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Abstract 

Background:  In recent years the use of sample entropy (SampEn) to evaluate the complexity of the locomotor sys-
tem in human gait data has gained in popularity. However, it has been suggested that SampEn is sensitive to various 
input parameters and signal preprocessing methods. This study quantified the effects of different temporal and spa-
tial normalization approaches and various lengths of the template vector (m) on SampEn calculations. The discrimina-
tory ability of SampEn was studied by comparing two walking conditions.

Methods:  Twenty-three participants (seven males, 55.7 ± 8.5 years, 165.7 ± 7.9 cm, 80.5 ± 16.7 kg) walked on a tread-
mill with preferred (Vpref ) and maximum (Vmax) speed. Data were segmented and resampled (SEGM), resampled 
and spatially normalized (NORM), resampled and detrended (ZERO).

Results:  For vertical ground reaction force (vGRF) and center of pressure in anterio-posterior direction (COPap), in 
both walking conditions, SampEn was generally sensitive to the vector length and not to the data processing, except 
for COPap in ZERO, m = 2, 4. For the COPml SampEn behaved oppositely, it was sensitive to preprocessing method 
and not to the m length. The regularity of COPap and vGRF in all processed signals increased in Vmax condition. For 
the COPml only two signals, WHOLE and ZERO, revealed increased complexity caused by more demanding walking 
conditions.

Conclusions:  SampEn was able to discriminate between different walking conditions in all analyzed variables, but 
not in all signals. Depending on evaluated variable, SampEn was susceptible in different way for the m level and 
processing method. Hence, these should be checked and selected for each variable independently. For future studies 
evaluating influence of walking velocity on COP and vGRF regularity during treadmill walking it is advised to use raw 
time series. Furthermore, to maintain template vector which represents biological relevance it is advised to detect 
highest frequencies present in analyzed signals and evaluate minimal time interval which can reflect change caused 
by response of a neuromuscular system. During evaluating treadmill walking measured with 100 Hz sampling fre-
quency it is recommended to adopt m from 6 to 10, when average stride time is up to about 1 s.
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Introduction
“Nonlinear dynamical analysis is a powerful approach 
to understanding biological systems” [1]. Variability 
of human movement is not defined only through the 
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amount of variance (e.g., standard deviation) but also 
through evaluation of the temporal variations in the 
movement output. This approach considers fluctua-
tions throughout the movement, for example through 
gait cycle, taking into account previous states of neuro-
muscular system, and as such provide insight into how 
behaviour unfolds [2, 3]. Furthermore, analysis of the var-
iability existing in movement patterns, which can be gen-
erated as a motor control system response for changes in 
the task difficulty or neuromuscular disability, provides a 
window into understanding the sophisticated strategies 
used to regulate movement or insight into the neuromus-
cular status of the patient [4].

The use of entropy methods to evaluate the complexity 
of the system in human data has gained in popularity [5–
7], though, they are associated with some methodologi-
cal challenges. It is said that Sample Entropy (SampEn) 
can be a promising tool for the analysis of gait complexity 
[8–12]. However, before applying it for the signal regular-
ity evaluation some methodological issues still need to be 
resolved. Previous authors concluded that around 2000 
points of data are necessary for SampEn stabilization [6, 
7, 13]. In gait analysis, generally, it is difficult to obtain 
so many data points (e.g. 2000 stride intervals) and when 
dealing with pathological populations it can be unfeasible 
[6]. For this reason, SampEn has been calculated with a 
smaller number of data points or with using a continu-
ous signal [13]. Various forms of continuous data [2, 8, 
10] have been used in complexity analysis, however, the 
usage of center of pressure (COP) signal during a steady-
state, where many consecutive steps can be captured, is 
becoming more popular [9, 14–16]. The COP at a given 
moment in time is the location of resultant vertical 
ground reaction force vector. The position of the COP 
under foot directly reflect the neural control of muscle 
force for body stabilization [17, 18]. Recently, it has been 
shown that traditional linear COP characteristics (e.g. 
first and second moment statistics values), in some cases, 
may not be sensitive enough to reveal significant changes 
of postural control caused by aging or pathological con-
ditions [19, 20]. COP fluctuations reveal a complex out-
put signal of the neuromuscular system in which various 
sensorimotor processes are reflected. Hence, it has been 
suggested that non—linear analysis (e.g. sample entropy) 
of the COP signal can provide surplus information to 
conventional measures [17, 21].

It was shown that SampEn is sensitive to various input 
parameters [7, 9]. McCamley et  al. [13] highlighted the 
need of exploring the effect on SampEn in continuous 
data when using values of vector length (m) greater than 
3. Although, Ahmadi et al. [9] concluded that the m = 2 
∼ 6 and tolerance level (r) = 0.2 × SD would be the pre-
ferred combination for continuous signal, however, it 

was determined only for the COP in the mediolateral 
(ml) direction. Another methodological issue is that 
some authors advised eliminating any trend before mak-
ing meaningful interpretations from the statistical cal-
culations [9, 14]. In some cases temporal and spatial 
normalization [14, 22] to detrend the signal was used. 
Previous authors suggested that by normalizing data in 
COP parameters more information about intra-stride 
dynamical features are obtained [22]. However, with this 
approach, information on extreme values, which also 
influence an intra-stride variability in individual cycles, 
is lost. Thus, we proposed another detrending method 
that enables to retain this information in COP signal 
dynamics.

Considering the increasing use of SampEn in analyzing 
human gait continuous signals, it is crucial to examine 
how parameter selection and various signal preprocess-
ing methods would affect the outcomes. It is unknown 
how changing the vector length would affect the SampEn 
calculated on continuous signal like COP in antero-pos-
terior (ap) direction and vertical ground reaction force 
(vGRF).

Furthermore, most studies to assess the discrimina-
tory ability of SampEn involved different age groups or 
implemented cognitive loading during walking. Although 
speed has a significant effect on spatiotemporal vari-
ability [3, 23] as well as measures of dynamical systems 
[3, 24, 25], reports on the influence of gait speed on the 
regularity of the vertical ground reaction force or COPap 
time series are scarce. A greater understanding of control 
variables COP and vGRF regularity during walking could 
provide clearer insight into system behavior in more 
demanding conditions (walking with higher speed).

Therefore, our aim was twofold. Firstly, to examine how 
various vector lengths and signal preprocessing meth-
ods would influence SampEn of COP signal and vGRF. 
Secondly, to investigate the discriminatory ability of 
SampEn by analyzing two walking conditions: preferred 
and maximum tolerated speed. We hypothesized that our 
detrending method would be more discriminative when 
compared to conventional spatio-temporal normaliza-
tion while comparing different walking velocities.

Methods
Biological data
Data for analysis purposes were derived from an experi-
ment conducted previously on twenty-three participants 
(for details see [26]. Seven males, the mean age was 
55.7 ± 8.5  years, mean height was 165.7 ± 7.9  cm, mean 
weight was 80.5 ± 16.7  kg. The mean comfortable gait 
speed on the treadmill was 0.81 ± 0.1 m/s and the maxi-
mum tolerated speed was 1.3 ± 0.2 m/s.
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Procedures
Each participant walked barefoot in two walking con-
ditions: for 30  s with preferred speed (Vpref ) and then 
30  s with maximum tolerated speed (Vmax) on the 
Zebris treadmill system with mounted pressure platform 
(FDM–T, Zebris Medical GmbH, Germany), a sampling 
rate of 100  Hz was adopted. For subsequent analysis 
three signals were used: center of pressure displacement 
in the mediolateral (COPml), anteroposterior directions 
(COPap) and resultant vertical ground reaction force 
(vGRF). Data were processed using custom MATLAB 
codes (Mathworks, Inc., Natick, MA).

Data processing
The beginning and the end of the data taken for the 
analysis were marked based on the COP signal with the 
removal of the first and last steps.

Four signal types were analyzed and three methods of 
preprocessing were used:

•	 Raw time series (WHOLE),
•	 Segmentation and resampling (SEGM),
•	 Segmentation, resampling and normalization 

(NORM),
•	 Segmentation, resampling and zeroing (ZERO).

To obtain the same number of data points for raw time 
series the trials were limited to the lowest number of data 
points achieved by the subjects (2200). Raw time series 

(WHOLE) of ap/mlCOP and vGRF included the data 
without any amplitude or time base changes (Fig. 1).

Segmentation and resampling
As data length and the number of data points within each 
stride can affect the outcome of SampEn analysis [6, 27], 
the trials were segmented into strides (the distance meas-
ured from the heel of the one foot to the heel of the same 
foot) and normalized in the temporal dimension in order 
to minimize differences due to a various subject’s walk-
ing speed [3, 9, 14, 22, 24]. Segmentation into strides was 
based on the vGRF signal indicating the beginning and 
the end of the single support phase of the one leg. Time 
intervals obtained determined the walking cycles for 
all variables. To acquire the same number of samples in 
each participant, in both walking conditions, signals were 
resampled to the mean number of data points per stride 
(100 samples per cycle). To obtain the same number of 
cycles in the entire study population in both walking con-
ditions, the trials were limited to the lowest number of 
cycles achieved by the subjects (Fig. 2).

Segmentation, resampling and normalization
To eliminate possible trend in the COP signal within 
the measurement area, after temporal normalization 
each stride was normalized in the spatial dimension so 
that the anterio-posterior signal of a single stride varied 
from  <0;1> of the stride length, the medio-lateral sig-
nal varied from <0;1> of the stride width [9, 14, 22, 27] 
(Fig. 3).

Fig. 1  The raw time series. Trajectory of a COP in anterioposterior (AP—blue solid line) and mediolateral (ML—orange dotted line) direction and a 
resultant vertical ground reaction force (Force)
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Fig. 2  Segmented and resampled time series. Trajectory of a COP in anterioposterior (AP) and mediolateral (ML) direction and a resultant vertical 
ground reaction force (Force)

Fig. 3  Segmented, spatially and temporally normalized time series. Trajectory of a COP in anterioposterior (AP) and mediolateral (ML) direction and 
a resultant vertical ground reaction force (Force)
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Segmentation, resampling and zeroing
The raw data was initially processed as in SEGM, then, 
each subsequent cycle for the COP signal was starting at 
the coordinate (0, 0), i.e. as if the subject always started 
the cycle from the same point. All other values of the 
COPap/ml coordinates throughout the cycle were appro-
priately recalculated. This method enabled for the elimi-
nation of possible drift on the treadmill without losing 
absolute distances between data points (Fig. 4).

In the second part of the analysis, each of the time 
series was subjected to calculation of SampEn (m, r, N) 
based on the algorithm presented by Richman and Moor-
man [1]. SampEn has been defined as the negative natural 
logarithm for conditional probability that a series of data 
points within a certain distance, m, would be repeated 
within the distance m + 1.

The N stands for the total number of data points in the 
time series, m represents the length of the vector that is 
compared during runs of data, and r stands for the sensi-
tivity criterion in which alike vectors are considered simi-
lar. For the experimental data, m represented the number 
of samples that constituted a vector. The parameter r rep-
resented the tolerance of variance between samples. For 
human movement, a consistent or periodic gait pattern 

SampEn(m, r,N ) = − ln
Am+1(r)

Bm(r)

would elicit a low SampEn value and a more complex gait 
pattern (a time series with large differences between data 
points distances) would elicit a higher SampEn value. 
Thus, a perfectly repetitive time series gives SampEn 
value equaling 0 and a perfectly random time series gives 
a SampEn value converging toward infinity [5].

Sample entropy was calculated in two different walk-
ing conditions (Vpref, Vmax) for all signals in COPap 
and COPml (WHOLE, SEGM, NORM, ZERO) and for 
two signals in vGRF parameter (WHOLE, SEGM) using 
m = 2, 4, 6, 8, 10 and r as 0.2 of the average standard devi-
ation of the time series [9, 14, 22]. The choice of r = 0.2 
for our data was confirmed by method proposed by Lake 
et al. [28] and further statistical analysis for r ranged from 
0.1 to 0.3 (Additional file 1:  Figs. A1–A9).

Statistical analysis
A two-way ANOVA with HSD Tukey post–hoc was used 
to compare the effect of the m-level (m = 2, 4, 6, 8, 10) 
and data processing method (Type = WHOLE, SEGM, 
NORM, ZERO) on the calculated sample entropy. For the 
vertical ground reaction force ‘Type’ factor had two lev-
els (WHOLE, SEGM). Each condition (Vpref, Vmax) was 
analyzed separately.

In the second part of the analysis, two-way mixed 
ANOVA (with m = 6 based on the results of the first part) 
with walking condition as a within-subjects and pro-
cessing method as between-subjects factor was used to 

Fig. 4  Segmented and detrended time series. Trajectory of a COP in anterioposterior (AP) and mediolateral (ML) direction and a resultant vertical 
ground reaction force (Force)
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examine the effect of walking velocity on the signal regu-
larity. In most cases data were normally distributed, addi-
tionally the maximum normalized residual test (Grubbs 
test) did not detect any outliers. In 9 for 100 subgroups 
the normality assumption was violated, however skew-
ness was about │0.5│ with three exceptions. The F-test 
is said to be robust with respect to the assumption of 
normality and equality of variances so long as each group 
contains the same number of scores [29], however, if 
assumption of homogeneity was violated the correla-
tions between means and variances were inspected. The 
assumption of sphericity was assessed using Mauchly’s 
test. When the assumption of uniformity was violated, 
an adjustment to the degrees of freedom of the F-ratio 
was made using Greenhouse–Geisser Epsilon, thereby 
making the F-test more conservative. Statistical analyses 
were carried out using Statistica software version 13.4, a 
p < 0.05 was considered significant.

Results
Walking with preferred speed
Generally, SampEn for the COPml signal was sensitive 
for different preprocessing methods, whereas for differ-
ent m–level showed relative consistency. For the COPap 
and vGRF signals SampEn showed opposite dependency 
(Figs. 5, 6, 7).

Analyses revealed significant main effect of both Type 
and m parameter for COPml (Type: F3,440 = 141.14, 
p < 0.01; m: F4,440 = 26.35, p < 0.01) and COPap (Type: 
F3,440 = 16.33, p < 0.01; m: F4,440 = 240.33, p < 0.01). For 
a COPml also a significant interaction between Type and 
m was found (m*Type: F12,440 = 3.79, p < 0.01).

Post-hoc analysis revealed that COPml SampEn for 
Type = ZERO in m = 2, 4 was significantly higher in 
comparison with all signal types and in m = 6, 8, 10 it 
differed from Type = WHOLE, NORM. In contrast, 
SampEn for Type = NORM was significantly lower than 
for Type = ZERO, SEGM across all m levels and lower 
than for Type = WHOLE in m = 2. In Type = NORM and 
SEGM SampEn differed only between m = 4 and m = 10. 
In Type = WHOLE SampEn differed only between m = 2 
and m = 4. In Type = ZERO only m = 2 was significantly 
higher than all other m levels.

For the COPap, in each preprocessed signal, entropy 
stabilized at m = 6. SampEn for Type = ZERO differed 
significantly from other signal types only in m = 2. Also 
only for m = 2 in all signal types SampEn values were sig-
nificantly higher than for all other m levels.

For vGRF significant main effect was observed only for 
the m parameter (F4,220 = 77.54, p < 0.01). SampEn val-
ues did not differ between types across all m levels. Simi-
larly to COPap, entropy stabilized at m = 6 in each signal 
type.

Walking with maximum speed
Similarly as in Vpref, during walking with maximum 
speed SampEn for the COPml showed dependency of 
different preprocessing methods versus the COPap and 
vGRF parameters in which SampEn showed depend-
ency of the m parameter. Analysis revealed significant 
main effect of both Type and m parameter for COPml 
(Type: F3,440 = 147.34, p < 0.01; m: F4,440 = 7.62, 
p < 0.01) and COPap (Type: F3,440 = 26.22, p < 0.01; m: 
F4,440 = 48.54, p < 0.01). Additionally in both COPml and 
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Fig. 5  Effect of changing vector length (m) on the COPml SampEn for different processing methods (r = .02). (WHOLE) raw time series; (SEGM) 
segmented and resampled signal; (NORM) segmented, resampled and normalized signal; (ZERO) segmented, resampled and detrended signal; 
results for walking with preferred (Vpref ) and maximum tolerated (Vmax) speed; the error bars indicate 0.95 confidence interval
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COPap a significant interaction between Type and m was 
found (accordingly m*Type: F12,440 = 3.60, p < 0.01 and 
F12,440 = 2.51, p < 0.01).

For the COPml SampEn Type = ZERO in m = 2 was 
significantly higher than other signals. In m = 4, 6 it 
was significantly higher than for Type = SEGM, NORM 
and in m = 8, 10 it was higher than for Type = NORM. 
SampEn for Type = NORM was significantly lower than 
in all other types in all m levels, with one exception 
m = 2. Type WHOLE did not differ from Type = SEGM 

across all m levels. Generally, SampEn in all Types was 
stable across all m levels. Only Type = ZERO in m = 2 
was significantly different from m = 4, 6, 8.

The COPap SampEn did not differ between all signal 
types in m = 6, 8, 10, except for Type = ZERO (m = 2, 4). 
In all types, SampEn was stable across all m levels, except 
m = 2.

For the vGRF significant main effect of both Type 
and m parameter was observed (Type: F4,220 = 11.19, 
p < 0.01; m: F4,220 = 102.79, p < 0.01). Both signal types 
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 SEGM  NORM

COPap_Vpref COPap_Vmax
Fig. 6  Effect of changing vector length (m) on the COPap SampEn for different processing methods (r = .02). (WHOLE) raw time series; (SEGM) 
segmented and resampled signal; (NORM) segmented, resampled and normalized signal; (ZERO) segmented, resampled and detrended signal; 
results for walking with preferred (Vpref ) and maximum tolerated (Vmax) speed; the error bars indicate 0.95 confidence interval
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Fig. 7  Effect of changing vector length (m) on the vGRF SampEn for different processing methods (r = .02). (WHOLE) raw time series; (SEGM) 
segmented and resampled signal; (NORM) segmented, resampled and normalized signal; (ZERO) segmented, resampled and detrended signal; 
results for walking with preferred (Vpref ) and maximum tolerated (Vmax) speed; the error bars indicate 0.95 confidence interval
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did not differ across all m levels. In both signals, SampEn 
was significantly higher in m = 2 than all other m levels 
and m = 4 was significantly higher when compared to 
m = 8, 10.

The comparison of walking conditions
Results showed that in the COPap as well as in the vGRF 
regularity increased with increasing velocity, whereas in 
the COPml only two of investigated signal types revealed 
decreased regularity.

For the COP parameters the results showed signifi-
cant main effect of both Type and Velocity in COPml 
(Type: F3,88 = 27.46, p < 0.01; Velocity: F1,88 = 46.31, 
p < 0.01) and COPap (Type: F3,88 = 3.68, p < 0.02; Veloc-
ity: F1,88 = 364.4, p < 0.01) as well as interaction effect 
(accordingly Velocity*Type: F3,88 = 15.10 p < 0.01 and 
F3,88 = 4.54, p < 0.01).

The COPml SampEn in Types = SEGM, NORM 
did not change despite the change of walking condi-
tions (Fig.  8). In Types = ZERO, WHOLE regular-
ity decreased significantly in Vmax when compared 
to Vpref. In the Vpref condition, SampEn did not differ 
between Type = WHOLE and SEGM but in the Vmax 
condition, Type = WHOLE was significantly higher than 
Type = SEGM. For the COPap in the Vmax condition, 
regularity increased significantly for all investigated sig-
nal types (Fig. 9).

For the vGRF the main effect of Velocity (F1,44 = 36.37, 
p < 0.01) was observed. For both signals, SampEn was sig-
nificantly lower in the Vmax condition (Fig. 10).

Discussion
The goal of this study was to identify the sensitivity of 
SampEn to variant values of parameter m and different 
preprocessing methods when applied to COPap, COPml 
and vGRF signals obtained during treadmill walking as 
well as SampEn sensitivity for changing walking velocity. 
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Fig. 8  The effect of walking velocity on the regularity of the COPml 
for different processing methods. (WHOLE) raw time series; (SEGM) 
segmented and resampled signal; (NORM) segmented, resampled 
and normalized signal; (ZERO) segmented, resampled and detrended 
signal; SampEn input parameters m = 6, r = 0.2; the error bars indicate 
0.95 confidence interval. Only WHOLE and ZERO signals showed 
significant differences between conditions (p < 0.05)
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Fig. 9  The effect of walking velocity on the regularity of the COPap 
for different processing methods. (WHOLE) raw time series; (SEGM) 
segmented and resampled signal; (NORM) segmented, resampled 
and normalized signal; (ZERO) segmented, resampled and detrended 
signal; SampEn input parameters m = 6, r = 0.2; the error bars indicate 
0.95 confidence interval. All signals showed significant differences 
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Fig. 10  The effect of walking velocity on the regularity of the vGRF 
for different processing methods. (WHOLE) raw time series; (SEGM) 
segmented and resampled signal; SampEn input parameters m = 6, 
r = 0.2; the error bars indicate 0.95 confidence interval. Both signals 
revealed significant differences between conditions (p < 0.05)
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One of general finding is that SampEn for the COPml 
signal was sensitive for different preprocessing methods, 
whereas for different m levels showed relative consist-
ency. For the COPap and vGRF signals, SampEn showed 
opposite dependency. Furthermore, SampEn was able to 
discriminate between different walking conditions in all 
analyzed parameters.

During walking with preferred speed SampEn of vGRF 
of both preprocessed signals consistently decreased with 
increasing m. In previous studies [9, 11, 13] authors 
reported similar relationship for COP, joint angles and 
EEG signals. In our study the entropy of COPap in each 
preprocessed signal stabilized at m = 6. These results sug-
gest that for vGRF and COPap during walking with pre-
ferred speed SampEn was sensitive to the length of the 
vector m and not to the data processing. A similar pat-
tern could be observed in the Vmax condition.

Another observation is that SampEn for COPml 
parameter worked oppositely. Namely, it was sensitive 
to preprocessing method and not to the length of the m 
parameter, except for m = 2. Ahmadi et  al. [9] reported 
decreasing trend of SampEn with increasing m in two out 
of six evaluated frequencies. In the current study sam-
pling frequency was 100  Hz and each cycle contained 
100 points, Ahmadi et  al. [22] have resampled cycle 
to 142 points. In the literature, there are reports that 
SampEn is sensitive to the number of data points within 
the cycle [27], thus, we cannot directly compare our 
results to this obtained by Ahmadi et  al. [9]. Neverthe-
less, we can observe that for f = 16 (which is equivalent 
to a frequency of 62  Hz) SampEn revealed very similar 
pattern like in our experiment and it plateaued at m = 4, 
however, SampEn value was higher than in our research. 
It seems to be consistent with findings reported previ-
ously—as the sampling frequency increases the spatial 
distance between data points decreases, which in turn, 
increases the number of vectors within each stride cycle 
and decreases SampEn value [27]. Interestingly, in the 
other work of Ahmadi et al. [22] authors used a sampling 
frequency of 60 Hz and obtained results similar to ours. 
Both parameters, COPml and COPap, as well as both sig-
nal types, whole and normalized data (120 samples per 
stride, m = 6, r = 0.2SD) yielded SampEn comparable 
to ours. Thus, there must have been another additional 
factor (than just a different frequency) that impacted the 
outcomes. In Ahmadi et al. [9] participants walked with 
higher velocity (1.0  m/s) than in the work of Ahmadi 
et  al. [22] (0.8 m/s) and the current study (0.81 m/s SD 
0.1). Different walking speeds could have influenced the 
subjects’ sensorimotor system and behavior [3, 24].

Another observation is that, for most of the m values, 
entropy for COPml for the NORM signal differed sig-
nificantly from other signals. In both speeds, this signal 

gave the lowest SampEn values which implied that it 
was most regular. Previous authors [14, 22] suggested 
that signal should be detrended before calculation of 
sample entropy. The authors proposed spatio-temporal 
normalization (here: NORM) of the data and concluded 
that this method gives more information about intra-
stride dynamical features. Furthermore, the authors 
[22] stated that normalized COPml signal is the best 
for showing the gait changes, also when compared to 
whole (raw) data. Current results are in contradiction 
to that finding. In our study, in the COPml spatially and 
temporally normalized signal SampEn showed no sig-
nificant differences between Vpref and Vmax. A possi-
ble explanation for these discrepancies is that previous 
authors did not compare different walking speeds, but 
normal walking and walking with a dual-task. In the 
current study only two signals, WHOLE and ZERO, 
were sensitive enough to reveal changes in signal com-
plexity caused by changes in walking velocity. Although 
spatio-temporal normalization removes trend, it addi-
tionally removes information on extreme values in indi-
vidual cycles, which also contain information about 
intra-stride regularity. Thus, we proposed another 
detrending method (ZERO) which enabled to retain 
more data about signal dynamics. In the Vpref condi-
tion this signal was most complex, but in the Vmax 
condition entropy from the ZERO and WHOLE signal 
did not differ. The high SampEn during walking with a 
preferred speed could result from different spatial dis-
tances between the points. In the Vpref condition, dis-
tances were smaller than in Vmax. Hence, in the Vpref 
condition, the length between the last point in the cycle 
and the first point in the next cycle (which starts from 
point 0) might have decreased the regularity. Neverthe-
less, such signal processing allowed for differentiation 
of the signal complexity level between two different 
walking conditions and supported our hypothesis. 
Existing evidence reveals that walking velocity affects 
spatio-temporal and kinematic variability as well as 
influences local dynamic stability in ap and ml direc-
tions [3, 24]. It is it is said that walking with higher 
than preferred speed increases walking variability [3, 
24, 25]. Previous authors reported that walking speed 
has also significant influence on the complexity of plan-
tar pressure patterns and center of pressure fluctua-
tions [21, 30]. Liau et al. [21] reported that at the first 
10 min of treadmill walking participants revealed lower 
COP complexity while walking with higher speed. Our 
results seem to be partially in conflict with this find-
ing. A possible explanation to that discrepancy is that 
in previous work [21] authors did not divide COP sig-
nal to its directional subcomponents and analyzed sig-
nal fluctuations of one foot, hence only support phase 
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of one side was analyzed. In contrast, Huijben et  al. 
[15] reported decreased regularity in the mediolateral 
direction while walking faster, thus current results con-
firmed the validity of using detrending method pro-
posed in the current research.

The regularity of COPap in four processing methods 
and vGRF in both processing methods in the current 
study revealed consistent entropy characteristics. In 
both evaluated parameters regularity increased during 
walking with maximum tolerated speed.

A more regular movement, with lower entropy level 
is a more probable and less erratic, suggesting that 
it is strongly controlled by a neuromuscular system, 
however at the same time it is less capable to make 
flexible adaptations to internal or external perturba-
tions, hence it is less stable [6, 12, 21, 31]. In current 
experiment changes in signal regularity would suggest 
that in mediolateral direction increasing walking speed 
induced more random, thus more flexible intra-stride 
gait pattern. At the same time, in the anterio-posterior 
direction, higher walking velocity brought more regu-
lar and less erratic COP signal. Our results seem to 
be in line with research on changes in walking stabil-
ity with increasing walking speed. Bruijn et al. [25] also 
reported different effects of walking speed on walk-
ing stability in ap and ml directions. Authors reported 
higher local stability (long-term divergence exponent) 
of trunk movement in ml direction with increasing 
walking speed, while for ap direction they observed 
opposite effect. Authors suggested that from stability 
and control perspective movements in ml direction are 
more important than in ap direction, due to the smaller 
base of support.

Recently, authors [12] have raised very important ques-
tion about biological relevance of the parameter m. In 
our understanding there is possible solution to proper 
selection of the length of the template vector. In previ-
ous work, Giakas et al. [32] reported that, in human loco-
motion, frequencies that occur during walking are about 
16 Hz for vertical and anterio-posterior and about 24 Hz 
for medio-lateral ground reaction forces. Stergiou et  al. 
[33] revealed similar results. Thus, it would mean that the 
change in a time-series which emerge in a time interval 
lasting longer than 0.063 s would reflect modification in 
a neuromotor or mechanical state of a system. As our 
participants walked on motorized treadmill, we did addi-
tional FFT analysis to confirm frequencies in our data 
(Additional file  1: Fig. S10). In the current study m = 6 
and m + 1 was equivalent to 6–7% of a stride. As mean 
stride time was 1.06 s, thus, 6–7% would correspond to 
a minimal time interval (0.064–0.074 s) which can reflect 
change caused by response of a neuromuscular system 
to more demanding walking conditions (with maximum 

tolerated speed). Therefore, the length of the m = 6 was 
valid from the biological perspective.

One potential limitation of the current study was that 
subjects walked on a motorized treadmill. Although 
treadmill walking is an efficient method to collect data 
from many consecutive strides, previous studies have 
shown that treadmills may artificially reduce the natu-
ral variability and increase dynamic stability [34]. Thus, 
a direct comparison of our results with results from the 
overground walking is unfeasible. Nevertheless, because 
this study quantified SampEn for parameters assessed on 
the same treadmill, comparisons between walking condi-
tions remain valid. What is more, our results shows that 
SampEn can be promising tool for comparing walking 
regularity in different conditions.

In conclusion, the current study demonstrated that 
SampEn was able to discriminate between different 
walking conditions in all analyzed parameters. During 
walking in more demanding conditions (with maximum 
speed) regularity of the walking pattern expressed in the 
COPml signal decreased and in the COPap and vGRF 
increased. However, in the COPml only raw data and 
data detrended by our method were sensitive enough to 
reveal significant differences.

The results also demonstrated that for COP parameters 
SampEn was susceptible in the opposite way for param-
eter m and different preprocessing methods. The level 
of signal regularity or complexity may be influenced by 
a combination of several factors, thus authors must be 
extremely cautious when generalizing their findings. For 
future studies evaluating influence of walking velocity 
and using COP with its directional subcomponents and 
vGRF signal during treadmill walking it is advised to use 
raw time series, without spatial and temporal normali-
zation. Furthermore, to maintain template vector which 
represents biological relevance it is advised to detect 
highest frequencies present in analyzed signals and 
evaluate minimal time interval which can reflect change 
caused by response of a neuromuscular system. During 
evaluating treadmill walking measured with 100 Hz sam-
pling frequency it is recommended to adopt m from 6 to 
10, when average stride time is up to 1 s.
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