
CCO
Commun. Comb. Optim.

c© 2022 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 7, No. 1 (2022), pp. 59-68

DOI: 10.22049/CCO.2021.27141.1203

Research Article

Total outer-convex domination number of graphs

Rubelyn Yangyang1a, Marylin Tarongoy1b, Evangelyn Revilla1c,
Rona Mae Banlasan1d and Jonecis Dayap2∗

1
School of Education, University of San Jose-Recoletos, Cebu, Philippines

ayangyang.rubelyn@gmail.com
b marylintarongoy@gmail.com

c revilla.evangelyn3138@gmail.com
d banlasan.rona@gmail.com

2
School of Arts and Sciences, University of San Jose-Recoletos, Cebu, Philippines

∗jdayap@usjr.edu.ph

Received: 17 February 2021; Accepted: 12 April 2021
Published Online: 15 April 2021

Abstract: In this paper, we initiate the study of total outer-convex domination as
a new variant of graph domination and we show the close relationship that exists be-

tween this novel parameter and other domination parameters of a graph such as total
domination, convex domination, and outer-convex domination. Furthermore, we ob-

tain general bounds of total outer-convex domination number and, for some particular

families of graphs, we obtain closed formulas.
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1. Introduction

Graph theory is one of the most developed branches of modern mathematics and

computer applications and dominations in graphs is its most researched sub branch

[8]. Its interrelated general concepts allow different domination types to exist [10].

Dominating set and its variants have a wide range of applications and model various

real-life problems. In this paper, we introduce total outer-convex domination as a

new variant in graph domination and show the close relationship that exists between

this novel parameter and other domination parameters of a graph. Further, general
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bounds on total outer-convex domination and closed formulas for some families of

graphs were obtained.

Let G = (V (G), E(G)) be a simple graph. A graph G is connected if there is at least

one path that connects every two vertices x, y ∈ V (G), otherwise, G is disconnected.

For any two vertices u and v in a connected graph, the distance dG(u, v) between u

and v is the length of the shortest path in G. A u-v path of length dG(u, v) is also

referred to as u-v geodesic. The closed interval IG[u, v] consists of all those vertices

lying on a u-v geodesic in G. For a subset S of vertices of G, the union of all sets

IG[u, v] for u, v ∈ S is denoted by IG[S]. Hence x ∈ IG[S] if and only if x lies on some

u-v geodesic, where u, v ∈ S. A set S ⊆ V (G) is convex if IG[S] = S. In other words,

a set S is convex in G if, for every two vertices u, v ∈ S, the vertex set of every u - v

geodesic is contained in S. Certainly, if G is connected graph, then V (G) is convex.

Convexity and geodetic in graphs was studied in [1–5, 9]. Let Kn, Pn, Cn,Wn, Fn(Fr,s
with n = r + s) and Sn denote a complete graph, the path, the cycle, the wheel, the

fan and the star graph of order n, respectively.

A subset S of a vertex set V (G) is a dominating set of G if for every vertex v ∈
V (G)\S, there exists a vertex x ∈ S such that xv is an edge of G. A dominating set

S is an outer-convex dominating set if the subgraph induced by V (G) \ S, denoted

〈V (G)\S〉, is convex. The set S ⊆ V (G) is a total dominating set if every vertec

v ∈ V (G) is adjacent to an element of S. The minimum cardinality of a dominating

set, a total dominating set, an outer-convex dominating set are the domination number

γ(G), the total domination number γt(G), and the outer-convex domination number

γ̃con(G), respectively. The outer-convex domination was introduced by Dayap and

Enriquez in 2020 [7] and further studied in [6] by using the said parameter as a tool

in encrypting messages and as a new variation of domination parameter in [11].

Motivated by the definition of total domination and outer-convex domination in

graphs, we define a new domination parameter in graphs called total outer-convex

domination. A total dominating set S of vertices of a graph G is a total outer-convex

dominating set if the subgraph induced by V (G)\S is convex. The total outer-convex

domination number of G, denoted by γ̃tcon(G), is the minimum cardinality of a total

outer-convex dominating set of G. A total outer-convex dominating set of cardinality

γ̃tcon(G) will be called a γ̃tcon-set.

Since every total outer-convex dominating set of G is a total dominating set of G and

an outer-convex dominating set of G, we have

γt(G) ≤ γ̃tcon(G), (1)

and

γ̃con(G) ≤ γ̃tcon(G). (2)

The next result is a direct consequence of inequalities (1) and (2).

Corollary 1. Let G be a non-trivial connected graph. Then, we have the following:
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(i) γ(G) ≤ γ̃con(G) ≤ γ̃tcon(G)

(ii) γ(G) ≤ γt(G) ≤ γ̃tcon(G).

2. Preliminary Results

In this section, we study basic properties of the total outer-convex domination number

of graphs.

Proposition 1. Let G be a connected graph of order n ≥ 3 and minimum degree δ(G) = 1.
Then any γ̃tcon-set of G contains all support vertices of G.

Proof. Let S be a γ̃tcon(G) − set. Let p be a support vertex and q a leaf adjacent

to p. Since S is a total dominating set in G, to total dominate q we must have p ∈ S.

Thus, S contains all support vertices of G.

Proposition 2. Let G be a connected graph of order n ≥ 3 with γ̃tcon(G) ≤ n− 2. Then
any γ̃tcon-set of G contains all leaves of G.

Proof. The result is trivial if δ(G) ≥ 2. Let δ(G) = 1 and S be a γ̃tcon(G)− set of

G. Let q be a leaf of G and let p be its support vertex. By Proposition 1, p ∈ S.

If q /∈ S, then since V (G)\S is convex we have V (G)\{q} ⊆ S, a contrary to our

assumption that γ̃tcon(G) ≤ n− 2. Thus S contains all leaves of G.

Proposition 3. For any connected graph G of order n ≥ 4 and any edge uv, where
min{deg(u),deg(v)} ≥ 2, v is not a support vertex and N(u) ⊆ N(v), γ̃tcon(G) ≤ n− 2.

Proof. If deg(v) = 2, then deg(u) = 2 and clearly V (G) − {u, v} is a total outer-

convex dominating set of G. Assume that deg(v) ≥ 3. If u has a neighbor w different

from v which is not a support vertex, then V (G) − {u,w} is a total outer-convex

dominating set of G. Let any neighbor of u different from v be a support vertex.

Then V (G)− {u, v} is a total outer-convex dominating set of G and thus γ̃tcon(G) ≤
n− 2.

Theorem 1. Let G be a connected graph of order n ≥ 3. Then

γ̃tcon(G) ≤ n− 1.

The equality holds if and only if for any vertex v of G with degree at least two either v is a
support vertex or all neighbors of v are support vertices.
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A graph G ∈ F1 A graph G ∈ F2

Figure 1. Families F1 and F2

Proof. Let T be a spanning tree of G and u be a leaf of T . Clearly V (G)−{u} is a

total outer-convex dominating set of G implying that γ̃tcon(G) ≤ n− 1.

Assume that γ̃tcon(G) = n− 1. Let v be a vertex of G with degree at least 2. If v is a

support vertex, then we are done. Suppose v is not a support vertex. By Proposition

3, we have N(u) \N [v] 6= ∅ for any vertex u ∈ N(v). If v has a neighbor w which is

not a support vertex, then V (G) \ {v, w} is a total outer-convex dominating set of G,

a contradiction. Thus each neighbor of v is a support vertex.

Conversely, let G be a connected graph of order n ≥ 3 such that for any vertex v of G

with degree at least two either v is a support vertex or all neighbors of v are support

vertices. Suppose S is a γ̃tcon(G)-set. If G has a vertex v with degree at least two

such that v 6∈ S, then by assumption all neighbors of v are in S and since V (G) \S is

convex, we must have V (G) \ {v} ⊆ S implying that γ̃tcon(G) = n− 1. Thus we may

assume that S contains all non-leaf vertices of G. It follows from Proposition 2 that

γ̃tcon(G) = n− 1 and the proof is complete.

Next we characterize all graphs G with γ̃tcon(G) = 2.

Let F1 be the family of all graphs G obtained from some complete graph Kp (p ≥ 1)

by adding a new vertex y and joining it to at least one vertex of Kp (see Figure 1).

Let Hp,q (p, q ≥ 1) be a graph obtained from two complete graphs Kp and Kq by

adding some edges between V (Kp) and V (Kq) such that the resulting graph Hp,q has

diameter at most two, and let Gp,q be a graph obtained from some Hp,q by adding

two new vertices x, y and joining x to all vertices of V (Kp), y to x and all vertices of

V (Kq) and some vertices of Hp,q with degree p+ q − 1 (see Figure 1). Let F2 be the

family of all graphs Gp,q.

Theorem 2. Let G be a connected graph of order n ≥ 2. Then γ̃tcon(G) = 2 if and only
if G ∈ F1 ∪ F2.

Proof. If G ∈ F1 and x is a vertex of Kp adjacent to y, then clearly {x, y} is a total

outer-convex dominating set of G and so γ̃tcon(G) = 2. If G ∈ F2, then obviously

{x, y} is a total outer-convex dominating set of G implying that γ̃tcon(G) = 2.

Conversely, let γ̃tcon(G) = 2 and let S = {x, y} be a γ̃tcon(G). This implies that S is

a total dominating set and V (G) \ S is a convex set by definition. Assume without
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Figure 2. A graph G of order n with γ̃tcon(G) = m where 2 ≤ m ≤ n− 1

loss of generality that deg(x) ≥ deg(y). Since V (G) \ S is a convex set, the subgraph

induced by N(x) is a complete graph. If N(y) ⊆ N [x], then clearly G ∈ F1 and we

are done. Assume that N(y) 6⊆ N [x]. As before, the subgraph induced by N(y) is a

complete graph. Considering the set N(x) as the set of vertices of a complete graph

Kp and the set of N(y) \N [x] as the set of vertices of a complete graph Kq, we can

see that G ∈ F2 and this completes the proof.

The proof of the next result is straightforward and therefore omitted.

Proposition 4. Let n be a positive integer.

(i) For n ≥ 2, γ̃tcon(Kn) = 2.

(ii) For n ≥ 3,

γ̃tcon(Pn) =

{
n− 1 if n ≤ 5

n− 2 if n > 5.

(iii) For n ≥ 3,

γ̃tcon(Cn) =

{
2 if n = 3

n− 2 if n > 3.

(iv) For n ≥ 3,

γ̃tcon(Wn) =

{
n
2

ifn ≡ 2(mod4)

2bn+1
4
c ifn 6≡ 2(mod4).

(v) For n ≥ 2, γ̃tcon(Sn) = n− 1.

(vi) For n ≥ 3,

γ̃tcon(Fr,s) =


s+1
2

if r = 1 and s ≡ 1(mod4)

2d s
4
e if r = 1 and s 6≡ 1(mod4)

r if r ≥ 2 and s ≤ 3

r + s− 3 if r ≥ 2 and s > 3.

Next we present a realization result.
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Theorem 3. Given positive integers m and n where n ≥ 3 and 2 ≤ m ≤ n − 1, there
exists a connected graph G of order n with γ̃tcon(G) = m.

Proof. Let Gm be the graph obtained from a complete graph Kn−m+1 by adding

m − 1 pendant edges xa1, . . . , xam−1 at a vertex x of Kn−m+1 (see Figure 2). If

m = 2, then clearly γ̃tcon(Gm) = m. If m = n − 1, then by Theorem 1 we have

γ̃tcon(Gm) = m. Let 3 ≤ m ≤ n − 2. Clearly, the set {x, a1, a2, . . . , am−1} is a total

outer-convex dominating set since every complete graph is convex. This implies that

γ̃tcon(Gm) ≤ m. To show the inverse inequality, let S be a γ̃tcon(Gm) − set. Since

γ̃tcon(Gm) ≤ n − 2, it follows from Proposition 2 that {a1, a2, . . . , am−1} ⊆ S. On

the other hand, to dominate the vertices of Kn−m+1, we must have |S ∩ V (Gm)| ≥ 1

implying that γ̃tcon(Gm) ≥ m. Thus, γ̃tcon(Gm) = m.

Figure 3. A graph G with γ̃tcon(G)− γ(G) = m and γ̃tcon(G)− γt(G) = m

Figure 4. A graph G with γ̃tcon(G)− γ̃con(G) = m

Proposition 5. The differences γ̃tcon(G)−γ(G), γ̃tcon(G)−γt(G), and γ̃tcon(G)−γ̃con(G)
can be made arbitrarily large.

Proof. Let m be a positive integer. To show that γ̃tcon(G)−γ(G), γ̃tcon(G)−γt(G),

and γ̃tcon(G) − γ̃con(G) can be made arbitrarily large, it is enough to show that

there exists a graph such that γ̃tcon(G) − γ(G) = m, γ̃tcon(G) − γt(G) = m, and

γ̃tcon(G)− γ̃con(G) = m−1. If Gm+1 is the graph defined as before (see the first graph

illustrated in Figure 3), then we have γ(G) = 1 and γ̃tcon(G) = m+ 1 by Theorem 3.

Thus, γ̃tcon(G)−γ(G) = (m+1)−1 = m. Now, let G be a graph obtained from Gm by
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adding a pendant edge uv (see the second graph in Figure 3). Clearly, the γ̃tcon(G) =

m + 2 and γt(G) = 2. Thus, γ̃tcon(G) − γt(G) = (m + 2) − 2 = m. Now, consider

the graph G obtained from Gm+1 by adding the pendant edges, a1b1, a2b2, . . . , ambm
(see Figure 4). Clearly, the γ̃tcon(G) = 2m + 1 and γ̃con(G) = m + 1. Hence,

γ̃tcon(G)− γ̃con(G) = (2m+ 1)− (m+ 1) = m. This proves the assertion.

3. Total outer-convex domination number of two-dimensional
grid graphs

In this section we determine the total outer-convex domination number of two-

dimensional grid graphs. A two-dimensional grid graph, also known as a rectangular

grid graph or two-dimensional lattice graph is the Cartesian product Pm�Pn of path

graphs on m and n vertices. Let V (Pm2Pn) = {(i, j) | 1 ≤ i ≤ m and 1 ≤ j ≤ n}
and E(Pm2Pn) = {(i, j)(i, j + 1) | 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1} ∪ {(i, j)(i + 1, j) | 1 ≤
i ≤ m− 1, 1 ≤ j ≤ n}.

Proposition 6. For any n ≥ 2, we have

γ̃tcon(P1�Pn) =

{
n− 1 if n ≤ 5

n− 2 if n > 5.

Proof. Since P1�Pn ∼= Pn, the result follows directly.

Proposition 7. For n ≥ 2, γ̃tcon(P2�Pn) = n.

Proof. Clearly, the set S = {(1, j) | j = 1, 2, . . . , n} is a total outer-convex domi-

nating set of P2�Pn and so γ̃tcon(P2�Pn) ≤ n. To prove γ̃tcon(P2�Pn) ≥ n, let S

be a γ̃tcon(P2�Pn)-set. Suppose, to the contrary, that γ̃tcon(P2�Pn) < n. Then for

some 1 ≤ j ≤ n we must have (1, j), (2, j) ∈ V (P22Pn) \ S. If j = 1 (the case j = n

is similar), then to dominate the vertices (1, 1), (2, 1), we must have (1, 2), (2, 2) ∈ S.

Since V (P22Pn) \ S is convex, we have V (P22Pn) \ {(1, 1), (2, 1)} ⊆ S implying

that |S| ≥ 2n − 2 ≥ n, a contradiction. Let 1 < j < n. If (1, j − 1), (2, j − 1),

(1, j + 1), (2, j + 1) ∈ S, then as above we obtain a contradiction. Therefore,

{(1, j − 1), (2, j − 1), (1, j + 1), (2, j + 1)} 6⊆ S. Assume without loss of general-

ity that (1, j + 1) ∈ V (P22Pn) \ S. Since V (P22Pn) \ S is convex, we must have

(2, j + 1) ∈ V (P22Pn) \ S. To dominate the vertices (1, j), (2, j), (1, j + 1), (2, j + 1),

we have (1, j − 1), (2, j − 1), (1, j + 2), (2, j + 2) ∈ S and since V (P22Pn) \ S is

convex, we must have V (P22Pn) \ {(1, j), (2, j), (1, j + 1), (2, j + 1)} ⊆ S. It follows

that |S| ≥ 2n− 4 ≥ n (note that n ≥ 4) which is a contradiction. Thus |S| ≥ n and

so γ̃tcon(P2�Pn) = n.
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Proposition 8. For n ≥ 3,

γ̃tcon(P3�Pn) =

{
3b 2n

3
c if n < 6

2n if n ≥ 6.

Proof. By a simple calculation we can verify the result for n = 3, 4, 5. Assume

that n ≥ 6. Clearly, the set S = {(1, j), (3, j) | 1 ≤ j ≤ n} is a total outer-convex

dominating set of P3�Pn and so γ̃tcon(P3�Pn) ≤ 2n. To prove γ̃tcon(P3�Pn) ≥ 2n,

let S be a γ̃tcon(P3�Pn)-set. Suppose, to the contrary, that γ̃tcon(P3�Pn) < 2n.

Then for some 1 ≤ j ≤ n we must have |{(1, j), (2, j), (3, j)} ∩ (V (P32Pn) \ S)| ≥ 2.

We distinguish two cases.

Case 1. (1, j), (3, j) ∈ V (P32Pn) \ S.

Since V (P32Pn) \ S is convex, we have (2, j) ∈ V (P32Pn) \ S. If j = 1 (the

case j = n is similar), then to dominate the vertices (1, 1), (2, 1), (3, 1), we must

have (1, 2), (2, 2), (3, 2) ∈ S. Since V (P32Pn) \ S is convex, we have V (P32Pn) \
{(1, 1), (2, 1), (3, 1)} ⊆ S yielding |S| ≥ 3n− 3 ≥ 2n, a contradiction. Let 1 < j < n.

If (1, j−1), (2, j−1), (3, j−1), (1, j+1), (2, j+1), (3, j+1) ∈ S, then as before we get

a contradiction. Let {(1, j − 1), (2, j − 1), (3, j − 1), (1, j + 1), (2, j + 1), (3, j + 1)} 6⊆
S. Assume without loss of generality that (1, j + 1) ∈ V (P32Pn) \ S. Since

V (P32Pn) \ S is convex, we must have (3, j + 1) ∈ V (P32Pn) \ S. By repeating

this process we deduce that (3, j + 1) ∈ V (P32Pn) \ S. To dominate the vertices

(1, j), (2, j), (3, j), (1, j + 1), (2, j + 1), (3, j + 1), we must have (1, j − 1), (2, j − 1),

(3, j − 1), (1, j + 2), (2, j + 2), (3, j + 2) ∈ S and we conclude from the convexity of

V (P32Pn) \ S that |S| ≥ 3n− 6 ≥ 2n (note that n ≥ 6) which is a contradiction.

Case 2. (1, j), (2, j) ∈ V (P32Pn)\S (the case (3, j), (2, j) ∈ V (P32Pn)\S is similar).

According Case 1, we may assume that (3, j) ∈ S. To dominate (1, j), we may assume

without loss of generality that (1, j + 1) ∈ S. It follows from the convexity of S that

(2, j+1), (3, j+1) ∈ S and (3, j−1) ∈ S if j ≥ 2. If j = 1, then by the convexity of S

we must have V (P32Pn)\{(1, j), (2, j)} ⊆ S implying that |S| ≥ 3n−2 > 2n which is

a contradiction. Let j ≥ 2. Using above argument we can see that |S| ≥ 3n− 4 > 2n,

a contradiction again.

Thus |S| ≥ 2n and so γ̃tcon(P3�Pn) = 2n. This completes the proof.

Proposition 9. For n ≥ 4, γ̃tcon(P4�Pn) = 2n.

Proof. We can check that S = {(1, j), (4, j) | 1 ≤ j ≤ n} is a total outer-convex

dominating set of P4�Pn and so γ̃tcon(P4�Pn) ≤ 2n.

To prove γ̃tcon(P3�Pn) ≥ 2n, let S be a γ̃tcon(P4�Pn)-set. Suppose, to the

contrary, that γ̃tcon(P4�Pn) < 2n. Then for some 1 ≤ j ≤ n we must have

|{(1, j), (2, j), (3, j), (4, j)} ∩ S| ≤ 1. We distinguish two cases.

Case 1. (1, j), (4, j) ∈ V (P32Pn) \ S.

Since V (P42Pn) \ S is convex, we have (2, j), (3, j) ∈ V (P42Pn) \ S. If j = 1

(the case j = n is similar), then as in the proof of Proposition 8 we can see that
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V (P42Pn)\{(1, 1), (2, 1), (3, 1), (4, 1)} ⊆ S yielding |S| ≥ 4n−4 ≥ 2n, a contradiction.

Let 1 < j < n. If {(i, j − 1), (i, j + 1) | 1 ≤ i ≤ 4} ⊆ S, then we deduce from the

convexity of V (P42Pn) \ S that V (P42Pn) \ {(1, 1), (2, 1), (3, 1), (4, 1)} ⊆ S which

leads to a contradiction again. Let {(i, j − 1), (i, j + 1) | 1 ≤ i ≤ 4} 6⊆ S. Assume

without loss of generality that (1, j + 1) ∈ V (P42Pn) \ S. Since V (P42Pn) \ S is

convex, we must have (2, j + 1) ∈ V (P42Pn) \ S. Using a similar argument, we have

(3, j + 1), (4, j + 1) ∈ V (P42Pn) \ S. To dominate the vertices (i, j), (i, j + 1), we

must have (i, j − 1), (i, j + 2) ∈ S for each i. We conclude from the convexity of

V (P42Pn) \ S that |S| ≥ 4n− 8 ≥ 2n (note that n ≥ 4) which is a contradiction.

Case 2. {(1, j), (4, j)} 6⊆ V (P42Pn) \ S.

Assume without loss of generality that (4, j) ∈ S. By our earlier assumption we

have (1, j), (2, j), (3, j) ∈ V (P42Pn) \ S. To dominate (1, j), we may assume without

loss of generality that (1, j + 1) ∈ S. It follows from the convexity of S that (2, j +

1), (3, j + 1), (4, j + 1) ∈ S and (4, j − 1) ∈ S if j ≥ 2. If j = 1, then by the convexity

of V (P42Pn) \ S we must have V (P42Pn) \ {(1, j), (2, j), (3, j)} ⊆ S implying that

|S| ≥ 4n− 3 > 2n which is a contradiction. Let j ≥ 2. Using above argument we can

see that |S| ≥ 4n− 6 > 2n, a contradiction again.

Thus |S| ≥ 2n and so γ̃tcon(P4�Pn) = 2n. This completes the proof.

We close this section with a conjecture.

Conjecture. For positive integer n ≥ m ≥ 5, γ̃tcon(Pm�Pn) = (m− 2)n.
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