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Supplementary Discussion 

Model Selection for DL-Based Double Bond Assignment 

 Prior to training the final model presented in this work, we performed smaller scale pilot studies to guide 

model selection and data curation and processing strategies. For this initial work, we employed the well-known 

RandomForestClassifier implementation in the scikit-learn Python package. This model is particularly effective 

in dealing with unbalanced small datasets. Data from LipidoMix Splash (SPLA) lipid standards in positive and 

negative ionization modes was used as the initial model training dataset, which contained a total of 644 training 

instances (augmented from 8 True and 120 False instances). Our goal was to train the random forest model to 

determine whether a given double bond position was correct by aligning the isotopic mass profiles based on the 

theoretical monoisotopic masses of precursor and aldehyde/criegee OzID fragment ions. We divided the data into 

70% for model training and 30% for testing. We used 100 estimators in the forest and Gini impurity for split 

criterion. The test set produced a mean accuracy of 0.96, demonstrating that mass profiles are an effective set of 

features for building a classifier to identify double bond locations. However, we discovered that mass profiles are 

insufficient when interfering signals are present. Thus, we introduced the retention time distribution to enhance 

the accuracy of the model. This expansion into high-dimensional training examples and large image datasets 

required more complex models, ultimately leading to our selection of RESNET18 as the starting point for training 

our final DL model using the full sized data set. 

 Further justification for our model choice comes from our observations while evaluating cosine distances 

for mass profiles and retention time distributions using our larger set of training examples sourced from analysis 

of SPLA, ULSP, and BTLE samples. We found that using these cosine distances alone (see Figure 4), we were able 

to assign double bond positions with an accuracy of 90% and a fairly high FDR of 15% (due to the imbalance of 

T/F training instances). Consistent with our initial observations, many of the misclassified training examples were 

due to the presence of interfering signals which arbitrarily shift the cosine distances despite presence or absence 

of the actual signals of interest. In contrast, the DL model was able to achieve nearly 100% accuracy on the same 

data, indicating that this more complex model was capable of learning patterns in this complex data in a way that 

is robust to the presence of interfering signals. Figure S7 shows an illustrative example of a True training instance, 

which due to the presence of interfering signals has high mass profile and retention time distribution cosine 

distances, but is correctly classified “True” by the DL model.  
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Supplementary Methods 

Experimental setup for LC-OzID-IMS-MS Analysis 

 The eluting lipids from LC were analyzed on an Agilent 6560 IMS-MS platform (Agilent; Santa Clara, 

CA) modified to incorporate the OzID technique (LC-OzID-IMS-MS), which was previously described in detail 

elsewhere(Poad, Zheng et al. 2018). The ozone gas was generated from pure oxygen using the ozone generator 

HG-1500 (Ozone Solutions; Sioux City, IA). The ozone was introduced to the trapping region of the IMS-MS like 

the setup from the previous study(Poad, Zheng et al. 2018), with two modifications (highlighted in orange circles 

the Figure S4).  First, between the destructor and the tee that connects it to the ozone monitor a needle valve was 

added to control the amount of ozone going to waste.  Second, the PEEK line that introduces the ozone, nitrogen 

mixture to the trapping funnel was extended into the instrument further and directed the gas mixture directly 

into the path of the ions.  With the lower flowrate the ozone generation yields a concentration of about 100 g m-

3 at an oxygen flowrate of 0.08 L min-1.  This directed flow resulted in similar double bond fragmentation and is 

more reproducible. Also, with less ozone going to the destructor the oxygen supply can easily last through 

hundreds of samples, while not compromising on safety. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

Table S1: Scores for D5-PG(17:0/20:3) [M-H]- Putative OzID Fragments. RT and m/z cosine distances for all 

putative OzID fragments from D5-PG(17:0/20:3). Highlighted rows reflect the assigned double bond positions. 
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Figure S1: Screenshot of LipidOz GUI application setup window  

 

 

 

 

 

Figure S2: Screenshot of LipidOz GUI application processing window 
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Figure S3: Counts of Fatty Acids Identified from Tissue Extracts, including total lipid extracts from liver and heart, 

and NIST SRM 1950 human plasma and SRM 1953 human milk. 
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Figure S4: Schematic overview for introduction of ozone into the high-pressure trapping ion funnel of the Agilent 

6560 IMS q-TOF mass spectrometer. Ozone was introduced to the N2 line after the ion funnel mass flow controller 

(IF MFC). The two additional modifications after previous study were highlighted in orange circles. The figure 

was adapted with permission from Poad, B. L. J., et al. (2018).1 "Online Ozonolysis Combined with Ion Mobility-

Mass Spectrometry Provides a New Platform for Lipid Isomer Analyses." Analytical Chemistry 90 (2): 1292-1300. 

Copyright © 2018 American Chemical Society." 
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Figure S5: Demonstration of Cosine Distance Scoring. (A) Example of precursor (blue) and putative fragment (red) 

XICs with good overlap. The cosine distance reflects the non-overlapping area (red shaded area) between the two 

signals, which is very small due to the high degree of overlap. (B) Example of XICs with poor overlap. The red 

area (and cosine distance) is relatively large, reflecting  

the poor overlap. 
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Figure S6: Training/Validation Accuracy During DL Model Training. Accuracy scores for training and validation 

sets during 8 epochs of DL model training using the combined SPLA + ULSP + BTLE data set were plotted. 
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Figure S7: Example of a True training instance from BTLE which contains interfering signals. The interfering 

signals lead to high cosine distances for both fragments, which if used as the basis for classification would lead to 

misclassification of this instance. The DL model correctly assigns this training instance as True.  
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