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Abstract 

Background:  Many dementia prediction models have been developed, but only few have been externally validated, 
which hinders clinical uptake and may pose a risk if models are applied to actual patients regardless. Externally vali-
dating an existing prediction model is a difficult task, where we mostly rely on the completeness of model reporting 
in a published article.

In this study, we aim to externally validate existing dementia prediction models. To that end, we define model report-
ing criteria, review published studies, and externally validate three well reported models using routinely collected 
health data from administrative claims and electronic health records.

Methods:  We identified dementia prediction models that were developed between 2011 and 2020 and assessed 
if they could be externally validated given a set of model criteria. In addition, we externally validated three of these 
models (Walters’ Dementia Risk Score, Mehta’s RxDx-Dementia Risk Index, and Nori’s ADRD dementia prediction 
model) on a network of six observational health databases from the United States, United Kingdom, Germany and the 
Netherlands, including the original development databases of the models.

Results:  We reviewed 59 dementia prediction models. All models reported the prediction method, development 
database, and target and outcome definitions. Less frequently reported by these 59 prediction models were predictor 
definitions (52 models) including the time window in which a predictor is assessed (21 models), predictor coefficients 
(20 models), and the time-at-risk (42 models). The validation of the model by Walters (development c-statistic: 0.84) 
showed moderate transportability (0.67–0.76 c-statistic). The Mehta model (development c-statistic: 0.81) transported 
well to some of the external databases (0.69–0.79 c-statistic). The Nori model (development AUROC: 0.69) transported 
well (0.62–0.68 AUROC) but performed modestly overall. Recalibration showed improvements for the Walters and Nori 
models, while recalibration could not be assessed for the Mehta model due to unreported baseline hazard.

Conclusion:  We observed that reporting is mostly insufficient to fully externally validate published dementia predic-
tion models, and therefore, it is uncertain how well these models would work in other clinical settings. We emphasize 
the importance of following established guidelines for reporting clinical prediction models. We recommend that 
reporting should be more explicit and have external validation in mind if the model is meant to be applied in different 
settings.
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Key points

•	 Many dementia prediction models have been devel-
oped, but only few have been externally validated, 
which may limit clinical uptake.
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•	 We assess whether reported information on existing 
dementia prediction models allows for external vali-
dation.

•	 We externally validate three of the dementia predic-
tion models across a network of observational data-
bases, including the original development databases.

Background
Dementia is an umbrella term to describe various ill-
nesses that affect cognition and may lead to mental 
degradation. Early diagnosis of individuals at high risk 
of dementia allows for improved care and risk-factor 
targeted intervention [1]. Many patient-level predic-
tion models for identifying individuals who are at risk of 
dementia have been developed [2–4].

Earlier models were mostly developed on data from 
cohort studies where data were recorded during health 
checkups using a variety of questionnaires and cognition 
tests [5–10]. In recent years models have increasingly 
been developed on observational health data [11–16]. 
These routinely collected data from administrative claims 
and electronic health records are considered to enhance 
a model’s applicability at the point of care [15]. Although 
observational health data generally do not include known 
predictive variables such as education level, cognitive test 
results and genetic information [15], various studies have 
shown good internal validation performance when devel-
oping models on this kind of data. Notable examples are 
Walters et al. who developed dementia prediction mod-
els using electronic health record data from the THIN 
database, and Albrecht et  al. who developed predic-
tive models for Alzheimer’s disease and related demen-
tias (ADRD) using administrative claims data from the 
OptumLabs Data Warehouse [14, 15].

However, the systematic reviews of Hou et  al. and 
Goerdten et  al. conclude that although many dementia 
risk prediction models have been developed, only a hand-
ful of them have been externally validated [3, 4]. External 
validation assesses a model’s reliability for clinical use in 
external data sources that have not been used for model 
development. A lack of external validation can lead to a 
plethora of proposed models with little evidence about 
which are reliable and under what circumstances [17].

External validation can be a cumbersome process due 
to the difficulty of retrieving a prediction model, e.g., 
retrieving cohort and predictor definitions, or coeffi-
cient values from a published manuscript. We hypoth-
esize that successful model retrieval largely depends on 
completeness of model reporting. Insufficient reporting 
may prevent efficient and large-scale external validation, 
potentially resulting in small clinical uptake of published 
models [18].

In this study, we aim to externally validate exist-
ing dementia prediction models. To that end, we define 
model reporting criteria, review published models, and 
externally validate three selected models using routinely 
collected health data from administrative claims and 
electronic health records.

Methods
Article selection
Our literature search for existing dementia prediction 
models was based on the search query presented in a 
systematic review on dementia risk prediction model-
ling by Tang et al. from 2015 [2]. The search interval was 
extended from 1 to 2011 to 31 December 2020. MED-
LINE, Embase, Scopus and ISI Web of Science were 
originally searched using combinations of the following 
terms and mapped to Medical Subject Headings (MeSH): 
“dementia”, “Alzheimer disease”, “Alzheimer and disease”, 
“predict”, “develop”, “incident”, “sensitivity”, “specificity”, 
“ROC” and “area under the curve” [2]. For our query we 
added the following terms: “c statistic”, “concordance sta-
tistic”. Only articles published in English were considered.

Articles were included if they met the following cri-
teria: (1)  the sample was population-based; (2)  the risk 
model predicts the risk of dementia in non-demented 
individuals; (3) measurements of discrimination are pro-
vided, e.g., the area under the receiver operating charac-
teristic curve (AUROC) or c-statistic.

Reporting criteria
This study does not develop or propose a prediction 
model, but merely applies existing models. If the predic-
tion models to be applied are not presented in the form 
of a calculator, e.g., as a nomogram or chart score, it is 
necessary to retrieve them from the accompanying docu-
mentation, such as the research paper and supplemental 
material. The criteria that a study must report for model 
validation on external data to be feasible are presented in 
Table 1 and can be directly inferred from our prediction 
approach (Fig. 1). Among a population at risk, we predict 
which patients at a defined moment in time (the index) 
will experience some outcome during a time-at-risk. Pre-
diction is done using only information about the patients 
in an observation window prior to the index.

Reporting criteria can be broadly categorized into pop-
ulation settings and statistical analysis settings (Table 1) 
[19].

Data sources
For external validation, we selected a diverse set of elec-
tronic health record (EHR) and claims observational 
databases from different countries (Table 2).
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IBM MarketScan Medicare Supplemental Database 
(MDCR) includes data from the health services of retir-
ees in the United States with Medicare supplemental 
coverage through employer-sponsored plans. Optum De-
Identified Clinformatics Data Mart – Socio-Economic 
Status (OPSES) Database is derived from administra-
tive health claims for members of large commercial and 

Medicare Advantage health plans in the United States. 
The Iqvia Disease Analyzer Germany (IQGER) database 
consists of mostly primary care physician data collected 
from German practices and medical centers for all ages. 
Optum de-identified Electronic Health Record Dataset 
(OPEHR) represents longitudinal EHR data derived from 
dozens of healthcare provider organizations in the United 

Fig. 1  Patient-level prediction time windows and index date

Table 1  Model reporting criteria that prediction studies should report to enable external validation

Category Reporting criteria Description

Population settings Target population definition Definition or description of the population for which predictions are made.

Index date Date at which a patient qualifies for inclusion in the target population.

Time-at-risk Time window in which a model’s predictions are valid relative to the index date.

Outcome definition Definition or description of the outcome to be predicted during the time-at-risk.

Statistical analysis settings Prediction method Prediction methods in this study are limited to logistic regression and Cox proportional 
hazard for predicting a binary outcome.

Predictor definitions Predictor descriptions or definitions in terms of data source codes.

Predictor time window Time window in which the predictor is assessed. In a special case, a predictor can be assessed 
in a time window all time prior to index, often reported as “a history of …” using all available 
prior data of a person.

Model specifications The prediction model, e.g., parameters to construct the model given a prediction method. 
Alternatively, a risk calculator or nomogram could be reported.
We also distinguish here between fully and partially specified models. For example, if no 
intercept is reported in the case of a logistic regression model, we are still able to construct a 
simple risk stratification model using only coefficient values. However, this method does not 
consider the baseline risk of the original model and (re-)calibration will not be assessed.

Table 2  Data sources selected for external validation of selected dementia prediction models

Database Acronym No. of patients 
(million)

Country Data type

IBM MarketScan® Medicare Supplemental Database MDCR 10 United States Claims

Iqvia Germany DA IQGER 30 Germany GP, EHR

Optum’s de-identifed Clinformatics® Data Mart Database OPSES 85 United States Claims

Optum® de-identified Electronic Health Record dataset OPEHR 94 United States EHR

Clinical Practice Research Datalink CPRD 13 United Kingdom GP

Integrated Primary Care Information IPCI 2.5 Netherlands GP

Iqvia Medical Research Database (incorporating THIN) IMRD 18 United Kingdom GP



Page 4 of 12John et al. BMC Medical Research Methodology          (2022) 22:311 

States. The Clinical Practice Research Datalink (CPRD) is 
a governmental, not-for-profit research service consisting 
of data collected from UK primary care for all ages. The 
Integrated Primary Care Information (IPCI) database is a 
Dutch database containing the complete medical record 
of patients provided by around 350 general practitioners 
(GPs) geographically spread over the Netherlands [20]. 
Iqvia Medical Research Database (IMRD), incorporating 
The Health Improvement Network (THIN), is a longitu-
dinal patient database collected from primary care prac-
tices in the UK.

All data sources have been mapped to the Observa-
tional Medical Outcome Partnership (OMOP) Common 
Data Model (CDM) version 5, which provides a standard-
ized data structure and vocabulary [21].

Model selection for external validation
From the reviewed studies, we select models that were 
developed on one of our included data sources (Table 2). 
We validate these models on their original development 
database, which allows us to approximate quality of 
model reporting. In the optimal case the same discrimi-
nation performance as in the research paper should be 
achieved. A significantly lower performance could indi-
cate poor model reporting. The performance of a model 
on its original development database will be referred to 
as “round-trip” performance. In addition, the selected 
models were externally validated on the remaining data 
sources.

If only predictor coefficients are reported, we can con-
struct a risk stratification model that identifies high/low 
risk patients but does not assign an absolute risk estimate 
[22]. This is achieved by scaling the maximum achievable 
score of θTX , θ being the coefficients, or points per pre-
dictor, and X being the predictors, with values between 0 
and 1. Because there is no parameter that indicates base-
line risk of the development population, we cannot assign 
a risk estimate and will not assess calibration for this kind 
of model.

For external validation we use the standardized patient-
level prediction framework (PLP), which was developed 
by the Observational Health Data Science and Informat-
ics (OHDSI) network [19]. This framework enables the 
development of analysis packages in R that can be shared 
across sites that have access to data sources OMOP 
CDM. Our validation packages are populated on-site 
through computer-executable cohort and predictor defi-
nitions using SQL queries. The patient-level-prediction 
framework is based on best practices proposed by the 
Prognosis Research Strategy (PROGRESS) and follows 
the recommendations of the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) statement [23, 24].

Performance evaluation
External validation of a prediction model typically 
involves quantifying a model’s discrimination and cali-
bration performance.

A model’s predicted risks must discriminate well 
between those participants who will and will not have 
the outcome of interest. Discrimination is generally 
reported by the area under the receiver operating char-
acteristic curve (AUROC) or when censoring is consid-
ered by the concordance statistic (c-statistic), which in 
practice will take the same value for a binary prediction 
problem [25]. We will use the AUROC to measure dis-
crimination performance, which is computed as the area 
under the receiver operating curve, the plot of sensitiv-
ity vs. 1-specificity as the value of the cut-off point moves 
from 0 to 1. To build the receiver operating characteristic 
(ROC) curves we use the pROC R-package, which also 
includes functions for computing confidence intervals 
and methods for smoothing and visualizing ROC curves 
[26].

Calibration examines the agreement between predicted 
and observed risks. In literature, calibration was found 
to be assessed far less often than discrimination, despite 
the risk of poorly calibrated prediction models being 
misleading and potentially harmful for clinical decision-
making [27]. Various forms of calibration exist. A predic-
tion model is moderately calibrated if, among patients 
with the same predicted risk, the observed event rate 
equals the predicted risk [28]. Mean-calibration evalu-
ates whether the observed event rate equals the average 
predicted risk. However, mean calibration is considered 
insufficient as sole criterion, as it is satisfied when the 
predicted risk for each patient would equal the true 
event rate [28]. Weak calibration is given for a calibra-
tion intercept of 0 and a calibration slope of 1. Although 
not considered flexible, weak calibration can be useful for 
external validation as calibration intercept and slope can 
provide a concise summary of potential calibration prob-
lems [28].

only require the averaged predicted risk, and weakly-
calibrated prediction models only requires the average 
prediction effects.

Calibration can be visualized graphically in various 
ways, for example by plotting observed versus predicted 
risks across deciles of predicted risk or age groups. For 
this study, we decided on the latter method using age 
groups.

Transported models may also benefit from re-calibra-
tion so that predicted risk better matches the proportion 
of subjects that actually have the dementia outcome in 
the external data source. We will use slope and intercept 
re-calibration. To assess the relative improvement of a 
model through recalibration, we will assess Eavg, a single 
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value metric, which is the average absolute difference 
between observed and predicted probabilities [29].

Results
Model reporting
The inclusion criteria of our literature search were met 
by 35 studies, which described a total of 59 prediction 
models [5, 7–16, 30–53]. Table 3 summarizes the number 
of models that fulfil the reporting criteria. Refer to sup-
plemental material in Appendix A for the full literature 
review.

Criteria that were reported by all included studies were 
the target population definition, the outcome definition, 
and the prediction method. Various prediction methods 
were used, including Cox proportional hazard, single 
tests, logistic regression, linear discrimination analysis, 
competing risk regression, disease state index, random 
forest, and support vector machine. Most frequently 
reported prediction methods were Cox proportional 
hazard (13 studies, 21 models) and logistic regression (8 
studies, 14 models).

Frequently reported criteria were the time-at-risk (71% 
of the models) and the predictor definitions (88% of the 
models). Most reported time-at-risk was between three 
and five years. Studies that did not explicitly state the 
time-at-risk or predicted over the full follow-up time of a 
patient were considered to not report this criterion.

Rarely reported criteria include the index date, the pre-
dictor time window, and the full model specifications. 
Non-demographic predictors were most commonly 
measured in a time window between one year and five 
years before index.

Of the included studies, three fulfilled all nine report-
ing criteria for a total of seven proposed models [30]. The 
median number of reported criteria across all included 
models was five.

Externally validated models
We selected one of the seven fully reported models, Wal-
ters’ Dementia Risk Score for persons aged 60–79, for 
validation and dismissed the other six for various reasons: 
Walters et al. did not endorse their second model aimed 
at persons aged 80–95 for clinical use due to low dis-
crimination performance [15]; four models used detailed 
education variables (0 to 5 years of primary school, Voca-
tional school certificate, French junior-school diploma, 
French high school diploma, Graduate studies) that were 
unavailable in the validation databases [32]; one model 
was developed on data from a prospective cohort study, 
Adult Changes in Thought (ACT), which is currently not 
available in the OMOP CDM format [30]. Of the partially 
reported models, there were two for which the develop-
ment data and predictors were available in the OMOP 
CDM, and for which missing criteria, such as the baseline 
hazard and time-at-risk could be left out or approximated 
under reserve. Therefore, we selected the following three 
models for external validation summarized in Table  4: 
(1) Walters’ Dementia Risk Score which predicts 5-year 
risk of first recorded dementia diagnosis among patients 
aged 60–79 using a Cox proportional hazard model and 
was developed on THIN/IMRD [15]; (2) Mehta’s RxDx-
Dementia Risk Index which predicts risk of incident 
dementia among patients diagnosed with type 2 diabe-
tes mellitus and hypertension using a Cox proportional 
hazard model developed on CPRD [16]; and (3)  Nori’s 
ADRD prediction model which predicts Alzheimer’s dis-
ease and related dementias (ADRD) among patients aged 
45 and older using a logistic regression model developed 
on OptumLabs [13].

Of the externally validated models, the Mehta model 
did not report the baseline hazard and the time-at-risk, 
and the Nori model did not report the time-at-risk. 
Because missing information could not be provided by 
authors, we decided to use a 5-year time-at-risk as used 

Table 3  Reporting criteria for included dementia prediction models

Category Reporting criteria No. of models (%)

Population settings Target population definition 59 (100)

Index date 22 (37)

Time-at-risk 42 (71)

Outcome definition 59 (100)

Statistical analysis settings Prediction method 59 (100)

Predictor definitions 52 (88)

Predictor time window 21 (36)

Model specifications: Full model 9 (15)

Model specifications: Partial model 17 (29)
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by the Walters model and many of the other reviewed 
models.

Walters model
The Walters model was found to fulfil all reporting cri-
teria defined in Table  1. It was developed on the THIN 
database and had several notable modeling decisions. For 
example, during development data imputation has been 
used for various numeric variables. Of the six imputed 
variables (smoking, height, total cholesterol, HDL cho-
lesterol, systolic blood pressure, and weight) only smok-
ing remained in the final model. In the validated model 
the smoking status is imputed by assuming that patients 
that have neither a code for “smoker” nor “ex-smoker” are 
considered “non-smokers”. This demonstrates a general 
shortcoming of observational data, as the absence of a 
code does not guarantee the absence of a condition, drug, 
or in this case smoking, and the code may simply not 
have been recorded despite the patient being a smoker or 
ex-smoker.

The Walters models uses a variable called “social dep-
rivation score”, which ranges from 1 to 5 indicating social 
deprivation. The information in this variable has been 
established through a linkage of the UK postal (zip) code 
recorded in patient notes to UK Population Census data. 
However, this linkage is no longer available, unlikely to 
exist in other databases across the world, and establishing 
the linkage may not be possible or feasible.

The index date (and start of follow-up) of the Wal-
ters model is the latest of four entry events: (1)  1 Janu-
ary 2000, (2)  when the individual turned 60, (3)  one 
year following new registration with a THIN practice, 
and (4) one year after the practice met standard criteria 
for accurate recording of deaths, consultation, health 
measurements and prescribing. Only the index date of 
a patient turning 60 could be fully replicated. The start 
of follow-up on 1 January 2000 was not applicable to 
any of the data sources as it lies too far in the past. The 
remaining two index events are THIN-specific and could 

not be replicated in other databases, including IMRD. 
To still make the cohort compatible with the remaining 
data sources, we added an entry event defined as the lat-
est visit before 1 January 2014 for persons aged 60–79. 
Since the included data sources could provide records 
until the end of 2018, we ensure that all persons are eligi-
ble for full 5-year risk follow-up as required by the model 
specifications. Visits are suitable for defining index dates, 
because they indicate interaction with a healthcare pro-
vider that may be qualified to apply a model and interpret 
its predictions.

The paper mentions that Read codes were used for 
development, which is a hierarchical coding system that 
maps onto ICD-10 codes. The authors provide literal 
names of predictors, for which the corresponding code 
could be determined by us.

Mehta model
The research paper does not report the full model, which 
is a Cox proportional hazard model. While the coef-
ficients are reported, the baseline hazard and the time-
at-risk are missing. We have contacted the authors of 
this study, but they were unable to provide us with this 
information. We are still able to validate the model for 
an estimated time-at-risk of 5 years and by normalizing 
the values of θTX to a risk score between 0 and 1, where 
θ and X are the coefficientsand predictors, respectively. 
However, without the baseline hazard we are unable to 
assess calibration and will report discrimination perfor-
mance only [54].

In addition, no data source codes or vocabularies are 
provided for the predictors, so that predictors needed to 
be retrieved from the medical terms.

Nori model
The Nori model did not explicitly report the time-at-risk. 
As with the Mehta model, we are still able to validate the 
model for an estimated time-at-risk of 5 years.

Table 4  Summary of validated prediction models

Walters models Mehta model Nori model

Development database THIN CPRD OptumLabs

Population Patients aged 60–79 Patients diagnosed with type 2 diabetes 
mellitus and hypertension

Patients aged 45 and older

Outcome 5-year risk of first recorded dementia 
diagnosis

Risk of incident dementia Risk of Alzheimer’s disease and related 
dementias (ADRD)

Prediction method Cox proportional hazard Cox proportional hazard Logistic regression

Predictor summary 15 predictors including sociodemo-
graphic measures, health status meas-
urements, medical diagnoses, prescrip-
tion medication

26 predictors including demographic 
measures, medical diagnoses, medical 
procedures

50 predictors including demographic 
measures, medical diagnoses, prescrip-
tion medication, medical procedures
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The paper provides ICD-9-CM codes for diagnoses 
and CPT-4 codes for procedures that are used as predic-
tors in the final model. The OMOP-CDM uses CPT-4 as 
the standard vocabulary for procedures and SNOMED 
CT for diagnoses. However, a mapping table from ICD-
9-CM to SNOMED CT is available. Therefore, we could 
retrieve predictors using exact code definitions for the 
Nori model.

A characteristic of the Nori model was a complex tar-
get population definition with multiple entry events and 
various observation windows. Given a written definition 

and graphical representation (Fig. 1 in original paper) of 
the target population, validation was notably more diffi-
cult than for the other models [13].

External validation performance
Table  5 provides the discrimination and Table  6 the 
recalibration performance of the validated models. Cali-
bration and re-calibration in terms of the Eavg was only 
assessed if the model’s authors provided the baseline 
risk, for example in the form of the intercept or baseline 

(a)

(b)
Fig. 2  Round-trip calibration presented as observed versus expected risks across sex and age for non re-calibrated models: a Walters’ Dementia Risk 
Score on IMRD; b Nori’s ADRD prediction model on OPEHR. The shaded are presents the 95% confidence interval of the expected risk

Table 5  Internal and external discrimination performance in AUROC of externally validated models. The round-trip performances for 
each model are presented in the shaded cells

a Discrimination AUROC (95% confidence intervals)

Model Development 
database

MDCR IQGER OPSES OPEHR CPRD IPCI IMRD

Walters 0.84 (THIN) 0.69 (0.69–0.69)a 0.75 (0.75–0.75)a 0.74 (0.74–0.74)a 0.73 (0.73–0.73)a 0.67 (0.66–0.67)a 0.76 (0.75–0.77)a 0.68 (0.68–
0.69)a

Mehta 0.81 (CPRD) 0.69 (0.69–0.70) 0.72 (0.71–0.72) 0.71 (0.70–0.71) 0.73 (0.73–0.73) 0.79 (0.78–0.80) 0.78 (0.76–0.80) 0.79 (0.78–0.80)

Nori 0.69 (Optum) 0.66 (0.66–0.67) 0.67 (0.66–0.68) 0.67 (0.66–0.68) 0.62 (0.62–0.63) 0.68 (0.67–0.69) 0.64 (0.62–0.67) 0.68 (0.68–0.69)
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hazard. In Fig.  2 we present “round-trip” calibration as 
observed versus expected risks.

Walters’ Dementia risk score performed best during 
its development on THIN and worst after model valida-
tion on CPRD, MDCR, and IMRD. Interestingly, IMRD, 
which incorporates THIN, presents the best approxi-
mation of the development data and still shows a sig-
nificant performance deterioration for the round-trip. 
Figure 2a shows the Walters model round-trip calibra-
tion of the original Walters model on IMRD indicating 
moderate agreement between observed and predicted 
risk for the entire target population.

Mehta’s RxDx-Dementia Risk index performed best 
during development on CPRD and almost equally well 
in the three primary care databases CPRD, IPCI, and 
IMRD.

Nori’s ADRD dementia prediction model performed 
best during development on OptumLabs and almost 
equally well in the remaining data sources. Interest-
ingly, the round-trip performance on OPEHR was the 
worst. In Fig. 2b we learn that the model overpredicts 
the round-trip risk in the target population of CPRD.

Almost all models show improvements of the Eavg 
after recalibration (Table  5). Recalibration for the 
Mehta model was not assessed because no baseline 
hazard was provided.

Discussion
We assessed reporting of published dementia pre-
diction models and found shortcomings in reporting 
essential information that would allow for full model 
validation.

Our results showed that while reporting was complete 
for some criteria such as target and outcome definitions, 
reporting of statistical analysis criteria is mostly insuf-
ficient to fully validate the dementia prediction models. 
Moreover, our external validation of three selected mod-
els showed that even if reporting was sufficient for model 
retrieval, it does not guarantee that external validation 
becomes non-trivial, because predictors had to be pre-
sent, and inclusion and exclusion criteria of target and 
outcome had to be generalizable to other data sources. 
Performance across external data sources showed 

substantial differences in discrimination performance as 
compared to the reported development performance.

Model reporting
All studies reported the target population and the out-
come. However, only 22 of 59 models reported the 
index date. The problem arises that although it is clear 
for which (sub) population a risk model is meant to be 
used, it often remains unclear at what point in time 
the model is to be applied. A better solution for choos-
ing an overall index date is using a visit or a condition 
diagnosis, which are associated with an individual date 
per patient. Additionally, a visit or a diagnosis date 
most likely involves interaction with a healthcare pro-
vider who is qualified to apply a model and interpret its 
results.

The time-at-risk is anchored to the index date and 
determines during which time the predictions of a model 
are valid. There were 42 of 59 models that explicitly 
reported the time-at-risk, while for the remaining stud-
ies it was unclear. Some studies would use the full follow-
up of each individual patient, however, it remains unclear 
what the valid time frame is following the index date, for 
which reason these models cannot be applied reliably.

A majority of the studies reported predictor defini-
tions or at least names that can be interpreted to repli-
cate a predictor. However, only 21 of 59 models provided 
the time window in which the predictor is measured. 
Predictor definitions or descriptions without time win-
dow are not useful for non-demographic predictors. It 
could make a significant difference whether a predic-
tor was recorded recently or 20 years in the past. More 
importantly, the validated model should match the origi-
nal model settings, which cannot be achieved if predic-
tor time windows are not reported. In addition, only 17 
of 59 models provided a partial model, for example only 
coefficient values, and 9 of 59 models provided the full 
model. Therefore, our results suggest that while popula-
tion settings are moderately well reported, there is lack 
of reporting statistical analysis settings, which in many 
cases makes external validation impossible.

Calibration is essential to assess if a model underes-
timates or overestimates outcome risk in an external 
population. Original calibration can be computed, if the 

Table 6  External calibration and recalibration performance in Eavg of externally validated models. Calibration of Mehta’s RxDx-
Dementia Risk Index was not assessed due to missing baseline hazard

a Calibration Eavg (recalibrated Eavg)

Model MDCR IQGER OPSES OPEHR CPRD IPCI IMRD

Walters 0.060 (0.002)a 0.025 (0.011) 0.064 (0.011) 0.057 (0.032) 0.073 (0.015) 0.024 (0.011) 0.065 (0.001)

Mehta - - - - - - -

Nori 0.164 (0.001) 0.142 (0.001) 0.258 (0.001) 0.170 (0.001) 0.198 (0.001) 0.790 (0.0002) 0.19 (0.001)
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intercept/baseline hazard or similar baseline risk param-
eters are reported. Only 9 of 59 models provided this 
information. Recalibration should generally be done, 
which yields best results if the original baseline risk is 
known.

Walters model
The performance of the Walters model in the external 
databases was good.

The “round-trip” performance after validating on 
IMRD is low compared to the development performance 
on THIN, yet agrees with the performance on CPRD, 
which is also a UK primary care database of similar struc-
ture. The reason for this performance deterioration is not 
immediately evident. Possible causes may be the entry 
events that could not be replicated, the visit entry event 
we defined ourselves, the missing social deprivation pre-
dictor, or inaccuracy when matching the literal predictor 
names to Read codes. Moreover, the conversion of the 
IMRD database to the OMOP CDM may have addition-
ally introduced medical term inaccuracies.

Mehta model
The Metha model saw a drop off in performance across 
all external data sources. The “round-trip” performance 
after validating on CPRD was 0.79 as compared to 0.81 
during development. This model was explicitly reported, 
which made validation easier, for example predic-
tors were provided in the form of code lists. We had to 
assume the missing time-at-risk to be 5 years, which is a 
value commonly used across the reviewed models. Due 
to the good performance on CPRD, we are confident that 
the model is mostly well retrieved, despite not having 
the baseline hazard. However due to incomplete model 
specification, calibration is unknown. For reporting, we 
recommend that authors of Cox proportional hazard 
models obtain an approximation of the baseline hazard, 
for example through method presented by Royston et al. 
[54, 55].

Generally, a model that is not completely reported 
should not be considered for clinical use. In this case, the 
5-year time-at-risk appears to work well since we based 
it on the design choice of other reviewed dementia mod-
els. However, instead of retrieving an incomplete model 
we suggest to take explicit target cohort, outcome or pre-
dictor definitions as a starting point to build new models 
directly on the validation databases.

Nori model
The Nori model was the lowest performing model with 
a 0.69 AUC during development. This dropped to 0.62 
on OPEHR, after the “round-trip” while maintain-
ing good calibration (Fig.  2b). The target population 

definition appeared complex, with four different cohort 
entry events causing difficulties during validation. 
Validation would have benefitted from a more verbose 
and systematic presentation of such a complex target 
population.

Implications
The lack of external validation in dementia predic-
tion literature can to some extend be attributed to the 
insufficient reporting of models. Models should be 
developed with external validation in mind. This could 
for example mean to report all aspects of the model 
explicitly. Such transparency is best achieved program-
matically through code lists and underlying logic rather 
than literal descriptions, for example by providing a 
full description of the model (development) in code, 
ideally against a common data model. This approach 
will likely eliminate ambiguity as a source of error. For 
example, Nori’s ADRD prediction model uses two vari-
ables named “Diabetes Mellitus”, which originate from 
ICD9CM codes 250.00 and 250.02. If these codes were 
not provided by the authors, it would not have been 
possible to verify that the former code specifies “not 
stated as uncontrolled” and the latter “uncontrolled”.

Development choices should not rely on properties 
unique to the development database, e.g., the Walters 
model contained criteria to define the target population 
and predictors that did not exist in the external data 
sources, for example the cohort entry event “one year 
following new registration with a THIN practice”.

In general, authors should avoid uncommon predic-
tors during model development if the model is meant 
to be applied in external healthcare settings. Instead of 
building a single model with multiple, complex cohort 
entry events, it can be beneficial to build a model for 
each entry event, which may be easier to interpret and 
validate. The Nori model suffered from this problem as 
it had a complex target population definition with mul-
tiple entry events. Defining the time-at-risk window is 
crucial to indicate in which time window a model’s pre-
dictions are valid. Using the full follow-up of a popula-
tion is not a valid approach, as follow-up can vary per 
person.

Recalibration showed improvements in the Eavg across 
most models and databases, however, this can only 
be observed when the intercept or baseline hazard is 
reported. To perform recalibration in an external set-
ting, an annotated dataset is required. If such a dataset 
is available, the question arises, whether developing a 
new model altogether, potentially using definitions from 
existing models, may be an even better approach. Recali-
bration performed during our external validations shows 
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improvements, but if no intercept/baseline hazard is 
reported possible recalibration improvements cannot be 
assessed.

Recalibration needs to be performed, if discrepancy 
between expected and observed risk is large, which can 
be assessed through visualizations such as Fig. 2.

A systematic review by Collins et al. concluded that also 
most external validation studies were characterized by 
poor design, inappropriate handling and acknowledge-
ment of missing data, and calibration performance often 
being omitted from the publication [56]. We believe that 
explicitness in reporting by providing computer execut-
able code based on which the development, but also the 
external validation has been performed, will facilitate the 
implementation of a prediction model in clinical practice 
to ultimately improves patient outcomes. The TRIPOD 
statement on which our reporting criteria are based can 
serve as a valuable resource towards better reporting [24].

Limitations
We reviewed studies for reporting criteria to the best of 
our ability, however, due to vague descriptions, that leave 
room for interpretation, our general approach was to 
consider criteria as not reported once uncertain. Moreo-
ver, this study is purely methodological and assesses the 
quality of model reporting in existing dementia predic-
tion literature. We did not assess the clinical usefulness of 
any of the validated models, nor do we endorse any of the 
models for clinical use.

The “round-trip” is meant to approximate the perfor-
mance of the retrieved model on the original development 
data. However, over time the composition of people and 
other records in the databases may have changed for various 
reasons. For example, on October 1, 2015, the Centers for 
Medicare & Medicaid Services (CMS) in the Department 
of Health and Human Services (HHS) in the United States 
coordinated the transition from the ICD-9 code sets to 
ICD-10 codes. An increased number of codes in ICD-10 
can manifest in discrepancies for data analyses before and 
after this transition. Equally, regulatory changes can result 
in drug or procedure records becoming available or una-
vailable in the data from one day to the other.

Moreover, databases were mapped to the OMOP CDM, 
which eliminates the need for the model to be adjusted 
for different database source codes. However, the accu-
racy of this mapping may have negatively impacted the 
round-trip performance of each model on their respective 
development database.

Conclusion
Many dementia risk prediction models have been 
developed, but only a handful have been externally 
validated [3, 4]. We reviewed 35 studies that proposed 

a total of 59 dementia risk models. We observed that 
reporting is mostly insufficient to fully externally vali-
date published dementia prediction models, and there-
fore, it is uncertain how well these models would work 
in other clinical settings. In addition, we externally vali-
dated three existing dementia prediction models and 
encountered difficulties beyond our reporting crite-
ria, such as ambiguous cohort or predictor definitions. 
We emphasize the importance of following established 
guidelines for reporting clinical prediction model. We 
recommend that reporting should be more explicit and 
have external validation in mind if the model is meant 
to be applied in different settings.
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