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Abstract
The increasingly crucial role of human displacements in complex societal
phenomena, such as traffic congestion, segregation, and the diffusion of epidemics, is
attracting the interest of scientists from several disciplines. In this article, we address
mobility network generation, i.e., generating a city’s entire mobility network, a
weighted directed graph in which nodes are geographic locations and weighted
edges represent people’s movements between those locations, thus describing the
entire mobility set flows within a city. Our solution is MoGAN, a model based on
Generative Adversarial Networks (GANs) to generate realistic mobility networks. We
conduct extensive experiments on public datasets of bike and taxi rides to show that
MoGAN outperforms the classical Gravity and Radiation models regarding the realism
of the generated networks. Our model can be used for data augmentation and
performing simulations and what-if analysis.
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1 Introduction
The increasing complexity of urban environments [2, 5] and the crucial role played by
human displacements in the diffusion of epidemics, not least the COVID-19 pandemic
[24, 28, 36, 43, 47, 51], have created a great deal of interest around the study of individ-
ual and collective human mobility [4, 34, 60]. The prevention of detrimental collective
phenomena such as traffic congestion, air pollution, segregation, and epidemics spread,
which is crucial to make our cities inclusive, safe, resilient, and sustainable [7, 25, 29, 57],
depends on how accurately we can predict and simulate people’s movements within an
urban environment.

In this regard, a particularly challenging task is generating realistic mobility flows, i.e.,
flows of people among a set of geographic locations given their demographic and geo-
graphic characteristics (e.g., population and distance) [4, 34, 37, 54, 60]. Traditionally, flow
generation is addressed through the Gravity model [4, 8, 15, 30, 35, 65], the Radiation
model [4, 55, 60], and their variants [4, 48, 54, 63]. The Gravity model assumes that the
number of travelers between two locations (flow) increases with the locations’ populations
while decreasing with the distance between them. The Radiation model is a parameter-
free model that only requires information about geographic locations (e.g., population)
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and their intervening opportunities. The Gravity and the Radiation models are designed
to generate single flows between pairs of locations and are typically used to complete a
network in which some mobility flows are missing.

In this paper, we address mobility network generation, a variation of flow generation that
consists in generating a city’s entire mobility network. A mobility network is a weighted
directed graph in which nodes are geographic locations and weighted edges represent
people’s movements between those locations, thus describing the entire set of mobility
flows within a city.

Our solution to mobility network generation – MoGAN (Mobility Generative Adver-
sarial Network) – is based on Generative Adversarial Networks (GANs) [20], deep learn-
ing architectures composed of a discriminator, which maximizes the probability to clas-
sify real and artificial mobility networks correctly, and a generator, which maximizes the
probability to fool the discriminator producing artificial mobility networks classified by
the discriminator as real. The choice of GANs is motivated by the fact that mobility net-
works can be represented as weighted adjacency matrices, similarly to how images are
typically represented, and considering that GANs are tremendously effective in generat-
ing realistic images [13, 18, 20, 49]. While several papers show that GANs can generate
individual mobility trajectories [16, 22, 26, 33, 34, 39, 44, 64] with a realism comparable
to or better than mechanistic mobility models [4, 12, 23, 45], to what extent GANs can
generate realistic mobility flows has never been explored in the literature.

We train MoGAN on a set of real mobility networks and develop a tailored evaluation
methodology to test the model’s effectiveness in generating realistic mobility networks.
We conduct extensive experiments on four public mobility datasets, describing flows of
bikes and taxis in New York City and Chicago, US, to demonstrate that MoGAN generates
synthetic mobility networks that are way more realistic than those generated by several
baseline models, i.e., the Gravity, the Radiation, and the Random Weighted models. Our
results prove that our solution can synthesize aggregated movements within a city into a
realistic generator, which can be used for data augmentation and performing simulations
and what-if analysis.

2 Mobility network generation
Mobility network generation consists of generating a realistic mobility network, i.e., a
weighted directed graph in which nodes are locations and edges represent flows between
those locations. The locations are defined by a discretization of the geographic space de-
fined by a spatial tessellation, i.e., a covering of the bi-dimensional space using a countable
number of geometric shapes called tiles, with no overlaps and no gaps [34]. In mobility
networks, nodes are tiles of the spatial tessellation and edges flows of people among these
tiles.

Formally, we define a mobility network as a weighted directed graphG = (V , E, w), where:
• V is the set of nodes, i.e., tiles of the spatial tessellation;
• w : V × V �→N is a function that assigns to each pair of nodes the number of people

moving between the two nodes (mobility flow);
• E = {(x, y)|(x, y) ∈ V × V ∧ w(x, y) �= 0} is the set of the weighted directed edges in the

network.
A mobility network may contain self-loops (edges in which the origin and destination

coincide), which describe movements of people within the same tile. Here, we represent
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a mobility network as a weighted adjacency matrix An×n with n = |V |. Thus, an element
ai,j ∈A represents the number of people moving from node i to node j, with i, j ∈ V .

A generative model of mobility networks M is any algorithm able to generate a set of n
synthetic mobility networks XM = {Ĝ1, . . . , Ĝn}, which describe the set of mobility flows on
a given spatial tessellation. The realism of M is evaluated with respect to:

1. A set of network patterns K = {s1, . . . , sm} that describe some statistical properties of
mobility networks. A realistic set TM of synthetic mobility networks is expected to
reproduce as many of these mobility patterns as possible.

2. A set X = {G1, . . . ,Gn} of real mobility networks that describe real flows on the same
spatial tessellation. Typically, a portion Xtrain ⊂X is used to train M or to fit its
parameters. The remaining part Xtest ⊂X is used to compute the set K of patterns,
which are compared with the patterns computed on XM .

3. A function D that computes the dissimilarity between two distributions.
Specifically, for each measure in f ∈K, D(P(f ,XM)||P(f ,Xtest)) indicates the
dissimilarity between P(f ,XM), the distribution of the measures computed on the
synthetic mobility networks in XM , and P(f ,Xtest), the distribution of the measures
computed on the mobility networks in Xtest. The lower D(P(f ,XM)||P(f ,Xtest)), the
more realistic model M is with respect to f and Xtest.

3 MoGAN: a mobility generative adversarial network
To solve the problem of mobility network generation, we design MoGAN (Mobility Gen-
erative Adversarial Network), a deep learning architecture based on Deep Convolutional
Generative Adversarial Networks (DCGANs) [49]. MoGAN consists of a generator G,
which learns how to produce new synthetic mobility networks, and a discriminator D,
which has the task of distinguishing between real and fake (artificial) mobility networks.
G and D are trained in an adversarial manner: D maximizes the probability to correctly
classify real and fake mobility networks; G maximizes the probability to fool D, i.e., to
produce fake mobility networks classified by D as real. Both D and G are Convolutional
Neural Networks (CNNs), which are proven to be effective in capturing spatial patterns
in the data [34].

During the training phase, G repeatedly takes a 1 × 100 noise vector as input and op-
erates a series of transposed convolutions, which perform upsampling of the input vector
to generate a 64 × 64 adjacency matrix representing a mobility network. Then, D takes a
set of real and generated 64 × 64 matrices as input and performs a binary classification
task to classify these matrices as real or fake. The above process is repeated for a certain
number of epochs and stopped when some criteria are met (see Supplementary Note 1).

MoGAN leverages the architecture of DCGAN [49] and, as highlighted above, this im-
plies that the shape of adjacency matrices must be 64 × 64. MoGAN could easily be ex-
tended to geographic areas with less than 64 zones, for example testing MoGAN ability of
working with 0-padded mobility networks. On the other hand, working with more than
64 zones would necessarily require some form of aggregation of the zones, or a totally
different GAN structure.

Once MoGAN is trained, G can be used to generate as many mobility networks as de-
sired. A visual representation of the networks generated during the training phase can be
found in Supplementary Note 2. Figure 1 schematizes and describes MoGAN’s architec-
ture. Further details on MoGAN’s architecture and training can be found in Supplemen-
tary Note 1.
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Figure 1 Architecture of MoGAN. The generator (a Convolutional Neural Network or CNN) performs
transposed convolution operations that upsample the input random noise vector, transforming it into a
64× 64 adjacency matrix representing a mobility network. The discriminator (a CNN) takes as input both the
generated mobility networks and the real ones from the training set and performs a series of convolutional
operations that end up with a probability, for each sample, to be fake or real. Both the discriminator’s and
generator’s weights are then backpropagated

4 Baseline models
We compare MoGAN with the Gravity and the Radiation models, two classical approaches
for mobility flows’ generation [4, 34, 54, 55], using the implementations provided in library
scikit-mobility [46].

The singly-constrained Gravity model [4, 8, 30, 65] prescribes that the expected flow, ȳ,
between an origin location li and a destination location lj is generated according to the
following equation:

ȳ(li, lj) = Oipij = Oi
mβ1

j f (rij)
∑

k mβ1
k f (rik)

, (1)

where Oi is the number of people leaving location li, mj is the population of location lj

(estimated as Oj), pij is the probability to observe a trip (unit flow) from location li to
location lj, β1 is a parameter and f (rij) is the deterrence function, which is a function of
the distance rij between two locations. We model the deterrence function as a power-law
function, f (r) = rα , where α is another parameter. These parameters can be fitted from a
subset of available flows. We report the value of α and β1 resulting from the fitting of the
model in Supplementary Note 3.

The Radiation model [4, 55] is a parameter-free model that aims to generate flows be-
tween locations given their characteristics (e.g., population) and the intervening oppor-
tunities among them. The choice of the destination consists of two steps: (i) we assign
a fitness z to each location opportunity sampled from a distribution p(z) that represents
the quality of the opportunity for each travel; (ii) the traveler ranks the opportunities ac-
cording to their distance from the origin location and chooses the nearest location with a
fitness higher than a certain threshold. As a result, the mean flow between two locations
li and lj is calculated as:

ȳ(li, lj) = Oi
1

1 – mi
M

mimj

(mi + sij)(mi + mj + sij)
, (2)
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where Oi is the number of people leaving location li, mi and mj are the opportunities in
li and lj, M is the sum of all the opportunities, and sij is the number of opportunities in a
circle of radius rij.

Note that the Gravity and the Radiation models do not solve mobility network genera-
tion directly. While MoGAN, once trained, can generate an entire mobility network, the
Gravity and the Radiation models are designed to generate single flows between pairs of
locations. To generate a mobility network using the Gravity and the Radiation models, we
proceed as follows: (i) we take a real mobility network; (ii) for each node, we compute its
relevance mi and total outflow Oi; and (iii) we use mi and Oi in Equations (1) and (2). For
the Gravity model, we also fit parameters β1 and β2 from the real mobility network assum-
ing a power-law deterrence function. For both the Gravity and Radiation models, we use
the implementations available in the library scikit-mobility [46], which provides methods
to fit parameters and generate flows from locations’ relevance and outflow.

For a further analysis, we compare MoGAN with a Random Weighted (RW) model that
creates a mobility network where the weight of each edge is randomly chosen from the
distribution of weights for that edge in the training set. In other words, given an edge
e = (i, j) connecting node i to node j in the mobility network, the edge weight ŵ(e) is a
number picked at random from {w1(e), w2(e), . . . wn(e)}, i.e., the distribution of the weights
of e in the training set.

In terms of computational time required to generate a new mobility network, MoGAN
is way faster (<1 second) than the Gravity model (about one minute) and the Random
Weighted model (10-20 seconds). However, MoGAN needs a training phase that requires
from 1 up to 3 hours depending on the dataset. In out experiments, we train MoGAN on
a server with a GPU Tesla P100 with 16 GB of VRAM, 13 GB of RAM and a 2-core Intel
Xeon CPU.

5 Experimental setup
5.1 Datasets
We use four real-world public datasets, which describe trips with taxis and bikes in New
York City and Chicago during 2018 and 2019 (730 days). Two datasets contain daily infor-
mation regarding the use of bike-sharing services: the City Bike Dataset for New York City
[11] and the Divvy Bike Dataset for Chicago [14]. Each record describes the coordinates of
each ride’s starting and ending station, and the starting and ending times. We remove trips
with a duration lower than 60 seconds because they could be false starts or users trying
to re-dock a bike to ensure it is secure [11, 14]. We also use two datasets containing daily
information about the movements of taxis: the New York City taxi dataset [41] and the
Chicago taxi dataset [9]. A record describes each ride’s starting and ending location and
the starting and ending times. Both datasets are already preprocessed to remove dummy
and noisy rides. In the Chicago taxi dataset, we know the GPS points corresponding to
the starting and ending points of each taxi trajectory. In the New York City taxi dataset,
we only know the trajectories’ starting and ending zones, i.e., administrative areas in New
York City. We use an administrative area’s centroid as a taxi ride’s reference starting or end-
ing point. We select the island of Manhattan for New York City and the central districts for
Chicago (see Supplementary Figure S3) and split the selected zones into 64 equally-sized
squared tiles (1840 meters per side for New York City, 1405 meters per side for Chicago).
For each dataset, we count the daily number of taxis or bikes moving between each pair of
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Table 1 Statistics of the four datasets used in our study. For each dataset, we provide the link to
download it, the number of rides, the different locations, and the number of bikes/taxis. CHI =
Chicago, NYC = New York City. For the NYC taxi dataset, taxi identifiers are not available and we do
not know the total number of taxis. All datasets refer to trips in 2018 and 2019

Dataset Rides Locations #bikes/taxis

CHI bikes [14] 350,503 198 6293
NYC bikes [11] 29,294, 326 509 19,514
CHI taxis [9] 11,050, 936 96 5668
NYC taxis [41] 157,485, 483 68 N.D.

Figure 2 Examples of a real mobility network. (a) Position of bike stations in Manhattan. (b) A daily mobility
network in Manhattan, where the size of each edge is proportional to the flow they represent

tiles to obtain an origin-destination matrix representing the daily mobility network. We
obtain, for each dataset, a representation of the daily flows in the city, which is divided
into 64 equally spaced tiles. The mobility networks represent the flow of people moving,
daily, across these zones. We remind that, since MoGAN is based on DCGANs which are
designed to work with images (matrices) of size 64 × 64, we are constrained to tessellate
the city into 64 equally-sized tiles. This means that different cities have different tile size,
depending on the city size.

We compute the relevance of each location (tile), which is needed for generating flows
in the Gravity and the Radiation models, as the total number of daily drop-offs in that
location. Table 1 shows some statistics about the datasets used in our study. As an example,
Fig. 2 visualizes where bike stations concentrate and a mobility network representing daily
flows in Manhattan, New York City.
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5.2 Validation
We develop a tailored approach to evaluate the realism of the mobility networks gener-
ated by MoGAN. For each dataset, we construct a mobility network for each day obtaining
730 real mobility networks in total. We split the 730 networks into a training set (584 net-
works) and a test set (146 networks). We train MoGAN on the training set and generate
146 synthetic mobility networks (synthetic set). We evaluate the model’s realism comput-
ing the difference between each network in the synthetic set and each network in the test
set, so obtaining 146 × 146 = 21,316 values. If the generated mobility networks are re-
alistic, they should differ from the real networks to the same extent real networks differ
between themselves. To stress this aspect, we create a set of 146 mobility networks (mixed
set), in which half of them are chosen uniformly at random from the test set, and the other
half is chosen uniformly at random from the synthetic set. We then compute the pairwise
difference between any possible pair of mobility networks in the mixed set.

The idea behind this validation methodology is that we need to verify whether MoGAN
is capable to reproduce the variability of mobility networks in the training set. If the dis-
tribution of differences among the networks in the synthetic set is similar to that of net-
works in the test set, MoGAN can approximate well the variability of mobility networks
in the training set. The use of the mixed set further tests MoGAN’s ability to reproduce
the variability in the training set: by verifying that the distribution of differences between
networks in the synthetic set and those in the test set is similar to the distribution of net-
work distances within the test set and the synthetic set separately, we argue that MoGAN
can reproduce the variability of networks in the training set.

A crucial aspect is how to compute the difference between two mobility networks, con-
sidering that directed weighted networks are hard to compare, even in the case of known-
node correspondence (i.e., networks with the same nodes but different edges) [56]. We
compute this difference in two ways.

The first one consists of computing an error metric between two networks’ adjacency
matrices. In our experiments, we try three error metrics: (i) Normalized Root Mean
Square Error (NRMSE), (ii) Common Part of Commuters (CPC), and (iii) Cut Distance
(CD). The Root Mean Square Error (RMSE) [34, 54] is defined as:

RMSE(A, B) =

√
√
√
√ 1

n

n∑

i,j=1

(aij – bij)2,

where aij and bij are the elements (flows) in position (i, j) in the two networks’ adjacency
matrices of A and B and n is the number of elements of the matrices (64 × 64). Note that
RMSE is substantially equivalent to the Frobenious norm (see Supplementary Note 5).
The NRMSE is a min-max normalization of the RMSE, defined as:

NRMSE =
RMSE(A, B)

max(A, B) – min(A, B)
.

The Common Part of Commuters (CPC), also known as Sørensen-Dice index [4, 31,
34, 54], a well-established measure to compute the similarity between real and generated
matrices, is defined as:

CPC(A, B) =
2
∑n

i,j=1 min(aij, bij)
∑n

i,j=1 aij +
∑n

i,j=1 bij
.



Mauro et al. EPJ Data Science           (2022) 11:58 Page 8 of 16

CPC is a widely used metric in human mobility studies [30, 34] and it ranges between 0
and 1. A CPC of 1 indicates a perfect match between the generated flows and the ground
truth. On the other hand, 0 highlights a bad performance with no overlap. In other terms,
CPC can be seen and interpreted as a metric of accuracy.

The Cut Distance (CD) [32] is based on the notion of cut weight, widely used in network
theory [56], and measures how much a network is bipartite. The cut norm ‖A‖C of a real
matrix A = (aij), i ∈ R, j ∈ S with a set of rows indexed by R and a set of columns indexed
by S, is the maximum over all I ⊂ R, J ⊂ S of the quantity |∑i∈I,j∈J aij|. The Cut Distance
(CD) between two adjacency matrices A and B is the cut norm of their difference:

CD(A, B) = max
S∈V

1
|V |

∣
∣eA

(
S, SC)

– eB
(
S, SC)∣

∣

with V being the number of nodes (64, in our case), eG(S, T) =
∑

i∈S,j∈T wij is the cut weight
of adjacency matrix G with weights wij, i.e., the sum of the weights of the edges that starts
in S and ends in T and SC = V \S. [1]. Maximizing this quantity is a computationally heavy
problem, so we use the Semidefinite Program (SDP) approximation proposed by Chan and
Sun [42]. For calculating CD, we use the python implementation available in the library
cutnorm [10].

The second approach to computing the difference between two mobility networks con-
sists of comparing their distributions of edge weights and weight-distances. Edge weights
indicate the values (flows) of the adjacency matrices describing the two mobility networks.
Weight-distances indicate the combination of an edge’s weight (flow) and the distance be-
tween the two nodes composing the edge. We compute the weighted-distance adjacency
matrix of a mobility network as Â = A/(d +ε), where A is the network’s weighted adjacency
matrix, d is the distance matrix having the same dimension and node ordering of A and
representing the geographic distances between all pair of nodes.1 We add the residual term
ε = 0.01 to the denominator just to avoid dividing by zero only for elements on the diagonal
of the adjacency matrices. Given two mobility networks, the more similar their distribu-
tion of edge weights or weight-distances are, the more similar the two mobility networks
are. We measure the similarity between two distributions using the Jensen-Shannon di-
vergence [17, 45]:

JS
(
P||Q)

=
1
2

KL
(
P||M)

+
1
2

KL
(
Q||M)

,

where P and Q are two density distributions, M = 1
2 (P + Q), and KL is the Kullback–Leibler

divergence (KL) [27, 58], defined as:

KL
(
P||Q)

=
∑

x∈X

P(x) log

(
P(x)
Q(x)

)

.

An alternative to the usage of divergence metrics may consist in using kernels to measure
similarities between graphs [40, 59]. However, while kernel methods compare networks’
representation in a latent space, in this paper we aim to capture the mobility network’s

1The geographic distance between two nodes is calculated as the distance between the centroids of the tile that represents
that node.
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topological macro-scale features (e.g., degree distribution, clustering coefficient). For the
sake of completeness, in Supplementary Note 10, we provide a comparison between topo-
logical properties of the generated and real mobility networks such as the clustering coef-
ficient and the weighted degree distribution.

6 Results
Figure 3 shows the distribution of the Cut Distance (CD) in the four datasets’ test (red),
synthetic (blue), and mixed sets (green) for MoGAN (left), the Gravity model (center), and
the Radiation model (right). MoGAN’s CD distributions overlap almost entirely in all four
datasets, meaning that MoGAN generates mobility networks that are indistinguishable
from real ones and way more realistic than those generated by the baselines (except in
two cases, see Supplementary Note 6). Similar results hold for the other metrics: MoGAN
typically outperforms the baselines regarding CPC (Fig. 4) and RMSE (Supplementary
Note 7). Table 2 shows, for each model, the JS-divergence between (i) the CPC distribution
of the mixed and test sets and (ii) the CPC distribution of the synthetic and test sets.

To compute the improvement in performance of MoGAN with respect to the baseline
models, for each metric, each set and each baseline, we define the quantity:

� = –
(

JS(MoGAN) – JS(baseline)

JS(baseline)

)

× 100,

where JS(MoGAN) is the JS divergence between the set (synthetic or mixed) of networks
generated by MoGAN and the test set, while JS(baseline) is the JS divergence between the set
(synthetic or mixed) of networks generated by the baselines (Gravity, Radiation or Random
Weighted) and the test set.

Figure 3 Results for the Cut Distance. Distributions of the pairwise cut distances between mobility networks
in the test set (red), synthetic set (blue), and mixed set (green), for the four datasets. For each dataset, we
compare the overlap among the distributions of MoGAN and the two baselines (Gravity and Radiation). The
Radiation model’s mixed and synthetic sets distributions significantly differ from the test set for all datasets. In
contrast, the Gravity model clearly outperforms the Radiation model for all datasets
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Figure 4 Results for the CPC. Distributions of the pairwise CPC distances between mobility networks in the
test set (red), synthetic set (blue), and mixed set (green), for the four datasets. For each dataset, we compare
the overlap of the distributions of MoGAN and the two baselines (Gravity and Radiation). For both the Gravity
model and the Radiation model, the three distributions are significantly different, especially for the latter

Table 2 JS divergences of the distributions of the CPC scores. For each model, we report the JS
divergence between mixed set and test set (column JSm) and the JS divergence between synthetic
set and test set (column JSs). The last four �x,Z -like columns represent the improvement of MoGAN
compared to the Gravity model on the mixed and the synthetic sets (columns �m,G and �s,G) and
the improvement of MoGAN compared to the Radiation model on the mixed and synthetic sets
(columns �m,R and �s,R)

Data MoGAN Gravity Radiation Rel. Improvement

JSm JSs JSm JSs JSm JSs �m,G �s,G �m,R �s,R

NYCbike 0.06 0.08 0.46 0.15 0.72 0.12 86% 49% 91% 37%
NYCtaxi 0.09 0.11 0.53 0.14 0.83 0.15 83% 22% 89% 29%
CHIbike 0.14 0.16 0.29 0.25 0.56 0.26 51% 35% 75% 38%
CHItaxi 0.08 0.09 0.39 0.11 0.79 0.13 80% 21% 90% 30%

Table 2 shows that, according to the CPC, MoGAN outperforms the Gravity and Ra-
diation models on all datasets, with a relative improvement of up to 86% on the Gravity
model and 91% on the Radiation model over the mixed set, and a relative improvement of
up to 49% on the Gravity model and 37% on the Radiation model over the synthetic set.
We report the results of the comparison with the Gravity and Radiation models for RMSE,
CD, weights distribution and weight-distances distribution in Supplementary Notes 7, 8
and 9.

MoGAN also outperforms the Random Weighted model for all proposed metrics. Fig-
ure 5 compares the performance of MoGAN and the Random Weighted model accord-
ing to CPC. For each dataset, MoGAN’s test, synthetic and mixed set distributions are
more overlapping than the ones of the Random Weighted model. We report the results of
the comparison with Random Weighted model for RMSE, CD, weights distribution and
weight-distances distribution in Supplementary Notes 11-14. Table 3 shows that, accord-
ing to CPC, MoGAN outperforms the Random Weighted model for all datasets.
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Table 3 JS divergences of the distributions of the CPC scores with the RandomWeighted model. For
each model, we report the JS divergence between mixed set and test set (column JSm) and the JS
divergence between synthetic set and test set (column JSs). The last two �x,Z -like columns represent
the improvement of MoGAN compared to the RandomWeighted model on the mixed and the
synthetic sets (columns �m,RW and �s,RW)

Data MoGAN RandomWeighted Rel. Improvement

JSm JSs JSm JSs �m , RW �s , RW

NYCbike 0.06 0.08 0.45 0.63 86% 88%
NYCtaxi 0.09 0.11 0.37 0.59 76% 82%
CHIbike 0.14 0.16 0.4 0.56 64% 71%
CHItaxi 0.08 0.09 0.37 0.55 79% 84%

Figure 5 Results for the CPC with RandomWeighted Model. Distributions of the pairwise CPC distances
between mobility networks in the test set (red), synthetic set (blue), and mixed set (green), for the four
datasets. For each dataset, we compare the overlap of the distributions of MoGAN and the RandomWeighted
model. MoGAN distributions are perfectly overlapping, while the RandomWeighted ones show significant
differences

MoGAN’s JS-divergences between the mixed and test sets and between the synthetic
and test sets are the lowest for each dataset, meaning that our model produces the most
overlapping distributions (see Table 2). Our results also show that the difference (either in
terms of CD, CPC, or RMSE) between a real network and a synthetic one is similar to the
difference between two real networks or two synthetic networks. This means that MoGAN
generates realistic mobility networks that are, to a certain extent, indistinguishable from
real ones.

Figure 6 shows the distributions of the pairwise similarities among the edge weights
for the synthetic, mixed, and test sets built over the four datasets. For each dataset, we
report the performances of MoGAN, the Gravity model, and the Radiation model. Again,
MoGAN significantly outperforms the baselines, except for two cases (mixed set of NYC
and CHI taxi) in which the Gravity model and MoGAN achieve similar performance. We
find a similar result for the weight-distances (see Supplementary Note 7).
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Figure 6 Results for weights distribution. Distributions of the pairwise JS distance between the distribution
of weights of the mobility networks in the test set (red), synthetic set (blue), and mixed set (green), for the four
different datasets. For each dataset, we compare the overlap of the distributions of MoGAN and the two
baselines (Gravity and Radiation). The Radiation model’s mixed and synthetic sets distributions significantly
differs from the test set for all datasets. The situation is similar for the Gravity model performances. MoGAN
distributions are almost overlapping for all four datasets

Figure 7 Visual comparison of the adjacency matrices of the Mobility Networks. Visualization of the more
dense part of the mobility networks of NYC Bikes having the maximum sum of flows observed in the Test Set
(Real Zoomed) and of the Mobility Networks having the maximum sum of flows observed in the fake sets
produced by all of the other models. Per each generated matrix, we reported the RMSE with respect to the
Real matrix. In the top left panel, we show the full 64×64 mobility network and highlight the most dense
zones, on which we focus in the other plots of the figure

In Fig. 7, we compare a subset of the entries in the adjacency matrices representing
the generated mobility networks with the adjacency matrix of a real mobility network.
We compared only this part of the matrices for visualization reasons: the external part of
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them is, in fact, made up of 0 entries. For each model, we visualize the generated mobility
network with the maximum sum of flows. We observe that MoGAN’s adjacency matrix
is way more similar to the real one than the other models. The Gravity model produces
an adjacency matrix that looks quite similar to the real one, but it lacks the self-loops (the
elements on the diagonal). The Random Weighted model’s matrix resembles the real one
but the magnitude of flows differ in several parts of the network. The Radiation model’s
adjacency matrix is way different to the real one.

Figure 7 shows that MoGAN is way better than the Gravity model at predicting flows
between close tiles. In contrast, the two models reach a similar performance for flows
regarding tiles that are very distant to each other. In Supplementary Note 15, we report
the correlation between the error and the distance between flows’ tiles for the BikeNYC
dataset, for both MoGAN and the Gravity model.

7 Conclusion
This paper introduces MoGAN, a deep-learning-based model for generating realistic ur-
ban mobility networks. Our results, conducted on four public datasets representing flows
of bikes and taxis in New York City and Chicago, show that the realism of the networks
generated by MoGAN outperforms those generated by classic models such as the Gravity
and the Radiation models.

Although MoGAN’s performance is encouraging, it also has some limitations. Being
based on DCGAN [49], MoGAN can generate 64 × 64 adjacency matrices, that is, mobil-
ity networks with 4096 locations. We plan to extend MoGAN’s architecture to generate
mobility networks with an arbitrary number of nodes as future improvements. Other tech-
nical improvements may be the use of Graph Neural Networks (GNNs) [52], which would
better capture the network dependencies and include other location-related information
(e.g., population or relevance), and the use of the Wasserstein loss [3], which improves the
performance of GANs in several contexts [21, 62]. It would also be interesting to test Mo-
GAN’s effectiveness on cities of different sizes and shapes and regarding the generation of
individual mobility trajectories, which represent the aggregated movements of single indi-
viduals among a city’s locations [6, 50, 53]. Finally, we plan to design a version of MoGAN
capable of generating a network describing the mobility network of a weekday, a weekend
day, or a specific day of the week.

An important aspect to investigate as future work is also to what extent MoGAN is
geographically transferable [34], i.e., it can be trained on a specific city and then used to
generate mobility networks in a different city effectively. Geographic transferability can be
crucial when there is a scarcity or even an absence of mobility data for a city.

In this study, we use data from Chicago and New York City, which differ considerably
by size, population, and shape, as well as by socio-demographic factors, POIs distribu-
tion, land use, etc. So, it does not make sense to transfer Chicago’s MoGAN to New York
City and vice versa. We leave experiments about the geographic transferability of MoGAN
among cities to future works.

As MoGAN leverages the architecture of DCGAN, it only works with 64 × 64 matrices.
While representing geographic areas with less than 64 × 64 zones is not an issue (using,
e.g., padding techniques [19]), in its current version, MoGAN cannot work with areas split
into more than 64 × 64 zones. Future extensions of MoGAN may consider using GAN
architectures that deal with matrices larger than 64 × 64 [61]. Adapting such models to
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deal with temporal and spatial aspects would allow us to design a new GAN for mobility
flows to deal with larger geographic areas.

Another promising future direction is developing a GAN to generate a realistic mobility
network for a specific condition (e.g., a rainy day or a day with some public events in the
city). Having a so-called conditional GAN [38] may represent a unique opportunity for
policymakers to generate realistic scenarios for specific circumstances. Finally, an exciting
open challenge consists in interpreting which rules or well-known mobility laws (e.g., the
gravity law) generative models are learning.

In the meantime, our study demonstrates the great potential of artificial intelligence
to improve solutions to crucial problems in human mobility, such as the generation of
realistic mobility networks. MoGAN can synthesize aggregated movements within a city
into a realistic generator, which can be used for data augmentation, simulations, and what-
if analysis. Given the flexibility of the training phase, our model can be easily extended
to synthesize specific types of mobility, such as aggregated movements during workdays,
weekends, specific periods of the year, or in the presence of pandemic-driven mobility
restrictions, events, and natural disasters.
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