K’s. Note that ~k ·~q ' kq cos Ω ' kq0 and the square brackets are
of O(q0), we deduce K31,K32 ∼ O(q), K41,K42,K43,K44 ∼ q0q. It follows that to leading
order A3, B3 ∼ O(1/q), A4, B4, C4, D4 ∼ q0/q

2. The explicit results can be obtained by
using similar tricks used in appendix A. The expressions are lengthy and not shown here.

For the axial component of Wigner function in (1.1), we need to integrate the structures
εijkpj (p′0Tmnk − p′lTklmn) with

∫
dq0d

3qδ(p0−p′0+q0). The tensor integrals can be simplified
by noting that the results are expected to be pseudotensors and the only pseudotensor
symmetric in mn is εimlpnpl +m↔ n. We can then project the tensor integrands as

εijkpjTkmn = 1
2p4

(
εimlpnpl +m↔ n

) (
Tkjnpjpnpk − Tkknpnp2

)
,

εijkphpjTkhmn = 1
2p4

(
εimlpnpl +m↔ n

) (
Tkhjnphpjpnpk − Tkhknphpnp2

)
, (B.6)
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with the understanding that the equal sign hold only after integrating over ~k and ~q. Sum-
mation over repeated indices is implied. Using (B.3), we can express the tensor contractions
on the r.h.s. of (B.6) as

Tkjnpkpnpj = ~p · ~q
[(

(~p · ~q)2

q2 − 1
3p

2
)
A3 + 4

3p
2B3

]
,

Tjjnpn = ~p · ~q
(2

3A3 + 10
3 B3

)
,

Tkhjnphpkpnpj =
(

(~p · ~q)2

q2 − 1
3p

2
)(

(~p · ~q)2A4 + p2q2B4
)

+ 4
3p

2(~p · ~q)2C4 + 4
3p

2q2D4,

Tjhjnphpn = (~p · ~q)2 2
3(A4 +B4) +

(11
6 (~p · ~q)2 + 1

2p
2q2
)
C4 + 10

3 p
2q2D4. (B.7)

With the projection, we can simplify the integral as

εijkpjRmnkSmn

= −16e4Nf

∫
dq0dqk

2dkd cos θ′4π 1
(2π)5

(
p′0Tkmn − p′lTklmn

) 1
(Q2)2

1
8pk2

× 1
(− cos2 θ′ + 2 cos θ′ cos θ cos Ω + 1− cos2 θ − cos2 Ω)1/2 f

(0)
p f

(0)
k (1− f (0)

p′ )(1− f (0)
k′ ),

= − 4
2πI

εimlpnplSmn
2p5 Cf , (B.8)

with the second equality defines I. We have also factored out the flavor dependent factors
from the overall Nf and χ into the constant Cf = 3Nf (1+2Nf )

4π2N2
f

.
Let us see how logarithmic divergence occurs in I by the following power counting.

From the leading order power counting for the coefficients made earlier and using ~p·~q ' p0q0
from δ(p0−p′0 +q0), we deduce the l.h.s. of (B.7) are of ∼ O(q0/q).9 This is to be combined
with power counting in the remainder of the integral

q0
q

1
q
q4 1
q4 ∼

q0
q2 , (B.9)

with the second to fourth factors on the l.h.s. of (B.9) coming from δ(p0− p′0 + q0), dq0d
3q

and 1
(Q2)2 respectively. Similar to the analysis in appendix A, the leading order result

vanishes upon integration over q0 because of the oddness of integrand in q0. We need to
expand to next to leading order (NLO). It is instructive to split I into three parts:

I1 : εijkpjp′0Tkmn → εijkpjq0Tkmn, εijkpjp
′
lTklmn → εijkpjqlTklmn

with LO A3, B3, A4, . . . , D4, and fpfk(1− fp′)(1− fk′)→ fpfk(1− fp)(1− fk),
I2 : εijkpjp′0Tkmn → εijkpjp0Tkmn, εijkpjp

′
lTklmn → εijkpjplTklmn

with NLO A3, B3, A4, . . . , D4, and fpfk(1− fp′)(1− fk′)→ fpfk(1− fp)(1− fk),
I3 : εijkpjp′0Tkmn → εijkpjp0Tkmn, εijkpjp

′
lTklmn → εijkpjplTklmn

with LO A3, B3, A4, . . . , D4, and fpfk(1− fp′)(1− fk′) expanded to O(q0). (B.10)
9We have regarded q2

0 ∼ q2 and keep only explicit odd power of q0 in the estimate.
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It turns out I1 vanishes identically. The other two I’s are obtained by integration with
approximate χk from (2.11)

I2 =
π2 cosh−2 βp0

2

(
(15p4 − 87p2p2

0 + 72p4
0) ln(p0−p

p0+p) + 8p5

p0
− 126p3p0 + 144pp3

0

)
72β

+
3 cosh−2 βp0

2

(
(12p2p0 − 12p3

0) ln p0−p
p0+p + 28p3 − 28p5

3p2
0
− 24pp2

0

)
ζ(3)

8β2 ,

I3 =

(
(p4 − 9p2p2

0 + 8p4
0) ln p0−p

p0+p −
38p0p3

3 + 16p3
0p
) (
π2 − 9 tanh βp0

2 ζ(3)
)

4β (1 + cosh(βp0)) . (B.11)

C Evaluation of gauge link contribution

Let us define
∂

∂Pρ

[(
f (0)
p (1− f (0)

p′ )D<
λρ(Q)− f (0)

p′ (1− f (0)
p )D>

λρ(Q)
)
εαλβµPαQβδ(P 2 −m2)δ(P ′2 −m2)

]
≡ ∂

∂Pρ

[
Fµρ (P,Q)δ(P 2 −m2)δ(P ′2 −m2)

]
. (C.1)

We consider p0 > 0. Since q � p, we have also p′0 > 0, allowing us to localize the delta
functions in (C.1) to the particle contributions

∂

∂Pρ

(
δ(p0−Ep)

2Ep
δ(Ep+q0−Ep+q)

2Ep+q
Fµρ (p0 =Ep)

)

=uρ
δ′(p0−Ep)

2Ep
δ(Ep+q0−Ep+q)

2Ep+q
Fµρ (p0 =Ep)

+ ∂Ep
∂Pρ

[
− δ
′(p0−Ep)

2Ep
δ(Ep+q0−Ep+q)

2Ep+q
− δ(p0−Ep)

2E2
p

δ(Ep+q0−Ep+q)
2Ep+q

+ δ(p0−Ep)
2Ep

δ′(Ep+q0−Ep+q)
2Ep+q

+ δ(p0−Ep)
2Ep

δ(Ep+q0−Ep+q)
2Ep+q

∂

∂p0

]
Fµρ (p0 =Ep)

− ∂Ep+q
∂Pρ

[
δ(p0−Ep)

2Ep
δ′(Ep+q0−Ep+q)

2E2
p+q

+ δ(p0−Ep)
2Ep

δ(Eq+q0−Ep+q)
2E2

p+q

]
Fµρ (p0 =Ep)

+ δ(p0−Ep)
2Ep

δ(Eq+q0−Ep+q)
2Ep+q

P ρλ
∂

∂Pλ
Fµρ (p0 =Ep). (C.2)

The above should be viewed as a function of p0. We find then the term ∝ δ′(p0 − Ep)
vanishes identically. The remaining terms can be combined by using ∂Ep

∂Pρ
= P ρλPλ

Ep
, ∂Ep+q

∂Pρ
=

P ρλ(Pλ+Qλ)
Ep+q

as(
P ρλPλ
Ep

− P ρλ(Pλ +Qλ)
Ep+q

)
δ(p0 − Ep)

2Ep
δ′(Ep + q0 − Ep+q)

2Eq
Fµρ (p0 = Ep)

−
(
P ρλPλ
E2
p

+ P ρλ(Pλ +Qλ)
E2
p+q

)
δ(p0 − Ep)

2Ep
δ(Ep + q0 − Ep+q)

2Ep+q
Fµρ (p0 = Ep)

+
(
P ρλPλ
Ep

∂Fµρ (p0 = Ep)
∂p0

+ P ρλ
∂Fµρ (p0 = Ep)

∂Pλ

)
δ(p0 − Ep)

2Ep
δ(Ep + q0 − Ep+q)

2Ep+q
. (C.3)
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The first two lines and the last line of (C.3) come from derivatives on δ(P 2−m2), δ(P ′2−m2)
and that on Fµρ in (C.1) respectively. From the definition of Fµρ , it is clear that the last
line is nonvanishing only if ∂

∂Pρ
acts on −f (0)

p (1− f (0)
p′ ). Therefore in the last line, we may

keep only the corresponding contribution. Eq. (C.3) can be further simplified by noting
that with an extra factor of Q in (C.1) as compared to the self-energy contribution. It is
sufficient to approximate factors by their leading order expansion in Q. Using Ep+q ' Ep,
P ρλPλ
Ep
− P ρλ(Pλ+Qλ)

Ep+q
= −P ρλQλ

Ep
+ P ρλPλ~p·~q

E3
p

and integrating by part, we obtain

[(
P ρλQλ
Ep

− P ρλPλ~p · ~q
E3
p

)
∂Fµρ
∂q0
− 2P ρλPλ

E2
p

Fµρ + P ρλPλ
Ep

∂Fµρ
∂p0

]
δ(P 2−m2)δ(P ′2−m2), (C.4)

with the understanding that the derivative ∂
∂p0

acting on −f (0)
p (1 − f (0)

p′ ) inside Fµρ only.
We have also replaced δ(p0−Ep)

2Ep
δ(Ep+q0−Ep+q)

2Ep+q
by δ(P 2 − m2)δ(P ′2 − m2). Eq. (C.4) can

be evaluated by the same method discussed in appendix B. We shall not spell out details
here but just stress a subtle point related to ∂

∂q0
: as before, we will replace ~p · ~q by p0q0.

It becomes ambiguous whether the replacement should be made before or after the q0-
derivative. The correct way is to first replace in all possible places and then take the
derivative. The reason is that the projection onto the pseudotensor in (B.6) is justified
only after angular integrations, which imposes ~p · ~q = p0q0.

Taking µ = i and factoring out the flavor dependent constant Cf as before, we obtain
the following results∫

Q

∂

∂Pρ
F iρδ(P 2 −m2)δ(P ′2 −m2)

=
∫
dk

1
p

2
(2π)4L

εimlpnplSmn
2p4 f (0)

p (1− f (0)
p′ )Cfδ(P 2 −m2), (C.5)

with L = L1 +L2 +L3 +L4 corresponding to four terms in (C.4) respectively. The explicit
expressions are given below

L1 = 8πβ2k3p3

p0
,

L2 = −8πβ2k3p5

p3
0

,

L3 = −
4πβ2k3

(
8p5 − 56p3p2

0 + 66pp4
0 + (6p4p0 − 39p2p3

0 + 33p5
0) ln p0−p

p0+p

)
9p3

0
,

L4 = −
2πβ3 tanh βp0

2 k3(−2p2 + 11p2
0)
(
−4p3 + 6pp2

0 + (3p2p0 + 3p3
0) ln p0−p

p0+p

)
9p2

0
. (C.6)

The k-integrals are easily performed to give (4.13).
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