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Supplementary Methods 

Sample collection 

Written informed consent was obtained and the study was approved by the Hospital 

Clínic of Barcelona Ethics Committee. Tumor samples were obtained from fresh or 

cryopreserved mononuclear cells. Purification was done using a cocktail of magnetically 

labeled antibodies (AutoMACS, Miltenyi Biotec) (1). The germ line sample was obtained from 

the non-tumoral purified cells. Appropriate Qiagen kits were used to extract the DNA following 

manufacturer’s recommendations. DNA quality and quantity were assayed by SYBR-green 

staining on agarose gels and quantified using a Qubit dsDNA HS assay (Invitrogen). 

Identification of germline ATM mutations by Sanger sequencing 

Amplification of the fragments of interest by PCR was performed using the Taq PCR 

Master Mix Kit (Qiagen) following manufacturer’s recommendations using 25ng of input 

DNA in a final reaction volume of 25µl. The sequence of the primers used can be found in 

Supplementary Table 3. PCR products were cleaned using ExoSAP-IT (USB) and sequenced 

using ABI Prism BigDye terminator (Applied Biosystems). Sequencing reactions were run on 

an ABI-3730 automated sequencer (Applied Biosystems). All sequences were visually 

examined with the Mutation Surveyor® software (SoftGenetics). 

Whole genome sequencing 

Whole-genome sequencing (WGS) was performed for all samples. Two samples were 

included in our previous ICGC-CLL study (1). New library preparation for paired-end WGS 

was performed using the TruSeq DNA PCR-Free kit (Illumina) or the TruSeq DNA Nano 

protocol (Illumina) based on the available material following manufacturer’s 

recommendations, and sequenced on a HiSeq X Ten (2x151 bp) or NovaSeq 6000 (2x151 bp) 
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instrument (Illumina) aiming at a mean coverage of 30x. Primary data analysis, image analysis, 

base calling, and quality scoring of the run were processed using the manufacturer’s software. 

A sample-based summary can be found in Supplementary Table 1. 

WGS analyses 

Alignment and quality control: Quality control metrics of FASTQ files were extracted 

using FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc, v0.11.5). Raw reads were 

mapped onto the human reference genome (GRCh37) using BWA-mem algorithm (v0.7.15) 

(2). Biobambam2 (https://gitlab.com/german.tischler/biobambam2, v2.0.65) was used to sort 

and index the BAM files, and to flag optical or PCR duplicates. Quality control metrics of the 

BAM files were obtained using Picard (https://broadinstitute.github.io/picard, v2.10.2) 

(Supplementary Table 1).  

Single nucleotide variants (SNV): Somatic SNV were identified using a multi-caller 

approach of 4 variant callers: Sidrón (1), CaVEMan (cgpCaVEManWrapper, v1.12.0) (3), 

Mutect2 (GATK v4.0.2.0) (4), and MuSE (v1.0 rc) (5). We applied caller-specific filters to 

remove low quality variants identified by CaVEMan and Mutect2. Variants detected by 

CaVEMan with CLPM > 0 and ASMD values <90, <120 or <140 for sequencing read lengths 

of 100, 125, or 150 base pairs, respectively, were excluded. Variants called by Mutect2 with 

MMQ < 60 were eliminated. Mutations detected by at least two algorithms were kept for 

downstream analyses.  

To increase the sensitivity of our variant calling, each SNV called in at least one sample 

was searched in the other samples, if the variant was not initially found, and it was recovered 

if at least one read with the mutation was found in the BAM file using alleleCounter (v4.0.0, 

https://github.com/cancerit/alleleCount). Only high-quality reads and bases were considered 

(mapping quality >= 35, base quality >= 20). 
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Small insertions and deletions (indels): Indels were called using Pindel (cgpPindel, 

v2.2.3) (6,7), Platypus (v0.8.1) (8), SvABA (v7.0.2) (9), and Mutect2. The following caller-

specific filters were applied: variants with MMQ<60, MQ<60, and MAPQ<60 for Mutect2, 

Platypus, and SvABA, respectively, were removed. Only indels identified by at least two 

algorithms were retained for downstream analyses. Indels identified in at least one time-point 

were added in the other sequential samples if any of the algorithms detected the alteration, 

regardless of its filters.  

Copy number alterations (CNA): CNA were called using Battenberg (cgpBattenberg, 

v3.2.2) (10) and ASCAT (ascatNgs, v4.1.0) (11). A consensus between the two callers was 

determined by visual inspection of the results. We confirmed the results obtained using 

Genome-wide Human SNP Array 6.0 (Thermo Fisher Scientific) available for the first simple 

analyzed (1). Tumor purities were obtained from Battenberg and were double checked (and 

adjusted if needed) based on the distribution of the variant allele frequency of the clonal SNV 

(Supplementary Table 1).  

Structural variants (SV): SV were detected using BRASS (v6.0.5) (12), SvABA, and 

DELLY2 (v0.8.1) (13). We filtered out variants called by BRASS with MAPQ<90, and those 

with MAPQ<60 for SvABA or DELLY2. Finally, SV identified by at least two programs and 

passing caller-specific filters for at least one program were kept. All SV were visually inspected 

using the Integrative Genomic Viewer (IGV) (14). Similar to SNV and indels, we recovered 

SV identified in any of the samples if they were detected by any program disregarding all filters 

and/or if they were seen by visual inspection using IGV. 

Variant annotations and driver alterations: SNV and indels were annotated with 

snpEff/snpSift (v4.3t) using RefSeq (GRCh37.p13.RefSeq) (15).  We compiled a catalogue of 
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genes considered as drivers in CLL (1,16) and annotated SNV, indel, CNA and SV disrupting 

these genes as drivers.  

Immunoglobulin gene rearrangements, stereotypy, and IGHV mutational status: 

IgCaller (17) was used to analyze immunoglobulin gene rearrangements (heavy and light chain 

rearrangements as well as class switch recombination) from WGS. The sequences obtained 

from IgCaller were used as input of Curated sequences were used as input of IMGT/V-QUEST 

(18) to annotate the genes, functionality and IGHV mutational status based on current 

guidelines (19).  The ARResT/AssignSubsets online tool (20) was used to analyze stereotypy. 

Mutational signatures: SNV were used to identify the mutational processes active 

during the course of the disease. SNV were classified into 96 substitution classes considering 

the base substitution and their 5’ and 3’ flanking bases. COSMIC mutational signatures (v3) 

known to be found in CLL were considered (SBS1, SBS5, SBS8 and SBS9) (1,21,22). We 

measured their contribution using a fitting approach (MutationalPatterns, v1.12.0) and 

iteratively removing the less contributing signature if removal of the signature decreased the 

cosine similarity between the original and reconstructed 96-profile less than 0.01, as previously 

described (22).  

Subclonal architecture and clonal evolution: SNV were used to assess the subclonal 

architecture and evolution of the tumor. SNV were clustered using a Bayesian method (10,23–

25). First, a Markov chain Monte Carlo (MCMC) sampler for a Dirichlet process mixture 

model was used to infer putative subclones (assignment of mutations to subclones, and 

estimation of the subclone frequencies in each sample) from the SNV read counts, copy number 

states, and tumor purities. The MCMC sampler was run for 10000 iterations, discarding the 

first 5000. Clusters with less than 50 mutations were excluded. The phylogenetic tree of the 

subclones was identified following the “pigeonhole principle”  (25), allowing a tolerated error 
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of 0.001. Clusters not assigned in the reconstructed tree were not considered. The length of 

each tree branch in the tree is proportional to the number of mutations assigned to the 

corresponding subclone. TimeScape R package (v1.6.0) was used to plot the fish plots.  

Single-cell DNA-seq (scDNA-seq) 

Sample preparation: scDNA-seq was performed for 3 different time points on a 

commercial gene panel (Tapestri single-cell DNA CLL panel from Mission Bio) covering 32 

CLL driver genes, using the Tapestri Platform from Mission Bio. Sample and library 

preparation were performed following manufacturer’s recommendations. Sequencing of all 

libraries was carried out on an Illumina NovaSeq 6000 S1 sequencer to obtain approximately 

1300 reads/cell.  

Data analysis: The Tapestri Pipeline (V1, Mission bio) was used to analyze the data. 

In short, adaptor sequences were trimmed, reads where aligned to the reference genome (hg19) 

using BWA, barcodes were corrected and reads were assigned to the corresponding cell 

barcode, and genotype calling was performed using the Genome Analysis Tooklit (GATK, 

v.37). Tapestri Insights (v2.2, Mission Bio) was used to analyze the output files (loom format) 

altogether.  Genotypes with quality <30, read depth <10, or allele frequency <20% were 

marked as missing. Variants genotyped in less than 50% of the cells or mutated in less than 1% 

of the cells were not considered. Cells with less than 50% of genotypes present were removed. 

After applying all these filters, a mean of 5948 cells per sample was obtained. Variants detected 

in bulk WGS were included as a white-list on Tapestri Insights. Variants at low-frequency (1-

10% of cells) in all scDNA-seq samples and not present in COSMIC were black-listed to 

remove potential artifacts from library preparation and/or sequencing. Only coding and splice 

site mutations (SNV and indels) were analyzed. Genotypes of the detected mutations were 

exported and used as input of ∞SCITE (https://github.com/cbg-ethz/infSCITE) (26), encoded 
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as follows: zero for wild type, one and two for heterozygous and homozygous mutation, 

respectively, and three for missing genotypes. ∞SCITE was used to infer the mutation tree and 

assign cells into subclones. Cells assigned to more than one subclone or genotyped as wild-

type for all mutations were not considered. As previously described (27), ∞SCITE was run 

using a global sequencing error rate (false positive rate) of 1%, following Mission Bio’s 

recommendation, using an estimated rate of non-mutated sites identified as homozygous 

mutations of 0%, and an estimated rate of allele dropout rate (false negative rate) specific of 

each sample. Germline single-nucleotide polymorphisms in gnomAD with a population 

frequency >1% and identified as mutated in at least 75% of cells with a variant allele frequency 

per read count between 47% and 53%, were used to estimate the rate of mutated allele and 

normal allele dropouts. 
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Supplementary Tables 

Supplementary Tables are placed in the Supplementary Tables Excel file. 

Supplementary Table 1: Associated metadata of WGS samples 

Supplementary Table 2: Immunoglobulin gene rearrangements determined by IgCaller 

Supplementary Table 3: Primers used for Sanger sequencing of ATM 

Supplementary Table 4: ATM germline variants 

Supplementary Table 5: Somatic mutations (SNV and indels) identified in WGS 

Supplementary Table 6: Coding mutations (SNV and indels) identified in WGS 

Supplementary Table 7: Copy number alterations identified in WGS 

Supplementary Table 8: Structural variants identified in WGS 

Supplementary Table 9: Subclonal reconstruction from WGS. Clusters identified and its abundance 

in each time point. 

Supplementary Table 10: Mutational signatures analysis. Contribution of CLL mutational processes 

to each cluster (identified in the subclonal reconstruction)  

Supplementary Table 11: Single-cell DNA-seq samples, metadata and genes studied 

Supplementary Table 12: Single-cell DNA-seq mutations identified from Tapestri Insights 

Supplementary Table 13: Single-cell DNA-seq allele dropout and doublet rates 

Supplementary Table 14: Single-cell DNA-seq. Count matrices (based on infSCITE) 
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