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Abstract 

 

1 | Introduction  

Cracking and delamination, which are often observed in conventional multilayer composite 

materials, are one of the major observed drawbacks comparing to Functionally Graded Materials 

(FGM). FGM were discovered back in 1984 were a group of material scientists in the Sendai area 

of Japan introduced the concept of a new type of material named it as functionally gradient material 

as a means of preparing thermal barrier materials materials [1]. Since then, the use of FGM in a 

wide range of applications has been introduced especially in the fields of biomaterials serving as an 

artificial bone in the human body and aeronautics [2]. 
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To study FGM structure behavior, wide ranges of 2D theories are applied such as the Classical Plate Theory 

(CPT), First-order Shear Deformation Theory (FSDT), Higher-order Shear Deformation Theory (HSDT), 

Zig-Zag and layerwise approach. Irfan [3] conducted a comprehensive overview of the recent research 

trends in Finite Element (FE) formulations for analyzing sandwich plates carried out since 2000. Various 

theories that are based on FSDT, HSDT, mixed solid-shell elements, Zig-Zag and global-local theories 

were presented. They concluded that a major portion of research efforts are being employed to develop 

the FE formulations based on different HSDT rather than Zig-Zag theories since large computational 

efforts are needed to develop the later approach comparing to the former one. 

The FSDT theory, which assumes a constant shear strain value throughout the thickness of the plate, was 

widely used in literature. Khorramabadi et al. [4] studied analytically the effect of using FSDT and TSDT 

on the free vibrational behavior of FGM plates using Navier's solution method. Singha et al. [5] studied 

the nonlinear behaviors FGM plates under transverse distributed load using plate-bending FE. The 

resultant error from using FSDT encouraged researches to use HSDT, especially when dealing with thick 

plates. Moita et al. [6] studied using FE approach the linear and nonlinear static behavior of FGM plate 

shell structures using TSDT. The FE models were based on a non-conforming triangular flat plate shell 

element with 3-nodes and either 8 or 11-Degrees of Freedom (DoF) per node. Čukanović et al. [7] 

proposed a new shape function containing hyperbolic cosine function to study bending analysis of thick 

and moderately thick square and rectangular plates as well as plates on Winkler–Pasternak elastic 

foundation subjected to a sinusoidal transverse load. Efraim [8] derived an empirical accurate correlation 

formula between the frequencies of FGM plates and the constituent materials. Thang et al. [9] investigated 

the non-linear static analysis of thin curved panels with FG coatings under combined axial compression 

and external pressure using the classical shell theory. Nguyen et al. [10] analyzed non-uniform polygonal 

cross-sections for thin-walled FG straight and curved beams using higher order approach. Lezgy-Nazargah 

et al. [11] studied the static, free vibration and dynamic response of FG piezoelectric material beams using 

an efficient three-nodded beam element. 

In general, the layerwise approach is introduced to ensure the continuity of the displacement fields across 

the interfaces of composite and FGM layered plates. Yas et al. [12] applied layerwise FE formulations to 

analyze FGM cylindrical shells with finite length subjected to dynamic load. Pandey and Pradyumna [13] 

also used a layerwise approach based on the assumption of the FSDT theory in each layer imposing 

continuity of displacements at each layer's interface. Nikbakht et al. [14] used the full layerwise method to 

analyze the elastic bending of FG plates up to yielding. 

Many other types of research have used available commercial software such as ABAQUS, MATLAB and 

Maple to study the behavior of FGM plates. Kurtaran [15] published an article studying the effect of the 

plate's shape on the vibration and modal analysis for FGM plates using MATLAB software. Martínez-

Pañeda [16] used ABAQUS software to analyze stresses of FGM plate using two schemes: nodal based 

gradation and Gauss integration point-based gradation. Al-Hawamdeh et al. [17] used the Maple software 

program to study the static behavior of a layered beam structure made of FGM material embedded between 

metal and ceramic layers. 

Applications of FGM may require the variation of mechanical properties to be in more than one direction, 

i.e., 2D-FGM. A 2D-FGM may consist of more than two constituent materials where usually 2D-FGM 

outperforms ordinary FGM. Hedia [18] conducted a comparison study between both 1D-FGM and 2D-

FGM for the backing shell of the cemented acetabular cup. Nemat-Alla [19] made a comparison study 

between 1D-FGM and 2D-FGM plates under super high temperatures using the FE approach where his 

work indicated that 2D-FGM had high capabilities to reduce thermal and residual stresses more efficiently 

comparing to conventional FGM. Similar to 1D-FGM, 2D-FGM may be analyzed using any of the 

previously discussed theories. Joshi and Kar [20] recently studied the bending behavior of 2D-FGM using 

FE approach that was developed using the APDL platform. Asemi et al. [21] investigated the static analysis 

of 2D-FGM plates based on the 3D theory of elasticity. Nguyen and Lee [22] analyzed flexural-torsional 

vibration and buckling of thin-walled 2D-FG beams with different cross sections. Nguyen and Lee [23] 
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also investigated the static behaviors and interactive geometric interpretation for modeling of thin-walled 

2D-FGM beams using Vlasov’s theory. Lezgy-Nazargah [24] analyzed fully coupled thermo-mechanical 

2D-FGM beams using NURBS FE. Lezgy-Nazargah and Meshkani [25] also studied the static and free 

vibration analyses of FGM plates rested on two-parameter elastic foundations using mixed FE approach. 

Although many research areas regarding the FGM plates have been already covered, none of the research 

areas in literature covered the part of analyzing 2D-FG layered plates using the layerwise FE approach. 

In this paper, the layerwise FE methods will be used to investigate the bending behavior of a 2D-FG layer 

embedded between ceramic and metal isotropic layers with both TSDT for the 2D-FG layer and FSDT 

for the isotropic layers. Furthermore, special case studies of the aforementioned plate problems will be 

investigated and compared with the existing literature.  

2 | Mathematical Model 

The model under study consists of a 2D-FGM embedded between homogenous materials (metal and 

ceramic). The middle layer consists of a 2D-FGM that contains four distinct material constituents, two 

ceramics C1 and C2 at its upper surface and two metals M1 and M2 at its lower surface. Plate geometry 

involves mainly individual layer thicknesses h1, h2 and h3 for the bottom, middle and upper layers, 

respectively, besides, plate’s length and width represented by a and b, respectively, Fig. 1.  

 

 

 

 

 

 

Fig. 1. Geometry of the 2D-FGM layered plate. 

The variation of the volume fraction distribution for each material in the 2D-FG layer can be written as 

[21]. 
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Where nx and nz are non-zero parameters known as volume fraction exponents. These exponents represent 

constituent distributions in x and z-directions. VC1
, VC2

, V
M1

and VM2
 are the volume fractions of the 

material constituents C1, C2, M1 and M2, respectively. Fig. 2 and Fig. 3 represent the through-thickness and 

the through-width volume fraction variations for different values of nz and nx. 

  

 

 

 

 

 

 

 

Fig. 2. Through-thickness volume fraction variation of both m1 and c1 material constituents for different 

values of nz and a value of zero for nx. 

 

Fig. 2. Through-width volume fraction variation of both c1 and c2 material constituents for different values 

of nx and a value of zero for nz. 

Material properties such as modulus of elasticity E at any arbitrary point (x, z) in the 2D-FG layer can be 

determined by a linear combination of volume fractions multiplied by the material property for each 

constituent material [13].  

 

where  EC1
, EC2

, E
M1

and EM2 are the moduli of elasticity for material constituents C1, C2, M1 and M2, 

respectively. In the present study, a combination of FSDT and TSDT will be used to assign the 

displacement fields for the FGM structure embedded between two isotropic homogenous layers, where 

the use of higher order displacement fields such TSDT results in a higher DoF comparing to lower order 

displacement fields such as FSDT. The displacement fields for the three layers of the plate shown in Fig. 1 

can be expressed as 

     
1 1 2 2 1 1 2 2C C C C M M M ME  x,z E V E V E V E V   (5) 
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The TSDT is assigned for the middle 2D-FG layer, Eq. (7), whereas FSDT is assigned for both the top 

and bottom layers of the plate. In Eqs. (6-8), uo, vo and wo are the displacements of mid-plane along x, y and 

z-directions, θx and θy are the rotations of normal to mid-plane about the y and x-axes, respectively, u*, v*, 

θx
*  and θy

* are the coefficients of the higher-order terms in Taylor’s series expansion of the displacement 

fields of the middle layer. Superscripts 1, 2 and 3 inside parentheses indicate the layer’s number assigned 

in ascending order, i.e., the bottom layer is assigned by layer 1 whereas the upper layer is assigned by layer 

3. To maintain the continuity conditions at the layer interfaces, the layerwise approach should be included 

in the displacement field equations for both the upper and lower layers. Thus, the conditions needed to 

modify the displacement field equations at the interfaces between layers 1-2 and layers 2-3, can be written 

as 

 

 

where ψ  is the half-thickness of the middle layer, i.e., 
2ψ h 2/ . Using Eqs. (6)-(9), the modified 

displacement field equations for both the upper and lower layers are obtained as [26]: 

 

 

 

 

 

 

Proceeding further deriving the strain-displacement relations including both normal and shear strains (ε 

and γ). Strains are simply the partial derivatives of displacement fields with respect to x or y or a 

combination of both which are stated for each layer as: 
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These relations for all the layers are quite similar, except for the 2D-FG layer, where the modulus of 

elasticity E is not constant as in the homogenous top and bottom layers. In 2D-FGM, the modulus of 

elasticity E is a function of both x and z-coordinates. The following matrix form represents the general 

form of normal stress-strain relations, which can be used for any layer configuration considering a constant 

value of Poisson’s ratio ν throughout plate’s geometry and plain stress assumptions. 
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After deriving the detailed constitutive relations, the next step involves FE formulation. In the present 

model, an 8-noded quadrilateral element will be used for the plate structure with 13-DoF per node that 

appears in Eqs. (6-8). The shape functions associated with the 8-node element are given as: 

 

 

 

 

 

 

Where ξ and η are the natural-coordinate system defined by the element geometry, whereas Ni is the shape 

function associated with the ith node. The total 13-DoF for the whole element can be written using the 

shape functions stated earlier as the summation of individual nodal displacement given as: 

 

 

Where [Δ] is the nodal unknown vector for the 13-DoF written as: 

 

 

The generalized strain-displacement relations can be expressed in terms of the nodal unknown vector in 

matrix form as: 

 

Where [B(i)] are 13-matrices that relates strains to nodal unknown vector. The next step involves applying 

the principle of energy conservation, which relates energies associated with the system under 

consideration, i.e., strain and external work energies. To formulate the static problem, Hamilton’s 

principle is used, which is used by many authors including Belarbi et al. [26]. Hamilton’s Principle relates 

strain and work done by the external load of the system as: 

 

 

Where U and W are the strain energy and work done by an external load, respectively. Each of these 

energies will be derived independently. Strain energy reflects the stiffness of the system; it is the integration 

of the stress-strain product integrated through plate’s volume. For the three-layered plate, the strain energy 

is expressed as: 

 

 


    
    
    
    
               

( i )

xx xx

( i )

( i )

( i )

yy yy

( i )(

xy

i

y

)

x

2

σ 1 ν 0 ε

σ ν 1 0 ε

τ 0 0 ε

E x,z
 .

1 ν
(1 v) 2

 (15) 

 

 


                     
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xz xz

( i ) ( i )

yz yz

1τ γ

1 γ

0

0τ

E x,z
.

2 1 ν
 (16) 
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4 2
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1 1
N ( , ) (1 ) (1 ) ( 1), N (

ξ η ξ η ξ η ξ

, ) (1 ) (1 ) (1 ),
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ξ η ξ η ξ η ξ η η η ξ

ξ η ξ η
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1
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1
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2
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 (17) 




8

i
i 1

iΔ ΔN .  (18) 

      
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(2) ( 2) * * (1) (1) (3) (3)

x y x x x y

* *

o o x yoΔ u v θ θ u θ θ θ θ θ θw v .  (19) 
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   

(i) (i)ε B Δ .  (20) 

 
2

1

t

t

(W U)δ δ dt.  (21) 
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where A1, A2, A3 and V1, V2, V3 are the xy-plane areas and volumes for the lower, middle and upper layers, 

respectively. Using previously stated relations, the strain energy can be rewritten in the following matrix 

form 

 

 

Where the total elemental stiffness matrix [Ktot] with a matrix size of [104×104] is the sum of the elemental 

stiffness matrices for the lower, middle and upper layers. External work done by a distributed static load 

applied on the top surface of the plate is given by: 

Where F(x, y) is the static load applied transversely on the top surface of the plate, whereas F(x, y) is the 

discretized load on each nodal point. Total elemental load vector [F(x, y)]tot of a size [104×1] is calculated 

by adding the nodal forces for one element as 

The equation of motion for the one element plate structure considering the FE model will lead to the 

following static equation of motion. 

 

Where [Ktot] and [Ftot] are the elemental stiffness matrix and force vector presented in Eq. (23) and Eq. (25), 

respectively, whereas [Δ] is the unknown vector. Equations of Motion are solved after imposing the 

boundary conditions applied to the plate structure. Each supported plate edges could be either Free (F), 

Simply (S), or Clamped (C). For a plate edge with simply supported conditions, the following equations are 

applied [26]. 

However, for a plate edge with clamped supported conditions, all DoF associated with that edge are set to 

be be zero [26]. 

The nomenclature of plate’s supports is stated starting from the lower, right, upper and left edges, 

respectively, i.e., a plate with (SFSC) boundary conditions means that the plate is simply, free, simply and 

clamped supported on the lower, right, upper and left edges of the plate, respectively. Fig. 4 demonstrates 

various boundary conditions to be used in the current study, which are widely in the literature [27]. 

 
 

 


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ψ
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Fig. 4. Boundary conditions nomenclature. 

Table 1 summarizes plate’s geometry to be investigated in the current study. The aforementioned 

formulations and boundary conditions will be numerically applied in the following section. 

Table 1. Plate’s Geometry to be investigated. 

 

 

Due to small variation in Poisson’s ratio v for both ceramic and metallic materials, a constant value for all 

materials is used, i.e., 0.3. Plate’s geometry used in the current study includes only square plates (b/a =1), 

with different plate’s side to thickness ratios (a/h =5-100). Layer thickness ratio is described as three 

numbers describing the fraction of each layer to the total thickness of the layered plate h. For example, a 

thickness ratio of (1-8-1) means the lower and upper layers are (0.1 h) each, while the middle layer is (0.8 

h). Seven different applied boundary conditions are used in the current study, Fig 4. Plane stress 

assumptions are used in this problem where the structure is considered a thin structure assuming normal 

stress and strains in z-direction to be zero. Bending behavior will be investigated for the layered plate 

where a uniformly distributed load is considered. 

3 | Results and Discussions 

Results obtained in this section are extracted from a computer-based program using Maple software. 

Results are mainly divided into two categories, two verification problems and parametric studies. The 

verification problems will be carried out to compare the present formulations with some special case 

studies presented in the literature. The first verification problem presents the determination of the plate’s 

central deflection of a single 1D-FG layer only. Whereas the second verification problem compares central 

deflection of the 1D-FG layer embedded between ceramic and metal layers. Table 2 summarizes 

verification problems (material properties and types of applied loads) to be verified in subsequent sections. 

An optimum number of elements considering both the relative approximate error and CPU elapsed time 

is chosen for a plate mesh grid of (6×6), hence 36 plate elements will be used in the upcoming analysis. 

Table 2. Material properties and type of applied loads for verification problems 1 and 2. 

Plate’s Width to Length Ratio b/a Plate’s Side to Thickness Ratio a/h Layers Thickness Ratio 

1 (Square) a/h = 5 - 100 1-8-1, 1-3-1,1-2-1, 1-1-1, 
0-1-0 and 2-1-2 

Model no. EM [GPa] EC [GPa] Poisson’s Ratio v Type of applied load 

Verification Problem 1 70 380 0.3 Uniformly distributed static load 
Verification Problem 2 70 380 0.3 Bi-sinusoidal static load 
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3.1 | Verification Problem 1 

In this verification problem by setting h1 = h3 = nx = 0, h2 = h, C1 = C2 = C and M1 = M2 = M where CE and ME

are given in Table 2. The dimensionless form for the plate’s central deflection w̅ for 1D-FG layer is defined 

as [28]: 

 

 

Where h is the thickness of the plate, w is the central deflection of the plate, EC is the ceramic modulus of 

elasticity, a is the plate length and F is the intensity of the uniform load applied on the top of the plate. 

Table 3 illustrates comparisons with different solutions for various types of theories and the current TSDT 

for various volume fraction exponents nz starting from pure ceramic plate (nz = 0), pure metallic plate (nz 

= ∞) and several FGM combinations (nz = 1, 2, 3, 5, 10). It can be observed from Table 3 good agreements 

between present results compared to referenced publications including Reddy’s theory, generalized shear 

deformation theory and with the results obtained using the HSDT approach. 

    Table 3. Dimensionless central deflection 𝒘̅ for (ssss) al/al2o3 square plate with plate’s a/h of 10. 

 

 

 

 

3.2 | Verification Problem 2 

In this verification problem, the layerwise approach will be validated for the 3-layered plate structure stated 

previously. Pandey and Pradyumna [32], Brischetto [33], Carrera et al. [34] and Neves et al. [35] published 

works will be used for this purpose. The same dimensionless central plate deflection w̅ parameter 

aforementioned in Eq. (29) will be used in this verification problem. However, a bi-sinusoidal static load 

instead of a uniformly distributed load will be applied transversely to the plate structure. The applied load 

is given in the following equation. 

Validation will be carried out for a (1-8-1) square (b/a=1) simply supported (SSSS) plate consists of a 1D-

FG layer embedded between ceramic and metal layers with various combinations of nz and plate side to 

thickness ratios (a/h), Table 4. From Table 4, it is observed the good agreement between present model 

results compared to the published ones for various plate theories including TSDT, Equivalent Single Layer 

method, Carrera’s Unified Formulation and Zig-Zag theory. Besides, the effect of increasing the nz is also 

observed, where the dimensionless central deflection of the plate increases when increasing nz. This 

phenomenon can be explained due to the proportional relation between the nz and the increment of metallic 

content in the 1D-FG layer. Therefore, plate’s overall stiffness becomes softer compared to the pure 

ceramic rigid plate. 

 


3

C

4

10 w E
w

h
  

Fa
. (29) 

Reference Reddy [28] Zenkour [29] Bui et al. [30] Van Do et al. [31] Present (6×6) 

Method 
nz 

Reddy’s theory GSDT HSDT HSDT TSDT 

Ceramic 0.4665 0.4665 0.4630 0.4659 0.4659 
1 0.9421 0.9287 0.9130 0.9224 0.9273 
2 1.2227 1.1940 1.2069 1.1787 1.1928 
3 1.3530 1.3200 1.3596 1.2970 1.3189 
5 1.4646 1.4356 1.4874 1.4055 1.4341 
10 1.6054 1.5876 1.6308 1.5651 1.5856 
Metal 2.5328 2.5327 2.5120 2.4968 2.5291 


π yπ x

F(x, y) Fsin  ( ) sin  ( ).
a b

 (30) 
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                            Table 4. Dimensionless central deflection 𝒘̅ of a (1-8-1) (ssss) al/al2o3 square plate embedded 

between ceramic and metal layers. 

 

 

 

 

 

 

 

 

3.3 | Parametric Studies 

After verifying the current model formulations, in this section, parametric studies will be investigated for 

various parameters including applied boundary conditions, volume fraction exponents in both x and z-

directions (nx and nz) and plate’s side to thickness ratio a/h. These parameters will be used to study their 

effect on bending behavior on the 2D-FG layered plate. The same non-dimensional plate’s central 

deflection stated earlier in Eq. (29) will be used in the upcoming analysis. Whereas non-dimensional 

normal and shear stresses terms that will be used are summarized in Eq. (31). 

 

 

Where  σ̅, τ ̅are the non-dimensional normal and shear stresses parameters, respectively. The plate under 

investigation is made of a 2D-FG layer that consists of two ceramics (Silicon carbide [SiC], Aluminum 

oxide [Al2O3]) and two metals (Titanium Alloy [Ti-6Al-4V], Aluminum [Al]) embedded between Titanium 

Alloy and Silicon carbide in both lower and upper faces of the 2D-FG layer, respectively. Table 5 illustrates 

material constituent’s properties considering a constant value of 0.3 for Poisson’s ratio ν for all materials. 

Table 5. The properties of material constituents for the 2d-fg layer. 

 

 

 

Initially, the effect of varying nx and nz on the plate’s central deflection will be investigated. Fig. 5 illustrates 

the dimensionless central deflection w̅ of a simply supported (SSSS) plate with a side to thickness ratio a/h 

of five for various combinations of nx and nz. 

a/h Reference Mesh Method Volume Fraction Exponent nz 
1 4 5 10 

4 Pandey and Pradyumna [32] 
Brischetto [33] 
Carrera et al. [34] 
Neves et al. [35] 
Present 

8×8 
N/A 
N/A 
15×15 
6×6 

TSDT 
ESL 
CUF 
Zig-Zag 
TSDT 

0.7636 
0.7629 
0.7735 
0.7746 
0.7723 

- 
- 
1.0977 
1.0833 
1.0947 

- 
1.1327 
- 
1.1236 
1.1348 

1.2235 
1.2232 
1.2240 
1.2183 
1.2273 

10 Pandey and Pradyumna [32] 
Brischetto [33] 
Carrera et al. [34] 
Neves et al. [35] 
Present 

8×8 
N/A 
N/A 
15×15 
6×6 

TSDT 
ESL 
CUF 
Zig-Zag 
TSDT 

0.6323 
- 
0.6337 
0.6357 
0.6320 

- 
- 
0.8308 
0.8273 
0.8285 

- 
- 
- 
0.8415 
0.8430 

0.8697 
- 
0.8743 
0.8712 
0.8734 

100 Pandey and Pradyumna [32] 
Brischetto [33] 
Carrera et al. [34] 
Neves et al. [35] 
Present 

8×8 
N/A 
N/A 
15×15 
6×6 

TSDT 
ESL 
CUF 
Zig-Zag 
TSDT 

0.6074 
0.6073 
0.6072 
0.6087 
0.5953 

- 
- 
0.7797 
0.7779 
0.7654 

- 
0.7892 
- 
0.7870 
0.7749 

0.8076 
0.8077 
0.8077 
0.8045 
0.7938 

         
                               
         

xx xx yy yy xy xy xz xz yz yz

h h h h h
σ ,  σ , τ τσ , τ τ , τ τ .

a F a F a F  F a F
σ

a
 (31) 

Constituents Material  Modulus of  
Elasticity E [GPa] 

Poisson’s  
Ratio ν 

M1 Ti-6Al-4V 115 0.3 

M2 Al 1100 69 0.3 
C1 SiC 440 0.3 
C2 Al2O3 300 0.3 
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Fig. 5. Variation of non-dimensional central deflection w̅ for a simply supported layered plate for various 

volume fraction exponents nx and nz. 

It can be observed from Fig. 5 the effect of both exponents on the plate’s deflection. It is found that as the 

nz increases, the central deflection of the plate increases. This increment in plate’s deflection is associated 

with the increment of the metallic content as nz increases, thus reducing the middle layer overall stiffness. 

On the other hand, as nx increases, the deflection of the plate decreases, i.e., 1D-FGM (nx = 0) deflects 

more easily compared to 2D-FGM (nx ≠ 0). This phenomenon is associated with high mechanical 

properties (modulus of elasticity) of materials C1 and M1 comparing to C2 and M2 material constituents. 

Therefore, as nx increases, the middle 2D-FG layer will have a higher portion of material constituents C1 

and M1 and less portion of materials C2 and M2, thus a more rigid middle layer will be attained, which is 

hard to deflect comparing to a 2D-FG layer with lower nx values. Table 6 demonstrates the numerical data 

illustrated in Fig. 5. 

           Table 6. The variation of non-dimensional central deflection 𝒘̅ for a simply supported 

layered plate for various volume fraction exponents nx and nz. 

 

 

 

 

 

 

The next parametric study will investigate the effect of the applied boundary conditions on the same 

dimensionless deflection parameter. Fig. 6 illustrates the variation of the non-dimensional central deflection 

parameter for a (1-8-1) square plate structure with exponent nx = 1 and different combinations of nz and 

applied boundary conditions.  

 

 

 

nx 

nz 

0 1 2 4 6 8 10 

0 0.8338 0.7302 0.6942 0.6686 0.6596 0.6553 0.6530 

0.5 1.0838 0.9527 0.9072 0.8747 0.8633 0.8579 0.8549 

1 1.2537 1.1018 1.0493 1.0119 0.9987 0.9924 0.9890 

2 1.4428 1.2633 1.2020 1.1584 1.1430 1.1357 1.1316 

4 1.5934 1.3874 1.3182 1.2690 1.2515 1.2432 1.2386 

6 1.6574 1.4395 1.3669 1.3153 1.2969 1.2881 1.2833 

8 1.6929 1.4689 1.3946 1.3418 1.3229 1.3140 1.3089 

10 1.7155 1.4881 1.4129 1.3594 1.3403 1.3312 1.3261 
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                           Fig. 6. Variation of non-dimensional central deflection w̅ for (1-8-1) layered plate with nx = 1 for 

different values of nz and applied boundary conditions. 

From Fig. 6, the effect of nz is observed again, whereas in this figure seven different boundary conditions 

were applied on the plate structure. It can be observed that the central deflection for a (CCCC) plate is 

less than any other applied boundary condition. Moreover, the highest plate deflection is observed for 

(SFSF) plate for all values nz. Furthermore, for (SSSS) plate, the plate’s non-dimensional central deflection 

is between the two extreme cases, i.e., (SFSF) and (CCCC), where it can be concluded that the more 

constrained the plate is, less deflection is observed. 

Similar procedures have been carried out to study the behavior of the plate’s central deflection for various 

applied boundary conditions; however, different values of nx will be investigated instead of nz. Fig. 7 

illustrates the effect of varying exponent nx for the seven different applied boundary conditions while 

maintaining a unity value for nz. It is observed from Fig. 7 the effect of increasing nx on the plate’s central 

deflection, however, this effect is hardly observed for nx values above four. Furthermore, the effect of the 

applied boundary conditions is also observed for either constrained or unconstrained plate structures.  

Fig. 8 illustrates the effect of the plate’s side to plate thickness ratio a/h on the plate’s central deflection. 

It can be observed from Fig. 8 that higher a/h ratios, i.e., thin plates, less deflection on the center of the 

plate are observed, i.e., the thinner the plate, less deflection is observed. However, for high a/h ratios 

greater than twenty, plate’s deflection remains almost constant, where the transition from thick to thin 

plates occurs at this ratio. 

The last parameter to be investigated is the effect of the plate’s layer thickness ratios while maintaining a 

constant plate total thickness for all plate’s layer configurations. Plate configurations that will be examined 

includes ratios (1-3-1), (1-2-1), (1-1-1), (0-1-0), (2-1-2) and the previously studied plate configuration (1-

8-1). The plate under investigation will be fully clamped (CCCC) plate subjected to uniformly distributed 

load. The middle 2D-FG layer will have a unity value for nx and a value of five for a/h ratio, Fig. 9. 
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Fig. 7. Variation of non-dimensional central deflection w̅ for (1-8-1) layered plate with nz = 1 for different 

values of nx and applied boundary conditions. 

 

 

 

 

 

                              

  

  

Fig. 8. Variation of non-dimensional central deflection w̅ for (1-8-1) layered plate with nx = nz = 1 for 

different values of a/h and applied boundary conditions. 

  

 

 

 

 

                         

  

  

  

  

Fig. 9. Variation of non-dimensional central deflection w̅ for (cccc) plate with nx = 1, a/h = 5 for 

different plate configurations and nz. 
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It is observed from Fig. 9 that plate’s central deflection also relies on the layer’s thickness configurations; 

this relation is divided into two intervals, i.e., high ceramic and high metallic material contribution as 

indicated from the intersection point for all plate configurations. The first interval is related to values of 

nz less than 0.75, i.e., high ceramic content, where it can be concluded that the higher the ratio of the 

middle 2D-FG layer compared to the upper and lower isotropic layers, less deflection is observed. This 

phenomenon can be explained from the high contribution of ceramic content in the whole plate structure 

in comparison with metallic content that is mainly located in the lower metal layer. Furthermore, as the 

middle 2D-FG layer ratio increases, such as (0-1-0) plate configuration, the contribution of the ceramic 

content in the whole plate structure will be maximum, thus a more rigid plate structure is obtained 

compared to low middle 2D-FG layer ratio configurations, such as (2-1-2) plate configuration. On the 

other hand, the second interval is related to values of nz greater than 0.75, i.e., high metallic content, where 

opposite conclusions comparing to the first interval is obtained. For high values of nz, the contribution of 

metallic materials inside the middle 2D-FG layer will be higher. Furthermore, the highest metallic 

contribution in the whole plate structure will be for high middle 2D-FG layer ratios such as (0-1-0) plate 

configuration. Consequently, this increment in metallic content in the overall plate structure is reflected 

in a softer plate structure that tends to deflect more easily compared to low middle 2D-FG layer ratios, 

such as (2-1-2) plate configuration. 

Other than plate’s deflection, it is necessary to study the effect of the volume fraction exponents nx and nz 

associated with the middle 2D-FG layer on the through-thickness stress profile for the 3-layered plate. 

Fig. 10 through Fig. 14 illustrate the through-thickness normal and shear stresses at the center of the plate 

(x=a/2, y=b/2). The same plate configurations used earlier will be used, a square (1-8-1) simply supported 

(SSSS) plate with a/h ratio of five. A unity value for the volume fraction exponent in x-direction (nx = 1) 

and different combinations of nz ranging from zero to six, in addition to an isotropic middle layer case (nx 

= nz = 0) will be also examined.  

 

 

 

 

 

 

 

                         

Fig. 10. Variation of non-dimensional normal stress in x-direction σ̅xx for (1-8-1) simply supported plate 
with nx = 1 and different values of nz. 



191 

 

L
a
y
e
rw

is
e
 f

in
it

e
 e

le
m

e
n

t 
a
p

p
ro

a
c
h

 f
o

r 
th

e
 b

e
n

d
in

g
 a

n
a
ly

si
s 

o
f 

b
i-

d
ir

e
c
ti

o
n

a
l 

fu
n

c
ti

o
n

a
ll

y
 g

ra
d

e
d

 l
a
y
e
re

d
 p

la
te

s
 

  

 

 

 

 

 

 

 

Fig. 11. Variation of non-dimensional normal stress in y-direction σ̅yy for (1-8-1) simply supported plate 

with nx = 1 and different values of nz. 

 

 

 

 

 

 

 

 

Fig. 12. Variation of non-dimensional shear stress in xy-direction τ̅xy for (1-8-1) simply supported plate 

with nx = 1 and different values of nz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Variation of non-dimensional shear stress in xz-direction τ̅xz for (1-8-1) simply supported plate 

with nx = 1 and different values of nz. 
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 Fig. 14. Variation of non-dimensional shear stress in yz-direction τ̅yz for (1-8-1) simply supported            

plate with nx = 1 and different values of nz. 

The effect of volume fraction exponents on the through-thickness normal and shear stresses are clearly 

shown in Fig. 10 through Fig. 14. Sharp and sudden variation of stresses across layer’s interfaces is 

observed for the isotropic case (nx = nz = 0), where this effect is due to sudden change in material properties 

at layer’s interface. Sharp peaks at the upper layer interface become smoother as nz decreases, on the other 

hand, for lower layer interfaces; sharp peaks become smoother when the value of nz increases. As nz 

decreases, material properties C1 and C2 will contribute more than the material properties of M1 and M2, 

where the difference between material properties at the upper layer interface becomes narrower leading 

to smooth stresses at the upper interface. However, as the value of nz increases, the material properties M1 

and M2 will contribute more than the material properties C1 and C2. Thus, narrowing the gap in material 

properties at lower layer interface, consequently leading to smooth stresses at the lower interface. 

4 | Conclusions 

In this paper, the bending behavior of a rare plate model with an advanced type of material grading using 

an accurate enough representative element with two shear deformation theories were investigated. In 

addition, the current study investigated many parameters that affects the bending behavior of the layered 

plate structure. A layerwise FE approach for the bending analyses of a 3-layered plate consists of a 2D-

FGM embedded between isotropic ceramic and metal layers were investigated. The FE approach was 

carried out using both FSDT for isotropic layers and TSDT for the 2D-FG layer while maintaining a 

continuous displacement field across the plate’s thickness using the layerwise approach. 

Initially, the bending analysis verification procedure was carried out using an 8-noded quadrilateral 

element with 13-DoF per node. Two plate models were compared to approve the accuracy of the present 

formulation, i.e., single and 3-layered 1D-FGM plates. The bending analysis was investigated mainly for 

the plate’s central deflection. Various parametric studies were carried out to study the effect of the volume 

fraction exponents in longitudinal and thickness directions. Furthermore, plate’s side to thickness ratio, 

plate’s layer configuration and various applied boundary conditions were investigated. Formulations were 

executed by constructing a computer-based program using Maple Software. From the obtained results, 

several important conclusions can be summarized as follows: 

 The volume fraction exponent in the thickness direction is proportional to the plate’s central deflection. On the other 

hand, as the exponent in the longitudinal direction increases the deflection of the plate decreases. 

 Less deflection is observed for high a/h ratios up to 20, where above this value the deflection remains almost constant 

due to the transition from thick to thin plates. 
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 For the values of volume fraction exponents in thickness direction less than 0.75, less deflection is observed for the 

high middle layer ratio compared to both the upper and lower layers. On the other hand, for values greater than 

0.75 opposite conclusions are obtained.  

Several possible problems appear worth of further investigations, for instance, it is recommended to study 

the behavior of the present 2D-FGM plate structure with a dynamic load instead of static load, thus 

examining a plate model, which reflects realistic types of applications. Besides, this work can be also 

reproduced and validated experimentally while investigating the feasibility of using such materials 

commercially. 
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