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Abstract
Purpose  Intraoperative blood transfusion is associated with adverse events. We aimed to establish a machine 
learning model to predict the probability of intraoperative blood transfusion during intracranial aneurysm surgery.

Methods  Patients, who underwent intracranial aneurysm surgery in our hospital between January 2019 and 
December 2021 were enrolled. Four machine learning models were benchmarked and the best learning model was 
used to establish the nomogram, before conducting a discriminative assessment.

Results  A total of 375 patients were included for analysis in this model, among whom 108 received an intraoperative 
blood transfusion during the intracranial aneurysm surgery. The least absolute shrinkage selection operator identified 
six preoperative relative factors: hemoglobin, platelet, D-dimer, sex, white blood cell, and aneurysm rupture before 
surgery. Performance evaluation of the classification error demonstrated the following: K-nearest neighbor, 0.2903; 
logistic regression, 0.2290; ranger, 0.2518; and extremely gradient boosting model, 0.2632. A nomogram based on a 
logistic regression algorithm was established using the above six parameters. The AUC values of the nomogram were 
0.828 (0.775, 0.881) and 0.796 (0.710, 0.882) in the development and validation groups, respectively.

Conclusions  Machine learning algorithms present a good performance evaluation of intraoperative blood 
transfusion. The nomogram established using a logistic regression algorithm showed a good discriminative ability to 
predict intraoperative blood transfusion during aneurysm surgery.
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Introduction
Blood transfusion is very common in patients under-
going major surgery. Blood transfusion can save lives 
by increasing tissue perfusion and oxygen delivery in 
patients with massive blood loss but can also result in 
transfusion-related adverse events, including fever, infec-
tion, acute lung injury, coagulation disorder, and immune 
dysfunctions [1–3]. Previous studies have demonstrated 
that transfusion is an independent relative factor for peri-
operative complications in patients undergoing cerebral 
aneurysm surgery [4], while angiography has confirmed 
the presence of vasospasm after blood transfusion [5]. 
Consequently, early identification of patients who require 
blood transfusion before surgery is both useful and nec-
essary for preoperative preparation and implementing 
preventive strategies.

Traditionally, the serum hemoglobin (HB) level is the 
most frequently used indicator for blood transfusion 
[6]. Guidelines recommend that patients should receive 
transfusion in the setting of profound anemia [7, 8]. 
However, the guidelines are limited as they do not refer to 
other perioperative risk factors including age, sex, disease 
severity, procedure type, and pre-existing co-morbidity 
[9]. For example, while an HB of 80 g/L is acceptable for a 
young adult, it is not for a geriatric patient with ischemic 
coronary artery disease. Thus, HB should not be the only 
indicator for blood transfusion. However, an effective for-
mula to predict the risk of transfusion is still lacking. In 
recent years, machine learning methods have been widely 
used to establish robust predictive models in the peri-
operative period, often without pitfalls and restrictions 
[10, 11]. such prediction models could help physicians to 
acutely identify the need for intraoperative blood trans-
fusion preoperatively and enhance patient safety, reduce 
costs, and avoid transfusion-related complications. Thus, 
in the current study, we aimed to establish a nomogram 
to predict the probability of intraoperative blood transfu-
sion in patients undergoing aneurysm surgery.

Materials and methods
Ethics statement and patient selection
The study was performed in adherence with the Declara-
tion of Helsinki and its later amendments. The study was 
approved by the Ethics Committee of Xiangyang Central 
Hospital, affiliated with Hubei University of Arts and Sci-
ence, and the requirement for written informed consent 
was waived, and the personal identifiers were removed 
before the data analysis.

We retrospectively scrutinized a total of 390 patients 
who underwent intracranial aneurysm clipping surgery 
in our hospital from January 2019 to December 2021. 
Variables with more than 20% missing values or less than 
10 cases were eliminated. Finally, seven patients were 
excluded for previous intracranial surgery at the same 

site and eight patients were excluded due to taking oral 
anticoagulants before surgery. Therefore, a total of 375 
patients who underwent intracranial aneurysm clipping 
surgery were included in the analysis. The aneurysm 
diagnosis was insured using cerebral angiography. Blood 
transfusion was defined as receiving packed red blood 
cells intraoperatively. Intraoperative transfusion was con-
ducted when the HB level was less than 70 g/L in stable 
patients and less than 90  g/L in patients with unstable 
hemodynamics. The decision for blood transfusion was 
discussed between the anesthetist and surgeon.

Risk factors
We collected and analyzed the following factors of the 
subjects: general information (sex, age, weight, previous 
cerebral disease, diabetes, cardiovascular disease, pul-
monary disease, renal disease, liver disease, and diabe-
tes mellitus [DM]), characteristics of the aneurysm (one 
or multi-site aneurysm, and whether it ruptured before 
surgery), characteristics of the patient status (American 
Society of Anesthesiologists [ASA], and heart function), 
and laboratory test results (white blood cell [WBC], HB, 
platelet [PLT], thromboplastin time [PT], activated par-
tial thromboplastin time [APTT], fibrinogen, D-dimer, 
total protein [TP], and albumin [ALB]), intraoperative 
blood transfusion volume and vasopressor utility, post-
operative mechanical ventilation duration, and length of 
postoperative hospital stay.

Statistical analysis
Data imputation, standardization, and feature selection
First, the entire data were split into the development and 
validation groups at a ratio of 7:3 (Fig.  1). The missing 
data were imputed using recursive partitioning and the 
regression trees method with 10-fold cross-validation, 
followed by standardization of the variables to the same 
range of values with the max-min method before model-
ing in the development and validation groups [12]. The 
least absolute shrinkage and selection operator (LASSO; 
glmnet package in R with α = 1) classifier with 10-fold 
cross-validation was used to reduce the data set to its 
most meaningful features [13]. LASSO shrinks the coef-
ficients, and those features with a coefficient of zero 
were excluded from the model establishment process. 
Variables entered before λ1se were chosen for the model 
establishment and evaluation process.

Machine learning algorithms
Four algorithms with nested resample methods were 
applied to build models to predict intraoperative blood 
transfusion, namely the K-nearest neighbor algorithm 
(KNN), logistic regression model (LR), ranger (also 
called random forest), and extremely gradient boosting 
machine (xgboost) (Fig. 1). The KNN, which is based on 
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analogical reasoning, stores all of the training data and 
classifies the new data point based on similarity measures 
[14]. Ranger and xgboost are tree-based ensemble algo-
rithms. Ranger generates multiple decision tree models 
by bootstrap samples and makes decisions through aver-
aging or majority voting [12]. Xgboost builds a regression 
or classification tree model from the beginning and con-
structs the new models to maximally reduce the negative 
gradient of the loss function [15].

Machine learning algorithm selection
The machine learning tuning process and performance 
evaluation used a nested resampling method with the 
development data. Briefly, in the inner loop, all of the 
possible combinations of parameters were tried to obtain 
optimal hyper-parameters, and then the best hyperpa-
rameters were used to train the machine model before 
the model performance was evaluated in the outer loop. 
The inner loop used a holdout cross-validation (CV; 
ratio: 7:3) with 1000 iterations, and the outer loop used 
a 5-fold CV, which results in a balanced performance 
evaluation. We selected classification error (CE = (false 
negative + false positive)/(true negative + true posi-
tive + false negative + false positive)) to evaluate the model 
performance.

Nomogram development and assessment
The machine learning model with the best performance 
was chosen for nomogram establishment and assess-
ment. We then established a nomogram of intraopera-
tive blood transfusion using the development data and 
assessed the discriminative ability in both the develop-
ment and validation sets.

The quantitative data were expressed as the mean and 
standard division (SD) if they were normally distributed, 
and the count data were expressed as numbers and pro-
portions. The quantitative data were analyzed using the 
unpaired t-test, and the count data were analyzed using 
the χ2 test. The discriminative ability of the nomogram 
for predicting a blood transfusion was assessed using the 
area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve. Statistical analysis was per-
formed using R software (version 4.2.1). A P < 0.05 indi-
cated the statistical difference.

Results
Patient demographics
The patient baseline characteristics are shown in Table 1. 
A total of 375 patients were enrolled for analysis, among 
whom 108 (25 man and 83 women, P < 0.001) patients 
received a blood transfusion. More patients who had 
ruptured aneurysms before surgery received blood 

Fig. 1  Flow chart of the trial. All data were split into the development and validation groups at a ratio of 7:3. The machine learning methods were per-
formed with the training group data using a nested resampling method, in which the inner loop data were split at a 7:3 ratio with 1000 iterations to result 
in the best hyperparameter. Then, the best hyperparameters were used to train the machine model and tested in outer loop data with a 5-fold cross 
validation (CV), which resulted in a balanced performance evaluation. The machine learning that had the best performance evaluation was selected to 
establish the prediction model with the development data, before evaluating the prediction model with the validation data
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transfusions compared with non-ruptured patients 
(85/23 vs. 143/124, P < 0.001). There were no significant 
differences between the transfused and non-transfused 
groups in terms of a previous history of cerebral disease, 

cardiovascular disease, pulmonary disease, renal dis-
ease, and DM (P > 0.05). Patients with ASA III-V received 
blood transfusions more frequently compared with those 
with ASA I-II (P < 0.001), while heart function did not 

Table 1  Patients baseline characteristics
Total Non-transfused Transfused P-value

Sex < 0.001

Man 141 (37.6%) 116 (82.3%) 25 (17.7%)

Woman 234 (62.4%) 151 (64.5%) 83 (35.5%)

Age (Mean (SD)) 60.4 (± 9.3) 60.3 (± 9.0) 60.7 (± 9.9) 0.54

Weight (Mean (SD)) 63.7 (± 9.7) 64.1 (± 9.8) 62.8 (± 9.5) 0.13

Multi-site 0.85

One-site 337 (89.9%) 239 (70.9%) 98 (29.1%)

Multi-site 38 (10.1%) 28 (73.7%) 10 (26.3%)

Ruptured < 0.001

None 147 (39.2%) 124 (84.4%) 23 (15.6%)

Ruptured 228 (60.8%) 143 (62.7%) 85 (37.3%)

Cerebral-disease 0.54

None 118 (31.5%) 87 (73.7%) 31 (26.3%)

Present 257 (68.5%) 180 (70.0%) 77 (30.0%)

Cardiovascular-disease 0.41

None 359 (95.7%) 257 (71.6%) 102 (28.4%)

Present 16 (4.3%) 10 (62.5%) 6 (37.5%)

Pulmonary-disease 0.52

None 347 (92.5%) 245 (70.6%) 102 (29.4%)

Present 28 (7.5%) 22 (78.6%) 6 (21.4%)

Renal-disease 0.44

None 356 (94.9%) 255 (71.6%) 101 (28.4%)

Present 19 (5.1%) 12 (63.2%) 7 (36.8%)

DM 0.3

None 357 (95.2%) 252 (70.6%) 105 (29.4%)

Present 18 (4.8%) 15 (83.3%) 3 (16.7%)

ASA 0.029

I~II 60 (16.0%) 50 (83.3%) 10 (16.7%)

III~V 315 (84.0%) 217 (68.9%) 98 (31.1%)

Heart-function 0.68

I~II 369 (98.4%) 262 (71.0%) 107 (29.0%)

III~IV 6 (1.6%) 5 (83.3%) 1 (16.7%)

WBC (Mean (SD)) 11.2 (± 4.6) 10.9 (± 4.5) 11.8 (± 4.9) 0.064

HB (Mean (SD)) 129.8 (± 17.2) 134.0 (± 15.4) 119.8 (± 17.3) < 0.001

PLT (Mean (SD)) 206.8 (± 60.0) 218.2 (± 59.5) 178.9 (± 51.9) < 0.001

PT (Mean (SD)) 13.4 (± 0.8) 13.4 (± 0.9) 13.5 (± 0.7) 0.18

APTT (Mean (SD)) 33.2 (± 3.9) 33.3 (± 4.0) 33.1 (± 3.8) 0.58

Fibrinogen (Mean (SD)) 3.3 (± 1.0) 3.2 (± 0.9) 3.4 (± 1.1) 0.55

D-dimer (Mean (SD)) 2.5 (± 3.4) 2.2 (± 3.1) 3.4 (± 4.0) < 0.001

TP Mean (Mean (SD)) 67.5 (± 7.2) 67.6 (± 7.1) 67.4 (± 7.6) 0.74

ALB Mean (Mean (SD)) 41.9 (± 4.0) 42.1 (± 3.6) 41.4 (± 4.7) 0.52

Vasopressors
none 198 (52.8%) 153 (77.3%) 45 (22.7%) 0.006

present 177 (47.2%) 114 (64.4%) 63 (35.6%)

Blood transfusion (mL) (median [IQR]) 0.00 [0.00, 600.00] 0.00 [0.00, 0.00] 1100 [800, 1250] < 0.001

Ventilation duration (h) (median [IQR]) 0.00 [0.00, 12.00] 0.00 [0.00, 6.00] 9.00 [0.00, 24.00] < 0.001

Postoperative hospital stay (median [IQR]) 16.00 [12.00, 22.00] 16.00 [12.00, 21.00] 18.00 [13.00, 23.75] 0.104
Results are expressed as mean (SD) for continuous data and n (proportion) for categorical data. APTT, Activated partial thromboplastin time; ASA, American Society 
of Anesthesiologists; DM, Diabetes mellitus; HB, Hemoglobin; PLT, Platelet; PT, Prothrombin time; TP, Total protein; ALB, Albumin; WBC, White blood cell
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affect blood transfusion (P > 0.05). Patients who received 
blood transfusion had lower levels of HB and PLT and a 
higher level of D-dimer than those who did not receive a 
blood transfusion (P < 0.001). Laboratory results of WBC, 
PT, APTT, fibrinogen, TP, and ALB were not significantly 
different between the transfusion and non-transfused 
groups before surgery (P > 0.05). Patients who received 
blood transfusion had a higher incidence of vasopressor 
utility and longer postoperative mechanical ventilation 
duration than those who did not receive a blood trans-
fusion (P < 0.05), while the length of postoperative hos-
pital stay was not significantly different between the two 
groups (P > 0.05).

Feature selection and machine learning model 
performance evaluation
LASSO was performed to decrease the model’s complex-
ity and reduce redundant or irrelevant data in the train-
ing group. Six variables, namely HB, ruptured aneurysm, 
D-dimer, PLT, sex, and WBC, were entered before λ1se 
and were selected for model establishment (Fig. 2A and 
B).

The balanced performance evaluation with nested resa-
mpling results in the training set showed that the CE was 
0.2903 of the KNN, 0.2290 of logistic regression, 0.2518 
of ranger, and 0.2632 of the extremely gradient boosting 
model, respectively, with no statistical difference between 
the four algorithms (P = 0.0738, F = 6.9406, Fig.  3). The 
CE, AUC, accuracy, and specificity for each machine 
learning method are depicted in Table 2.

Nomogram establishment and assessment
The LR model was used to establish the nomogram with 
the development data. The nomogram was established 
based on the six above variables to predict intraopera-
tive blood transfusion in patients undergoing intracra-
nial aneurysm clipping surgery (Fig. 4). The variables are 
shown in rows 2 to 7, in which the values are acquired 
from the patient. The first row is the point assigned to 
each variable’s measurement, and the assigned points for 
all of the variables are then summed, with the total can 
be located on the line of the total points. After locating 
the total points, a vertical line is drawn down to the bot-
tom line to obtain the predicted probability of transfu-
sion. The AUC values of the nomogram for intraoperative 
blood transfusion prediction were 0.828 (0.775, 0.881) 
and 0.796 (0.710, 0.882) in the development (Fig. 5A) and 
validation (Fig. 5B) groups, respectively.

Discussion
In the present study, we identified six preoperative risk 
factors for intraoperative blood transfusion, namely HB, 
D-dimer, PLT, ruptured aneurysm, sex, and WBC. Then, 
we used the nested resampling method to evaluate the 
balanced performance of various machine learning algo-
rithms with the six variables, and observed no statistical 
difference between the four models. We established a 
nomogram with the LR algorithm to predict the risk of 
intraoperative blood transfusion in aneurysm surgery. 
The performance of the established nomogram showed a 

Fig. 2  Results of the least absolute shrinkage and selection operator analysis of all data are shown in (A) and (B). (A) The different values of λ are shown on 
the x-axis, where each line represents one of the explanatory variables and its role in the model. The plots demonstrate that to what extent variables that 
enter the model influence the response variable. A variable that enters the model earlier influences the model more than that enters the model later. (B) 
The different values of λ are shown on the x-axis, while the binary deviance is shown on the y-axis. λ min to 1se indicates the acceptable variable chosen. 
Six features, namely HB, ruptured, D-dimer, PLT, sex, and WBC, were entered before the λ1se line
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good discriminative ability in both the development and 
validation sets.

The feature selection process with LASSO removes 
redundant or irrelevant features in the data with limited 
loss of information, while the fewer variables increase the 
interpretation and application of the model. The selection 
process of the shrinking ability of this operator depends 
on modifying the absolute value of the coefficient of 
functions. Features with non-zero coefficient values were 
chosen for analysis. Machine learning algorithms estab-
lish complex models and make accurate decisions when 
given relevant data. Some machine learning algorithms 
have been used within the anesthesiology and pain fields, 
such as for predicting mortality, and kidney injury after 

cardiac surgery [16, 17], predict postoperative pain, 
or identify the need for pain consults [11, 18]. These 
explorations are primarily focused on the postoperative 
period, while preoperative data acquisition for predict-
ing intraoperative blood transfusion is infrequent [19]. In 
this study, we used four machine learning methods and 
acquired a balanced performance evaluation, with no sta-
tistical difference between the four models.

Considering the good interpretability and generaliz-
ability, we established a nomogram using the LR algo-
rithm and performed an ROC curve analysis to assess 
the performance of the predictive model. The AUC in 
the development and validation groups was consistent 
with the machine learning results, indicating good per-
formance of the model. Generally, the model used in 
this study offered a good screening method to calculate 
a patient’s probability of requiring intraoperative blood 
transfusion during intracranial aneurysm surgery. The 
benefit of predicting intraoperative blood transfusion 
may allow clinicians to prepare blood-saving strategies 
more adequately, tailor their surgery more carefully, and 
ultimately reduce the complications greatly.

The prediction nomogram for blood transfusion is 
useful when ordering allogeneic blood and preparing 

Table 2  Performance evaluation of four machine learning 
algorithms

CE AUC Accuracy Specificity
KNN 0.2903 0.7653 0.7097 0.8788

LR 0.2290 0.7993 0.7710 0.8981

Ranger 0.2518 0.7896 0.7482 0.8998

Xgboost 0.2632 0.7583 0.7368 0.8577
AUC, Area under the curve; CE, Classification error; Xgboost, Extremely gradient 
boosting machine; KNN, K-nearest neighbor; LR, Logistic regression

Fig. 3  Classification error for evaluating the discrimination power of various machine learning algorithms. The classification values for intraoperative 
blood transfusion were 0.2903 of the K-nearest neighbor, 0.2290 of logistic regression, 0.2518 of ranger, and 0.2632 of the extremely gradient boosting 
model, respectively
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Fig. 5  ROC curves for evaluating the discrimination power of the nomogram based on logistic regression algorithms. The AUC values for intraoperative 
blood transfusion were 0.828 (0.775, 0.881) and 0.796 (0.710, 0.882) in the development (A) and validation (B) groups, respectively

 

Fig. 4  Nomogram to predict the probability of intraoperative blood transfusion in the patients who underwent intracranial aneurysm surgery. For ex-
ample, a female patient with a ruptured aneurysm, D-dimer (8 mg/L), WBC (10 × 1012), PLT (150 × 109), and HB (100 g/L), had a total score of 342 in terms 
of these variables and a predicted probability of intraoperative blood transfusion of 85.8%. WBC, White blood cell; HB, Hemoglobin; PLT, Platelet
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preoperative autologous blood preoperatively. The use 
of the nomogram could result in substantial savings by 
decreasing allogenic blood consummation. Patients with 
a high-risk score (≥ 0.5) to receive a perioperative blood 
transfusion should be encouraged to use the autologous 
blood donation strategy, which would minimize the pos-
sibility of an allogenic transfusion. Studies have shown 
that autologous blood predisposition before surgery 
is very effective in decreasing perioperative allogenic 
blood transfusion [20, 21]. Moreover, acute intraopera-
tive hemodilution and salvage have been shown to sig-
nificantly increase postoperative hemoglobin levels and 
improve patients’ outcomes [22]. Additionally, patients 
with a low preoperative HB level tend to have a high 
nomogram score and should be encouraged to take pre-
operative pharmacological treatments, such as erythro-
poietin or antifibrinolytic management, or intraoperative 
self-blood collection.

Traditionally, physicians decide to perform a blood 
transfusion largely based on HB levels [23–25]. However, 
some physicians have reported significant differences in 
the HB thresholds for transfusion [26, 27]. Therefore, we 
established a nomogram by combining patient character-
istics other than serum HB levels. A particular strength 
of this study is that it accounted for a wide range of pre-
operative variables associated with the receipt of blood 
transfusions. PLT is a crucial constituent of clotting, 
and a low PLT count has been identified as an indepen-
dent risk factor of intraoperative blood transfusion dur-
ing abdominal aneurysm surgery [28]. Moreover, a PLT 
count < 130 × 109/L has a 3.9-fold relative risk of trans-
fusion when compared with a PLT > 130 × 109/L. Each 
10 × 109/L increase in platelet count was associated with 
an 11% decrease in severe bleeding risk [29].

A high D-dimer level is another determinant for intra-
operative blood transfusion during aneurysm surgery. 
D-dimer is an indicator of coagulation and fibrinoly-
sis and is suggestive of a fibrinolysis profile in the body 
[30]. High D-dimer levels may be attributed to the fol-
lowing [31]: a ruptured aneurysm activating the coagu-
lation system, resulting in coagulopathy and massive 
bleeding during surgery; and a ruptured aneurysm 
increasing intracranial pressure, increasing the duration 
and difficulty of the surgery. Further, our results sug-
gest that WBC is another risk factor for intraoperative 
blood transfusion; this may be attributed to the systemic 
inflammatory response activating platelets, coagulation, 
and fibrinolysis, as well as up-regulating platelet adhesion 
receptors and increasing monocyte-platelet conjugates, 
all of which result in coagulation disorder and the con-
sumption of constituents [32]. Lastly, our results identi-
fied that being female is a risk factor for perioperative 
blood transfusion.

The study has several limitations that should be con-
sidered when interpreting the present results. As with all 
retrospective studies, there may be some unknown con-
founders that were not referred to in the analysis. How-
ever, we collected key preoperative characteristics in an 
integrated online system, thereby minimizing the likeli-
hood of selection bias.

Conclusions
HB, platelet, D-dimer, sex, WBC, and aneurysm rupture 
before surgery are relevant factors for intraoperative 
blood transfusion during aneurysm surgery. Machine 
learning algorithms with nested resample methods result 
in a good performance evaluation. The described nomo-
gram, using a logistic regression algorithm has a good 
discriminative ability to predict intraoperative blood 
transfusion during aneurysm surgery.
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