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Abstract

We consider an expression for the probability R = P (Y < X) where the random
variables X and Y denote strength and stress, respectively. Our aim is to study the effect
of the dependency between X and Y on R. We assume that X and Y follow exponential
distributions and their dependency is modeled by a copula with the dependency parameter
θ. We obtain a closed-form expression for R for Farlie-Gumbel-Morgenstern (FGM), Ali-
Mikhail-Haq (AMH), Gumbel’s bivariate exponential copulas and compute R for Gumbel-
Hougaard (GH) copula using a Monte-Carlo integration technique. We plot a graph of
R versus θ to study the effect of dependency on R. We estimate R by plugging in the
estimates of the marginal parameters and θ in its expression. The estimates of the marginal
parameters are based on the marginal likelihood. The estimates of θ are obtained from two
different methods; one is based on the conditional likelihood and the other on the method
of moments using Blomqvist’s beta. Asymptotic distribution of both the estimators of R
is obtained. For illustration purpose, we apply our results to a real data set.

Keywords: Blomqvist’s beta, maximum likelihood estimation, Monte-Carlo method, reliabil-
ity, two-stage estimation procedure.

1. Introduction

Estimation of the probability R = P (Y < X), a measure of component reliability, has been
considered by many authors when X and Y are independent variables belonging to the same
univariate family of distributions, for example, Nadarajah (2003), Kundu and Gupta (2005),
Kundu and Gupta (2006), Kotz, Lumelskii, and Pensky (2003), among others and the refer-
ences therein. Jana (1994) discussed the estimation of R when (X, Y) follows the bivariate
exponential (BVE) Marshall-Olkin model. Kotz et al. (2003) (pg. 100) discussed R for Gum-
bel’s BVE distributions. Hanagal (1994) considered the studentized test for testing reliability
in BVE stress-strength model. Nadarajah and Kotz (2006) considered six BVE distributions
to find R and applied these results to the receiver operating characteristic (ROC) curves.
Among these, in four of their BVE distributions, the marginal distributions are exponential.
Domma and Giordano (2013) obtained a closed-form expression for R by modeling the de-
pendence through FGM copula and generalized FGM copula with the margins belonging to
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the Burr system. It is of interest to study the effect of the dependency between X and Y on
R. Due to Sklar’s theorem (Sklar 1959) stated below a convenient approach to model the
dependency between the variables is through the copulas. A copula is a multivariate distri-
bution function with all univariate marginal distribution functions uniform on [0, 1].

Sklar’s Theorem: Let H be a joint distribution function of random variables X and Y with
marginal distribution functions F (x) and G(y) respectively. Then there exists a copula C
such that for all x, y in (−∞,∞),

H(x, y)=C(F(x), G(y)).

Further, if F and G are continuous then C is unique; otherwise, C is uniquely determined on
RangeF ×RangeG.

For details on copulas, we refer to Nelsen (1999). Thus using copula, together with any
marginal distribution functions, we can construct a joint distribution function. However, it
is generally not known which copula function should be used. The best fitting model can
be obtained using Akaike information criteria (AIC). In this article we study the expression
for R, together with its estimation in case of four important copula models with exponential
margins. The reliability R can be expressed as

R = P [Y < X] =

∫
P [Y < x|X = x] f(x)dx, (1)

where P [Y < x|X = x] denotes the conditional probability and f, the probability density
function (p.d.f.) of X.

Exponential distributions have a variety of applications. The most prominent application is
in the field of life testing. In the context of reliability, the stress-strength model describes the
life of a component that has random strength X subject to random stress Y. We, therefore,
consider the exponential distribution as a marginal distribution of random variables X and Y
with distribution functions

F1(x;α1) = 1− e−α1x, x > 0; α1 > 0 (2)

and
F2(y;α2) = 1− e−α2y, y > 0; α2 > 0, (3)

respectively.

The copulas involve a parameter θ called the dependency parameter. We consider FGM copula
from the non-Archimedean family. Its dependency parameter θ ∈ [−1, 1]. Next, we consider
three copulas from Archimedean family with different ranges for the dependence parameter
θ, viz. AMH copula, Gumbel’s bivariate exponential copula and GH copula. For the AMH
copula θ ∈ [−1, 1], for the Gumbel’s bivariate exponential copula θ ∈ [0, 1] and for the GH
copula θ ∈ [1,∞). The range of Kendall’s tau (τ) for FGM, AMH, Gumbel’s bivariate expo-
nential, and GH copulas are [−0.22, 0.22], [−0.1817, 0.3333], [−0.4, 0] and [0, 1] respectively.
The range of Blomqvist’s beta (β) for FGM, AMH, Gumbel’s bivariate exponential, and GH
copulas are [−0.25, 0.25], [−0.20, 0.3333], [−0.38149, 0] and [0, 1) respectively. The FGM and
AMH models both positive and negative dependency, Gumbel’s bivariate exponential models
only negative dependency and GH models only positive dependency.

In Section 2, we consider the expression for R in terms of θ and the parameters (α1, α2)
of the margins for the four copulas. To study the effect of dependency between X and Y
on R, we plot a graph of R versus θ for different pairs of (α1, α2). We get closed-form
expressions for R for FGM copula, AMH copula, and Gumbel’s bivariate exponential copula.
It was not straightforward to solve integrals involved in the expressions for R in case of
AMH and Gumbel’s bivariate exponential copula thus we solve these integrals using Wolfram
Mathematica 6.0. It was not possible to obtain a closed-form expression for R in the case
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of GH copula. Therefore, in this case, we use a Monte Carlo (MC) integration technique for
obtaining R for known values of the parameters of margins and of θ. We plot a graph of R
versus θ to study the effect of θ on the R. Based on the observations on n independent pairs
(X1, Y1), . . . , (Xn, Yn), we consider two procedures for the estimation of θ and hence of R.
Both the procedures are based on what is known as the ‘two-stage estimation procedure’ in
the literature (Joe 1997); that is, we first obtain the maximum likelihood estimates (mles) of
the parameters of the margins based on the respective probability distributions. In the first
method, we obtain an estimate of θ by solving dlnL

dθ = 0, using the Newton Raphson (NR)
method, where L is the conditional likelihood based on the conditional density of Y given X
and by plugging in the estimates of the parameters of the margins. This method is reported
in Section 3. For the second method, we estimate θ using a nonparametric method. For the
copulas, the nonparametric methods are often based on the inversion of Spearman’s rho (ρ),
Kendall’s tau (τ), Blomqvist’s beta (β) etc. (Nelsen 1999). For the models considered in
this article, explicit expressions for the population version of Spearman’s rho and Kendall’s
tau are either not available or the inversion for θ is not simple. We, therefore, consider the
estimator based on Blomqvist’s beta, (see, Nelsen (1999), Blomqvist (1950)). This method
is reported in Section 4. We obtain the asymptotic distribution of both the estimators of R
in the respective sections. The results of simulations carried out to study the performance of
the estimators are reported in Section 5. We plot graphs of the estimates of R versus θ to
see the effect of dependency on the estimates. In Section 6, we apply our results to real data.
Finally conclusions appear in Section 7.

2. Expressions for R

The derivations of the expressions for R for the four copula families with exponential marginals
are given in the following subsections. The reliability R given in Equation (1) with exponential
marginals is given by

R = P [Y < X] =

∞∫
0

P [Y ≤ x|X = x] f1(x)dx, (4)

where f1(x) = α1e
−α1x, x > 0; α1 > 0 is p.d.f.s of X.

We note that if the random variables X and Y are independent then

R = P [Y < X] =
α2

α1 + α2
.

If the joint distribution function of (X, Y) is Cθ(F1(x), F2(y)) with the copula function Cθ
then

P [Y ≤ y|X = x] =
∂Cθ(u, v)

∂u
|u=F1(x),v=F2(y) , (5)

see Nelsen (1999) (pp. 36).

2.1. Farlie-Gumbel-Morgenstern copula

The FGM copula (Nelsen 1999) is given by

Cθ(u, v) = uv [1 + θ(1− u)(1− v)] , 0 ≤ u, v ≤ 1; − 1 ≤ θ ≤ 1. (6)

The bivariate copula is the joint distribution function of two random variables (r.v.s) with
uniform margins. We denote these r.v.s by U and V throughout the paper. Hence,

∂Cθ(u, v)

∂u
= v [1 + θ(1− v)(1− 2u)] .
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Therefore, from Equation (5),

P (Y ≤ y|X = x) =
(
1− e−α2y

) [
1 + θe−α2y

(
1− 2

(
1− e−α1x

))]
=

(
1− e−α2y

) [
1 + θe−α2y

(
−1 + 2e−α1x

)]
, x > 0; y > 0. (7)

Thus, the reliability R given in Equation (4) is

R =

∞∫
0

(
1− e−α2x

) [
1 + θe−α2x

(
−1 + 2e−α1x

)]
α1e
−α1xdx

=
α2

α1 + α2

[
(2α1 + α2) (α1 + 2α2) + α1 (−α1 + α2) θ

(2α1 + α2) (α1 + 2α2)

]
. (8)

It is straightforward to solve the above integral. The reliability R is a linear function of the
dependence parameter θ for this copula.

2.2. Ali-Mikhail-Haq copula

The AMH copula (Nelsen 1999) is given by

Cθ(u, v) =
uv

1− θ (1− u) (1− v)
, 0 ≤ u, v ≤ 1; − 1 ≤ θ ≤ 1. (9)

Then,

∂Cθ(u, v)

∂u
=

v [1− θ (1− v)]

[1− θ (1− u) (1− v)]2
.

Hence, from Equation (5),

P (Y ≤ y|X = x) =
(1− e−α2y) (1− θe−α2y)

(1− θe−α1xe−α2y)2
, x > 0; y > 0. (10)

Thus, the reliability R given in Equation (4) is

R =

∞∫
0

(1− e−α2x) (1− θe−α2x)(
1− θe−(α1+α2)x

)2 α1e
−α1xdx

= Hypergeometric2F1

[
2,

α1

α1 + α2
, 1 +

α1

α1 + α2
, θ

]
+

α1

α1 + α2

×

 1 + θ

−1 + θ
+ θ

Gamma
(
α1+2α2
α1+α2

)
Hypergeometric2F1

[
2, α1+2α2

α1+α2
, 1 + α1+2α2

α1+α2
, θ
]

Gamma
(
2α1+3α2
α1+α2

)
 ,
(11)

where Gamma(z) =
∞∫
0

tz−1e−tdt and the hypergeometric function

Hypergeometric2F1 [a, b, c, z] is defined for |z| < 1 by the power series

Hypergeometric2F1 [a, b, c, z] =
∞∑
n=0

(a)n(b)nzn

(c)nn!
, where

(a)n =

{
1 if n=0

a(a+ 1) . . . (a+ n+ 1) if n>0

The above power series diverges to infinity for c < 0. For given values of parameters a, b, c,
and z, Wolfram Mathematica 6.0 calculates the Hypergeometric2F1 [a, b, c, z] function.
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2.3. Gumbel’s bivariate exponential copula

Gumbel’s bivariate exponential copula (Nelsen 1999) is given by

Cθ(u, v) = u+ v − 1 + (1− u) (1− v) e−θ ln(1−u) ln(1−v), 0 ≤ u, v ≤ 1; 0 ≤ θ ≤ 1. (12)

Then,
∂Cθ(u, v)

∂u
= 1− e−θ ln(1−u) ln(1−v) (1− v) [1− θ ln (1− v)] .

Hence, from Equation (5),

P (Y ≤ y|X = x) = 1− e−θ ln(e−α1x) ln(e−α2y)e−α2y
[
1− θ ln

(
e−α2y

)]
= 1− e−θα1α2xy−α2y (1 + θα2y) , x > 0; y > 0.(13)

Thus, the reliability R given in Equation (4) is given by

R =

∞∫
0

[
1− e−θα1α2x2−α2x (1 + θα2x)

]
α1e
−α1xdx

=
1

2
−
√
π (α1 − α2)

4
√
α1α2θ

e
(α1+α2)

2

4α1α2θ Erfc

[
α1 + α2

2
√
α1α2θ

]
, (14)

where Erfc[z] is the integration of Gaussian distribution defined as Erfc[z] = 1− 2√
π

z∫
0

e−t
2
dt.

It is also discussed by Kotz et al. (2003) (pg. 100).

2.4. Gumbel-Hougaard copula

This family of copula was first discussed by Gumbel (1960b) and also appears in Hougaard
(1986). Hutchinson and Lai (1990) referred to it as the Gumbel-Hougaard (GH) copula. Also,
Nelsen (1999) (pp. 96) has listed this copula in his book as the fourth family. It is given by

Cθ(u, v) = Exp

(
−
[
(− lnu)θ + (− ln v)θ

]1/θ)
, 0 ≤ u, v ≤ 1; 1 ≤ θ <∞. (15)

Then,

∂Cθ(u, v)

∂u
=

(− lnu)θ−1

u

[
(− lnu)θ + (− ln v)θ

] 1
θ
−1
Exp

(
−
[
(− lnu)θ + (− ln v)θ

] 1
θ

)
.

Hence, from Equation (5),

P (Y ≤ y|X = x) =
(− ln [1− e−α1x])

θ−1

(1− e−α1x)

[(
− ln

[
1− e−α1x

])θ
+
(
− ln

[
1− e−α2y

])θ] 1
θ
−1

× Exp

(
−
[(
− ln

[
1− e−α1x

])θ
+
(
− ln

[
1− e−α2y

])θ] 1
θ

)
, x > 0; y > 0.

(16)

It was not possible to obtain an explicit expression for R, for this copula. We, therefore,
compute the integration involved in R using a MC integration technique. The details about
a MC integration technique are given below. For known values of α1, α2 and θ, we generate
N values of Xi randomly from the exponential distribution with parameter α1 having p.d.f.

f1(x) and approximate the integral
∞∫
0

g(x)f1(x)dx by 1
N

N∑
i=1

g (Xi), where

g(x) =
(− ln [1− e−α1x])

θ−1

(1− e−α1x)

[(
− ln

[
1− e−α1x

])θ
+
(
− ln

[
1− e−α2x

])θ] 1
θ
−1

×Exp
(
−
[(
− ln

[
1− e−α1x

])θ
+
(
− ln

[
1− e−α2x

])θ] 1
θ

)
, x > 0.
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The estimated answer converges to the correct result as N → ∞ ( from the law of large
numbers). We took N = 100000.

2.5. Variation in R with respect to θ

Next, to study the effect of the dependency between X and Y on R, we plot a graph of R
versus the dependency parameter θ for four different pairs of (E(X), E(Y)) for the four copulas
where E(Z) denotes the expected value of Z. We consider graphs for two cases E(X) > E(Y )
and E(X) < E(Y ). We note that E(X) = 1/α1 and E(Y ) = 1/α2. It is easily verified that:
i) if α1 < α2 then E(X) > E(Y ) and ii) if α1 > α2 then E(X) < E(Y ). For the parameter
values

(α1, α2) = {(2, 3), (2, 5)},

E(X) > E(Y ) and for

(α1, α2) = {(3, 2), (5, 2)},

E(X) < E(Y ).
Figure 1 illustrates the variation in R with respect to (w. r. to) θ, for the four copulas for
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Figure 1: Variation in R against dependence parameter θ (Theta) for the four pairs of
{(E(X), E(Y )) = (0.5, 0.33)5, (0.5, 0.2)♦, (0.33, 0.5)�, (0.2, 0.5)©}

four different pairs of (E(X), E(Y )). From the Figure, the pattern of variation in R w. r. to
θ is found to be:

1. If E(X) > E(Y ) then R > 1/2 and R increases with θ for FGM, AMH, and GH copulas
and decreases for Gumbel’s bivariate exponential copula. The graph of R appears to be
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almost linear in θ except for the GH copula. The increase in R w. r. to θ is faster for
the GH copula than for the FGM and AMH copulas.

2. If E(X) < E(Y ) then R < 1/2 and R decreases with θ for FGM, AMH, and GH copulas
and increases for Gumbel’s bivariate exponential copula. The graph of R appears to be
almost linear in θ except for the GH copula. The decrease in R w. r. to θ is faster for
the GH copula than for the FGM and AMH copulas.

Also, for a given E(X), smaller the value of E(Y) larger is the value of R for all θ and, for a
given E(Y), smaller the value of E(X) smaller is the value of R for all θ for the four copulas
considered. We observed that the pattern of variation in R discussed above holds true for
other combinations of the parameters of the margins that lead to the same inequality between
E(X) and E(Y).
The graphs show that GH copula has maximum variation in R with respect to θ and gives
a maximum range for R. The variation in R is the least for FGM copula. We see that the
difference between the value of R with independent margins and its value with dependent
margins is small in case of FGM copula, AMH copula, and Gumbel’s bivariate exponential
copula. This could be because the GH copula captures a larger range of the strength of
dependence as seen from the values of Kendall’s tau (τ) and Blomqvist’s beta (β) reported
in the introduction. Thus, the value of R differes with the strength of dependence.

3. Likelihood-based estimation

Let {(xi, yi) , i = 1, 2, · · · , n} be a realization of a random sample from the joint distribution
function H(x, y). We follow a two-stage estimation procedure (Joe 1997) and estimate α1

and α2 using the marginal densities. Thus the likelihood function based on (x1, x2, · · · , xn)
is given by

L (x1, x2, · · · , xn;α1) = αn1e
−α1

n∑
i=1

xi

Based on the above likelihood, the mle α̂1 of α1 is given by

α̂1 = n/
n∑
i=1

xi = 1/x̄. (17)

Similarly, the mle α̂2 of α2 is given by

α̂2 = n/

n∑
i=1

yi = 1/ȳ. (18)

Since the joint density h(xi, yi) = f(yi|xi)fX(xi) and since fX(xi) is free from θ we maximize
n∏
i=1

f(yi|xi) to obtain the estimate of θ. We substitute the parameters of the margins by their

estimates given in Equation (17) and Equation (18). Let L(y|x) =
n∏
i=1

f(yi|xi). The expression

for
d lnL(y|x)

dθ , using the conditional distribution of y1, y2, · · · , yn given x1, x2, · · · , xn for the
four copulas considered, are given in the following subsections.

3.1. FGM copula

The conditional density function of Y given X = x, using Equation (7), is given by

f(y|X = x) = α2e
−α1x−2α2y

[
4θ − 2θeα1x − 2θeα2y + (1 + θ)eα1x+α2y

]
. (19)



Austrian Journal of Statistics 17

Hence,

d lnL

dθ
=

n∑
i=1

4− 2eα1xi − 2eα2yi + eα1xi+α2yi

4θ − 2θeα1x − 2θeα2y + (1 + θ)eα1x+α2y
. (20)

We substitute (α1, α2) by their estimates and solve d lnL
dθ = 0 by using a NR method to

estimate θ. This reduces solving polynomial in θ of degree n-1 for n > 1.

3.2. AMH copula

The conditional density function of Y given X = x, using Equation (10), is given by

f (y|X = x) =
e2α1x+2α2y

(eα1x+α2y − θ)3
[
−2θeα1x − 2θeα2y + (1 + θ)eα1x+α2y + θ(1 + θ)

]
, (21)

and with the parameters of the margins substituted by their estimates

d lnL

dθ
=

n∑
i=1

[
2eα̂1xi + 2eα̂2yi − eα̂1xi+α̂2yi − 1− 2θ

]
[2θeα̂1xi + 2θeα̂2yi − (1 + θ)eα̂1xi+α̂2yi − θ(1 + θ)]

+
n∑
i=1

3

eα̂1xi+α̂2yi − θ
. (22)

We solve d lnL
dθ = 0 by using a NR method to estimate θ.

3.3. Gumbel’s bivariate exponential copula

The conditional density function of Y given X = x, using Equation (13), is given by

f(y|X = x) = α2e
−α2(1+θα1x)y [(1 + θα1x)(1 + θα2y)− θ] , (23)

and with the parameters of the margins substituted by their estimates

d lnL

dθ
= −α̂1α̂2

n∑
i=1

xiyi +
n∑
i=1

α̂1xi(1 + θα̂2yi) + α̂2yi(1 + θα̂1xi)− 1

(1 + θα̂1xi)(1 + θα̂2yi)− θ
. (24)

We solve d lnL
dθ = 0 by using a NR method to estimate θ.

3.4. GH copula

The conditional density function of Y given X = x, using Equation (16), is given by

f(y|X = x) =
(− ln [1− e−α1x])

θ−1
(− ln [1− e−α2y])

θ−1

(1− e−α1x) (1− e−α2y)

×
[(
− ln

[
1− e−α1x

])θ
+
(
− ln

[
1− e−α2y

])θ]−2+ 1
θ

×
{

(θ − 1) +
[(
− ln

[
1− e−α1x

])θ
+
(
− ln

[
1− e−α2y

])θ] 1
θ

}
×Exp

(
−α2y −

[(
− ln

[
1− e−α1x

])θ
+
(
− ln

[
1− e−α2y

])θ] 1
θ

)
, (25)
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and with the parameters of the margins substituted by their estimates

d lnL

dθ

=
n∑
i=1

ln(Ê1(i)) +
n∑
i=1

ln(Ê2(i)) +
n∑
i=1

[
(Ê1(i))

θ + (Ê2(i))
θ
] 1
θ

×

− ln
[
(Ê1(i))

θ + (Ê2(i))
θ
]

θ2
+

(Ê1(i))
θ ln Ê1(i) + (Ê2(i))

θ ln(Ê2(i))

θ
[
(Ê1(i))θ + (Ê2(i))θ

]


−
n∑
i=1

ln
[
(Ê1(i))

θ + (Ê2(i))
θ
]

θ2
+

n∑
i=1

(
−2 + 1

θ

) [
(Ê1(i))

θ ln Ê1(i) + (Ê2(i))
θ ln(Ê2(i))

]
(Ê1(i))θ + (Ê2(i))θ

+
n∑
i=1

1 +
[
(Ê1(i))

θ + (Ê2(i))
θ
] 1
θ

[
− ln[(Ê1(i))

θ+(Ê2(i))
θ]

θ2
+

(Ê1(i))
θ ln Ê1(i)+(Ê2(i))

θ ln(Ê2(i))

θ[(Ê1(i))
θ+(Ê2(i))

θ]

]
−1 + θ +

[
(Ê1(i))θ + (Ê2(i))θ

] 1
θ

(26)

where Ê1(i) = − ln
[
1− e−α̂1xi

]
and Ê2(i) = − ln

[
1− e−α̂2yi

]
.

In case of GH copula, we use r-package ‘Gumbel’ (version 1.10-2, Caillat, Dutang, Larrieu,
and Nguyen (2018)) to estimate θ.

3.5. Asymptotic properties of the likelihood-based estimators

Let {(Xi, Yi) , i = 1, 2, · · · , n} be a bivariate random sample from (X,Y ). Let η = (α1, α2, θ).
The estimator η̂ = (α̂1, α̂2, θ̂ ) of η is consistent for η (Joe 1997).
To obtain the asymptotic distribution, let

g =
(
∂ lnL1
∂α1

, ∂ lnL2
∂α2

, ∂ lnL∂θ

)
= (g1, g2, g3)

be a row vector, where L1 = αn1e
−α1

n∑
i=1

Xi
, L2 = αn2e

−α2

n∑
i=1

Yi
and L is the conditional likeli-

hood of Y ′si given X ′si and depends on the copula function considered. We get g1 = n
α1
−

n∑
i=1

Xi,

g2 = n
α2
−

n∑
i=1

Yi and g3 for FGM, AMH, Gumbel’s bivariate exponential, and GH copulas are

given by Equations (20), (22), (24) and (26) respectively.

Let η̂ =
(
α̂1, α̂2, θ̂

)
be the estimator obtained by the two-stage estimation procedure and

let Xn = (X1, · · · , Xn) and Y n = (Y1, · · · , Yn). The asymptotic distribution of
√
n(η̂ −

η)T is equivalent to the asymptotic distribution of
{
−E

(
∂gT (Xn,Y n,η)

∂η

)}−1
Z , where Z ∼

N (0, Cov (g(Xn, Y n, η))) ( see Joe (1997), pp. 301). The asymptotic variance-covariance
matrix of

√
n(η̂ − η)T , called the inverse Godambe information matrix ( see Joe (1997), pp.

301), is

V = D−1g Mg(D
−1
g )T

where

Dg = E

[
∂gT (Xn, Y n, η)

∂η

]
= E


∂g1
∂α1

∂g1
∂α2

∂g1
∂θ

∂g2
∂α1

∂g2
∂α2

∂g2
∂θ

∂g3
∂α1

∂g3
∂α2

∂g3
∂θ

 =


− n
α2
1

0 0

0 − n
α2
2

0

E
(
∂g3
∂α1

)
E
(
∂g3
∂α2

)
E
(
∂g3
∂θ

)


(27)
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and

Mg = E
[
gT (Xn, Y n, η) g(Xn, Y n, η)

]
= E

 g21 g1g2 g1g3
g2g1 g22 g2g3
g3g1 g3g2 g23


=


n
α2
1

nθ
4α1α2

E (g1g3)
nθ

4α1α2

n
α2
2

E (g2g3)

E (g3g1) E (g3g2) E
(
g23
)
 . (28)

An estimator of the asymptotic variance-covariance matrix is obtained by plugging in the
estimates of α1, α2, θ and then the expected values in Dg and Mg are obtained using MC
methods. We have given an example of the Godambe information criterion for one combina-
tion of the parameters in Section 5.
Further, for the copulas considered in Section 2, R is a continuous function of η. Let R = h(η).
The function h is a continuous function of η. Hence, R̂ = h(η̂) is a consistent estimator of R.
Further, the function h(.) has continuous first order partial derivatives. Thus using the Delta
method we get

√
n
(
R̂−R

)
d−→ N

(
0,
{
h
′
(η)
}
V
{
h
′
(η)
}T)

,

where h
′
(η) =

(
∂h
∂α1

, ∂h∂α2
, ∂h∂θ

)
and

d−→ denotes ‘convergence in distribution’.

4. Estimation using Blomqvist’s beta

Blomqvist’s beta is the medial correlation coefficient (Nelsen (1999), Blomqvist (1950)). The
closed-form of the population version of Blomqvist’s beta,

β(Cθ) = −1 + 4Cθ(1/2, 1/2), (29)

is available for many copulas. In addition, Blomqvist’s beta often provides an accurate ap-
proximation to Spearman’s rho and Kendall’s tau (Nelsen (1999), pp. 148). Based on a
random sample (Xi, Yi), i = 1, 2, . . . , n, from the bivariate distribution, the sample version βn
of Blomqvist’s beta is:

βn =
n1 − n2
n1 + n2

(30)

where
n1: the number of sample points in x-y plane such that either Xi > X̃n and Yi > Ỹn or
Xi < X̃n and Yi < Ỹn
n2: the number of sample points in x-y plane such that either Xi > X̃n and Yi < Ỹn or
Xi < X̃n and Yi > Ỹn
and X̃n and Ỹn are the sample medians of the corresponding random variables.
The asymptotic distribution of βn is investigated by Schmid and Schmidt (2007) in the mul-
tivariate case and for the bivariate case the result is:

√
n (βn − β)

d−→ N
(
0, σ2β,C

)
as n→∞,

where
d−→ denotes ‘convergence in distribution’. The asymptotic variance σ2β,C is reported in

Genest, Aguirre, and Harvey (2013) as

σ2β,C = 16C

(
1

2
,
1

2

){
1− C

(
1

2
,
1

2

)}
+ 4

{
C1

(
1

2
,
1

2

)
− C2

(
1

2
,
1

2

)}2

+16C

(
1

2
,
1

2

){
−C1

(
1

2
,
1

2

)
− C2

(
1

2
,
1

2

)
+ 2C1

(
1

2
,
1

2

)
C2

(
1

2
,
1

2

)}
, (31)
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where C1(u, v) = ∂C(u,v)
∂u and C2(u, v) = ∂C(u,v)

∂v must exist everywhere and be continuous on
[0, 1]2. Then solving the equation β(Cθ) = βn for θ we get the sample estimate θβ,n of θ for
a given copula. For details see Genest et al. (2013) . The estimator of θ can be expressed as
θβ,n = gβ(βn) where θ = gβ(β). We note that an estimate of θ obtained from Blomqvist’s beta
does not involve the estimates of the parameters of the margins. Further, assuming g

′
β(β)

exists and is non zero, the Delta method gives the asymptotic behaviour of θβ,n as

√
n (θβ,n − θ)

d−→ N
(
0, σ2θ,C

)
, as n→∞,

where σ2θ,C =
{
g
′
β(β)

}2
σ2β,C .

Using the estimates (α̂1, α̂2, θβ,n) of the parameters (α1, α2, θ), we get an estimate R̂β of R.
Note that, for the copulas considered in Section 2, R is a continuous function of η = (α1, α2, θ).
Now, the estimator η̂β of η is consistent for η (see Genest et al. (2013)). Therefore, R̂β is
consistent for R.
For obtaining the asymptotic distribution of the estimator of R, we first consider the case
when α1 and α2 are known. Therefore, for known α1 and α2, the estimator of R can be
expressed as Rθ,n = hθ(θn), a function of θ only. The Delta method gives the asymptotic
behaviour of Rθ,n as

√
n (Rθ,n −R)

d−→ N
(
0, σ2R,C

)
, as n→∞,

where σ2R,C =
{
h
′
θ(θ)

}2
σ2θ,C . The Blomqvist’s beta and the asymptotic variance σ2R,C for the

copulas considered in Section 2 are discussed in the following subsections.

4.1. FGM copula

From Equation (29), we get β(Cθ) = θ/4. Moreover, β ∈ [−1/4, 1/4]. Therefore, θ is obtained
by inversion of Blomqvist’s beta as θ = 4β. The explicit expression for the asymptotic variance
for the estimator of β has been given in Genest et al. (2013) and it is easily verified, using
Equation (31), that

σ2β,C = 1− θ2

16
.

For this copula, the function gβ(β) = 4β, hence g
′
β(β) = 4. Therefore, the asymptotic variance

of θβ,n is given by

σ2θ,C =
{
g
′
β(β)

}2
σ2β,C = 16− θ2.

The explicit expression for the asymptotic variance σ2R,C of Rθ,n, for this copula, when the
parameters of the margins are known, using the Delta method, which is given in Appendix 1.

4.2. AMH copula

From Equation (29), we get β(Cθ) = θ/(4 − θ). Moreover, β ∈ [−1/5, 1/3]. Therefore, θ
is obtained by inversion of Blomqvist’s beta as θ = 4β/(1 + β). The explicit expression for
the asymptotic variance of βn, has been given by Schmid and Schmidt (2007) and it is easily
verified, using Equation (31), that

σ2β,C =
16(θ4 − 7θ3 + 36θ2 − 80θ + 64)

(4− θ)5
.

For this copula, the function gβ(β) = 4β/(1 + β), hence g
′
β(β) = 4/(1 + β)2. Therefore, the

asymptotic variance of θβ,n is given by

σ2θ,C =
{
g
′
β(β)

}2
σ2β,C =

(θ4 − 7θ3 + 36θ2 − 80θ + 64)

(4− θ)
.
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The explicit expression for the asymptotic variance σ2R,C of Rθ,n, for this copula, when the
parameters of the margins are known, using the Delta method, which is given in Appendix 1.

4.3. Gumbel’s bivariate exponential copula

From Equation (29), we get β(Cθ) = −1+e−θ(ln 2)2 . Moreover, β ∈ [−0.381497, 0]. Therefore,
θ is obtained by inversion of Blomqvist’s beta as θ = − ln(β + 1)/(ln 2)2.
In order to compute asymptotic variance σ2β,C of βn one can easily find Cθ(1/2, 1/2) =
1
4e
−θ(ln 2)2 and C1(1/2, 1/2) = C2(1/2, 1/2) = 1 − 1

2(1 + θ ln 2)e−θ(ln 2)2 . Therefore, Equa-
tion (31) yields

σ2β,C = 4e−θ(ln 2)2

[
−1 + e−θ(ln 2)2

(
3

4
+ θ ln 2

)
+ 2

(
1− 1

2
(1 + θ ln 2) e−θ(ln 2)2

)2
]
.

Using the fact that, the function gβ(β) = − ln(β+ 1)/(ln 2)2, hence g
′
β(β) = − 1

(ln 2)2(β+1)
, the

asymptotic variance of θβ,n is given by

σ2θ,C =
{
g
′
β(β)

}2
σ2β,C

=
4

(ln 2)4e−θ(ln 2)2

[
−1 + e−θ(ln 2)2

(
3

4
+ θ ln 2

)
+ 2

(
1− 1

2
(1 + θ ln 2) e−θ(ln 2)2

)2
]
.

The explicit expression for the asymptotic variance σ2R,C of Rθ,n, for this copula, when the
parameters of the margins are known, using the Delta method, which is given in Appendix 1.

4.4. GH copula

From Equation (29), we get β(Cθ) = −1 + 4e−2
1/θ ln 2. Moreover, β ∈ [0, 1). Therefore, θ is

obtained by inversion of Blomqvist’s beta as θ = ln 2/ ln [ln(4/(β + 1))/ ln 2].
The explicit expression for asymptotic variance of βn has been given by Schmid and Schmidt
(2007) and also is easily verified, using Equation (31), that

σ2β,C = 8hθ

[
1− 2hθ +

(
2

1
θ
+1hθ − 1

)2]
where hθ = exp

(
−21/θ ln 2

)
. Using the fact that, the function gβ(β) = ln 2/ ln

(
ln(4/(β+1))

ln 2

)
,

hence g
′
β(β) = ln 2

(β+1) ln
(

4
β+1

)[
ln
(

ln(4/(β+1))
ln 2

)]2 , the asymptotic variance of θβ is given by

σ2θ,C =
{
g
′
β(β)

}2
σ2β,C =

(ln 2)2
[
1− 2hθ +

(
2

1
θ
+1hθ − 1

)2]
2hθ (lnhθ)

2 [ln (− lnhθ)− ln(ln 2)]2
.

Due to unavailability of explicit expression for R, it was not possible to obtain an explicit
expression for the asymptotic variance σ2R,C of Rθ,n for this copula. An estimate of σ2R,C can
be obtained using the bootstrap procedure.

4.5. Asymptotic properties of an estimator of R, when α1, α2 and θ are unknown

Let {(Xi, Yi) , i = 1, 2, · · · , n} be a bivariate random sample from (X,Y ). Let η = (α1, α2, θ).
Let g, g1, g2 be as defined in Section 3.5 and g3 = βn − β.
Let η̂ = (α̂1, α̂2, θβ,n) be the estimator obtained by the two-stage estimation procedure. The
inverse Godambe information matrix (Joe (1997), pp. 301) discussed in Section 3.5 is

V = D−1g Mg(D
−1
g )T
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where Dg and Mg are given in Equations (27) and (28) respectively.
Now, since the n pairs (Xi, Yi), i = 1, · · · , n are i.i.d, using the result from Schmid and Schmidt
(2007) , Joe (1997) (pp. 301) and the Cramer Wold device (Billingsley (1995), pp. 383) it
can be shown that(√

n (α̂1 − α1) ,
√
n (α̂2 − α2) ,

√
n (βn − β)

) d−→ N (0, V )), as n→∞.

Next, the estimator of θ can be expressed as θβ,n = gβ(βn) and assuming g
′
β(β) exists and is

non zero, the Delta method gives the following asymptotic distribution(√
n (α̂1 − α1) ,

√
n (α̂2 − α2) ,

√
n (θβ,n − θ)

) d−→ N (0, V1)), as n→∞,

where

V1 =

 1 0 0
0 1 0

0 0 g
′
β(β)

V
 1 0 0

0 1 0

0 0 g
′
β(β)

T .
Further, the estimator of R can be expressed as Rn = h(α̂1, α̂2, θβ,n) and h(.) has continuous
first order partial derivatives. Again using the Delta method we get

√
n (Rn −R)

d−→ N (0, V2) , as n→∞,

where V2 =
(
∂R
∂α1

, ∂R∂α2
, ∂R∂θ

)
V1

(
∂R
∂α1

, ∂R∂α2
, ∂R∂θ

)T
.

5. Simulation study

To study the performance of the estimators we simulated different data sets for the expected
values (E(X), E(Y )) corresponding to the parameters

(α1, α2) = {(2, 3), (2, 5), (3, 2), (5, 2)}

and different values of θ in the parameter space, for each of the four copulas discussed in
earlier sections. For each combination of expected values and dependence parameter θ, 100
data sets were simulated with the sample size of each being 50. We first draw a random sample
(x1, x2, · · · , xn) from an exponential distribution with parameter α1. Next, we simulate yi
from the conditional distribution of Y given X = xi. For details about the conditional
distribution of Y given X = xi see Appendix 2. Then parameters α1 and α2 of the margins
are estimated using maximum likelihood (ML) estimation.
Let θ̂ denote the estimator of θ using a two-stage ML procedure and θβ,n denote the estimator

of θ using Blomqvist’s beta. Let R̂ denote the estimator of R using a two-stage ML procedure
and Rθ,n denote the estimator of R using Blomqvist’s beta.
We estimate the dependence parameter θ using a two-stage ML estimation. Further, given

the estimates
(
α̂1, α̂2, θ̂

)
, we get the estimate R̂ of R. The results of the simulation study are

reported in Table 1 for FGM and AMH copulas, in Table 2 for Gumbel’s bivariate exponential
copula and in Table 3 for GH copula. For each cell in Tables 1-3, the first row is the estimate
θ̂ of θ, the second row is the mean square errors (MSE) for θ̂. It is observed that, from Tables
1-3, the estimates θ̂ are close to its true values.
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Table 1: Estimates θ̂ for the FGM and the AMH copula with the sample size n=50. The
values in the second row are MSE for θ̂.

θ
Copula (α1, α2) -0.9 -0.5 -0.1 0.1 0.5 0.9

FGM (2, 3) -0.8281 -0.4055 -0.1554 0.1047 0.4573 0.8365
0.0565 0.1692 0.1537 0.1620 0.1898 0.0601

(2, 5) -0.8065 -0.4995 -0.03080 0.1025 0.4431 0.8156
0.0893 0.1470 0.2120 0.2291 0.1298 0.0653

(3, 2) -0.8107 -0.4366 -0.0755 0.1379 0.4972 0.8281
0.0868 0.1490 0.2163 0.1594 0.1644 0.0586

(5, 2) -0.8205 -0.4466 -0.0832 0.07200 0.4599 0.8173
0.0816 0.1531 0.1647 0.2061 0.1488 0.0668

AMH (2, 3) -0.8113 -0.4295 -0.1740 0.0619 0.5151 0.8335
0.0700 0.2261 0.2424 0.1927 0.08517 0.0588

(2, 5) -0.8155 -0.4147 -0.1068 0.0800 0.4313 0.8121
0.0812 0.2179 0.2586 0.1393 0.1409 0.1836

(3, 2) -0.8209 -0.5535 -0.0887 0.0856 0.4662 0.8140
0.1048 0.1460 0.2099 0.1749 0.0948 0.1167

(5, 2) -0.8018 -0.4721 -0.1034 0.0715 0.4606 0.8243
0.08365 0.1927 0.2169 0.2145 0.08753 0.1214

Table 2: Estimates θ̂ for the Gumbel’s bivariate exponential copula with the sample size
n=50. The values in the second row are MSE for θ̂.

θ
(α1, α2) 0.1 0.3 0.5 0.7 0.9

(2, 3) 0.1216 0.3580 0.5487 0.6497 0.8662
0.0130 0.0356 0.0271 0.0365 0.0276

(2, 5) 0.1159 0.2936 0.4963 0.6995 0.9274
0.0092 0.0326 0.0471 0.0427 0.0856

(3, 2) 0.1258 0.3497 0.5226 0.6861 0.8891
0.0154 0.0257 0.0716 0.0237 0.0217

(5, 2) 0.1171 0.2814 0.4868 0.6911 0.8950
0.0108 0.0214 0.0383 0.0159 0.0073

Table 3: Estimates θ̂ for the GH copula with the sample size n=50. The values in the second
row are MSE for θ̂.

θ
(α1, α2) 2 4 6 8 10

(2, 3) 2.0546 4.0439 6.0456 8.1217 9.4665
0.0692 0.2523 0.5635 1.2066 0.5355

(2, 5) 2.0099 4.1780 5.9990 8.1075 9.5797
0.0924 0.4710 0.6340 1.1877 0.4126

(3, 2) 2.0303 4.1132 6.1548 8.1388 9.5457
0.0655 0.2072 0.7787 0.9372 0.5736

(5, 2) 2.0136 4.1692 6.0048 8.07732 9.5188
0.0761 0.3110 0.6685 1.3253 0.5308
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Figure 2: Variation in R̂ versus dependence parameter θ (Theta) for the four pairs of
{(E(X), E(Y )) = (0.5, 0.33)5, (0.5, 0.2)♦, (0.33, 0.5)�, (0.2, 0.5)© }

Table 4: Estimates R̂ for the FGM and the AMH copula with the sample size n=50. The
values in the second row are MSE for R̂.

θ
Copula (α1, α2) -0.9 -0.5 -0.1 0.1 0.5 0.9

FGM (2, 3) 0.5797 0.5880 0.6003 0.6103 0.6084 0.6198
0.0018 0.0022 0.0019 0.0021 0.0026 0.0020

(2, 5) 0.6775 0.6933 0.7109 0.7111 0.7258 0.7418
0.0014 0.0020 0.0022 0.0022 0.0017 0.0017

(3, 2) 0.4118 0.4074 0.4056 0.3987 0.3900 0.3874
0.0018 0.0021 0.0023 0.0026 0.0024 0.0020

(5, 2) 0.3231 0.3035 0.2925 0.28287 0.2701 0.2506
0.0014 0.0019 0.0019 0.0021 0.0018 0.0014

AMH (2, 3) 0.5835 0.5946 0.5929 0.6003 0.6184 0.6296
0.0017 0.0021 0.0023 0.0025 0.0032 0.0024

(2, 5) 0.6871 0.6993 0.7092 0.7184 0.7346 0.7675
0.0018 0.0018 0.0021 0.0022 0.0020 0.0018

(3, 2) 0.4115 0.4008 0.4023 0.3975 0.3886 0.3633
0.0033 0.0021 0.0024 0.0025 0.0024 0.0031

(5, 2) 0.3164 0.3033 0.2910 0.2854 0.2676 0.2315
0.0017 0.0025 0.0022 0.0027 0.0020 0.0019

Figure 2 illustrates the variation in R̂ with respect to θ for the four copulas and for the four
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Figure 3: Variation in Rθ,n versus dependence parameter θ (Theta) for the four pairs of
{(E(X), E(Y )) = (0.5, 0.33)5, (0.5, 0.2)♦, (0.33, 0.5)�, (0.2, 0.5)©}

different pairs of (E(X), E(Y )) considered in Section 2.5. From the Figure, the pattern of
variation in estimates of R with respect to θ is found to be the same as the pattern of variation
in true R with respect to θ. The values of R̂ and MSEs for R̂ reported in Tables 4-6. MSEs
for R̂ in Tables 4-6 are considerably small.

Example of Godambe information: To find the Godambe information matrix, we obtained

expected values E
(
∂g3
∂α1

)
, E

(
∂g3
∂α2

)
and E

(
∂g3
∂θ

)
in Dg and E

(
g23
)
, E (g1g3) and E (g2g3) in

Mg using a MC methods. For example, we consider (α1, α2, θ) = (2, 3, 0.5) for FGM, AMH,
and Gumbel’s bivariate exponential copula and (α1, α2, θ) = (2, 3, 5) for GH copula. The
inverse Godambe information matrix V are found to be respectively

FGM AMH 0.08 0.2591 −0.00440
0.2591 0.18 0.02448
−0.00440 0.024448 0.71364

  0.08 −0.08403 0.39004
−0.08403 0.18 −0.18882

0.3910 −0.18882 12.4109


Gumbel’s bivariate exponential copula GH 0.08 −0.022165 −0.62412
−0.02216 0.18 −0.91373
−0.62412 −0.91373 5.32552

  0.08 0.00476 −0.0005
0.00476 0.18 −0.0004
−0.0005 −0.0004 0.01589

 .

The rank-based moment estimates of βn is obtained using Equation (30). For large n, the
estimator βn is normally distributed with asymptotic variance σ2β,C given in Equation (31).
The estimates θβ,n of dependence parameter is then obtained by solving the equation β(Cθ) =
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Table 5: Estimates R̂ for the Gumbel’s bivariate exponential copula with the sample size
n=50. The values in the second row are MSE for R̂.

θ
(α1, α2) 0.1 0.3 0.5 0.7 0.9

(2, 3) 0.5977 0.5880 0.5876 0.5794 0.5773
0.0015 0.0016 0.0020 0.0019 0.0039

(2, 5) 0.7008 0.6887 0.6795 0.6760 0.6769
0.0035 0.0029 0.0028 0.0031 0.0039

(3, 2) 0.4053 0.4064 0.4122 0.4158 0.4144
0.0021 0.0078 0.0020 0.0021 0.0041

(5, 2) 0.3026 0.3005 0.3188 0.3215 0.3346
0.0047 0.0033 0.003 0.0022 0.0049

Table 6: Estimates R̂ for the GH copula with the sample size n=50. The values in the second
row are MSE for R̂.

θ
(α1, α2) 2 4 6 8 10

(2, 3) 0.6997 0.8269 0.8883 0.9282 0.9458
0.0025 0.0009 0.0005 0.0003 0.0001

(2, 5) 0.8448 0.9485 0.9744 0.9875 0.9926
0.0009 0.0002 0.0001 0.00002 0.00001

(3, 2) 0.2933 0.1697 0.1071 0.0706 0.0535
0.0021 0.0008 0.0005 0.0002 0.0001

(5, 2) 0.1529 0.0536 0.0253 0.0129 0.0077
0.0010 0.0002 0.0001 0.00003 0.000004

βn, using Equations (29) and (30), for θ. Further, given the estimates (α̂1, α̂2, θβ,n), we get
estimate Rθ,n.
The results of the simulation study are reported in Table 7 for FGM and AMH copulas, in
Table 8 for Gumbel’s bivariate exponential copula and in Table 9 for GH copula. For each cell
in Tables 7-9 the first row is the estimate θβ,n of θ, the second row is the MSE for θβ,n and the
values in the brackets are 95 percent confidence limits for θ based on normal approximation.
From Tables 7-9, it is observed that the estimates θβ,n of θ are close to its true values except
for θ = −0.9, 0.9 in the case of AMH copula. The MSE for θβ,n are quite large and increases
with θ in the case of GH copula.
Figure 3 illustrates the variation in Rθ,n with respect to θ for the four copulas and for four
different pairs of (E(X), E(Y )) considered in Section 2.5. From the Figure, the pattern of
variation in estimates Rθ,n of R with respect to θ is found to be the same as the pattern of
variation in true R with respect to θ. The values of Rθ,n and MSEs for Rθ,n are reported in
Tables 10-12.

6. Example

We use the data set of stress-strength measurements presented in Dargahi-Noubary and Nan-
thakumar (1992) and reproduced in Table 13. In these data, we have 15 pairs of measure-
ments on strength X subject to stress Y. Basu (1981) and Dargahi-Noubary and Nanthakumar
(1992) have found an estimate R̂ = 0.9639 and R̂ = 0.948 respectively assuming X and Y
are independent exponential random variables. The Kendall’s tau, Blomqvist’s beta and the
correlation coefficient for the data used are: -0.238, -0.3333 and -0.385 respectively. Now,
from the range of Kendall’s tau (τ) and Blomqvist’s beta (β) reported in the introduction we
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Table 8: Estimates θβ,n for the Gumbel’s bivariate exponential copula with the sample size
n=50. The values in the second row are MSE for θβ,n. The values in the brackets are the 95
percent confidence limits for θ.

θ
(α1, α2) 0.1 0.3 0.5 0.7 0.9

(2, 3) 0.1503 0.3627 0.5466 0.7283 0.9587
0.0711 0.1111 0.1308 0.1625 0.2196

(0.09,0.20) (0.297,0.43) (0.48,0.62) (0.65,0.81) (0.87,1)
(2, 5) 0.1522 0.3506 0.5153 0.7289 0.8682

0.0752 0.1237 0.1378 0.1845 0.1676
(0.09,0.21) (0.28,0.42) (0.44,0.59) (0.64,0.81) (0.79,0.95)

(3, 2) 0.1643 0.3418 0.5077 0.6900 0.9281
0.1593 0.1004 0.1314 0.2182 0.1985

(0.09,0.24) (0.28,0.40) (0.44,0.58) (0.60,0.78) (0.84,1)
(5, 2) 0.1707 0.3645 0.4950 0.7649 0.8926

0.1676 0.1516 0.1125 0.1732 0.1631
(0.09,0.25) (0.29,0.44) (0.43,0.56) (0.68,0.85) (0.81,0.97)

Table 9: Estimates θβ,n for the GH copula with the sample size n=50. The values in the
second row are MSE for θβ,n. The values in the brackets are the 95 percent confidence limits
for θ.

θ
(α1, α2) 2 4 6 8 10

(2, 3) 2.0230 4.4042 6.9499 8.8062 9.4377
0.2872 4.5181 11.3702 11.8908 10.1487

(1.92,2.13) (3.98,4.83) (6.28,7.62) (8.11,9.51) (8.78,10.10)
(2, 5) 1.9741 4.4892 6.3003 8.2294 9.3814

0.2204 5.8700 10.1177 10.5345 10.6858
(1.88,2.07) (4.01,4.97) (5.64,6.95) (7.57,8.89) (8.74,10.03)

(3, 2) 2.1448 4.4512 6.5722 8.5858 9.5477
0.2492 4.8213 10.2863 12.0253 10.4583

(2.05,2.24) (4.02,4.88) (5.93,7.21) (7.87,9.31) (8.91,10.18)
(5, 2) 2.2263 4.3738 6.6710 7.8541 9.3968

0.3394 4.2880 11.1465 11.9336 10.5811
(2.11,2.34) (3.97,4.78) (6.01,7.33) (6.65,8.00) (8.76,10.04)

conclude that Gumbel’s bivariate exponential copula is the only copula that can model the
dependency between the variables among the four copulas considered. The mles of the pa-
rameters of exponential margins for this data are found to be (α̂1, α̂2) = (0.735168, 19.6463).
The two-stage likelihood-based estimate θ̂, estimate θβ,n based on Blomqvist’s beta and cor-

responding estimates R̂, Rθ,n of R for the Gumbel’s bivariate exponential copula model are:
0.81, 0.84, 0.941303, and 0.940478 respectively. We note that both the estimates of R are
slightly less than the estimates obtained assuming independence.
The AIC measure is given by

AIC = −2 lnL(θ̂, θ̂ is the mle) + 2(number of model parameters).

We replace the mles by the two-stage consistent estimators. For stress-strength measure-
ments data set, the estimate of AIC measure for product (independent) copula is found to
be -16.10708 and AIC measure for Gumbel’s bivariate exponential copula is found to be
-55.824773.
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Table 10: Estimates Rθ,n for the FGM and the AMH copula with the sample size n=50. The
values in the second row are MSE for Rθ,n.

θ
Copula (α1, α2) -0.9 -0.5 -0.1 0.1 0.5 0.9

FGM (2, 3) 0.5774 0.5893 0.5974 0.6016 0.6089 0.6159
0.5684 0.0024 0.0022 0.0024 0.0024 0.0023

(2, 5) 0.6733 0.6880 0.7108 0.7140 0.7370 0.7527
0.0018 0.6880 0.0018 0.0026 0.0020 0.0021

(3, 2) 0.4204 0.4161 0.3959 0.3979 0.38956 0.3845
0.0021 0.0024 0.0022 0.0027 0.0022 0.0026

(5, 2) 0.3260 0.3084 0.2933 0.2814 0.2715 0.2534
0.0020 0.0019 0.0017 0.0015 0.0020 0.0026

AMH (2, 3) 0.5881 0.5973 0.5949 0.6032 0.6213 0.6280
0.0023 0.0019 0.0026 0.0021 0.0023 0.0022

(2, 5) 0.6895 0.6963 0.7026 0.7222 0.7186 0.7752
0.0016 0.0014 0.0015 0.0016 0.0017 0.0019

(3, 2) 0.4128 0.4057 0.4031 0.3969 0.3880 0.3661
0.0016 0.0018 0.0022 0.0023 0.0029 0.0032

(5, 2) 0.3157 0.3062 0.2894 0.2799 0.2599 0.2281
0.0016 0.0016 0.0017 0.0013 0.0015 0.0016

Table 11: Estimates Rθ,n for the Gumbel’s bivariate exponential copula with the sample size
n=50. The values in the second row are MSE for Rθ,n.

θ
(α1, α2) 0.1 0.3 0.5 0.7 0.9

(2, 3) 0.6004 0.5893 0.5837 0.5858 0.5790
0.0025 0.0023 0.0023 0.0016 0.0026

(2, 5) 0.6988 0.6927 0.6894 0.6809 0.6785
0.0019 0.0020 0.0021 0.0018 0.0019

(3, 2) 0.4031 0.4055 0.4158 0.4192 0.4208
0.0029 0.0016 0.0022 0.0023 0.0027

(5, 2) 0.2950 0.3108 0.3050 0.3266 0.3284
0.0018 0.0017 0.0025 0.0016 0.0019

7. Conclusions

This article aims to study the expression for the reliability R = P (Y < X) when the variables
are dependent with exponential margins and study the effect of dependency on it. The
dependency is modeled through copula functions. The copula function to be used depends
on the underlying situation. We have studied the expression for R for four important copula
functions and have studied also its variations with respect to the dependence parameter θ.
It is seen that the variation in R with respect to θ is moderate in the case of FGM copula,
AMH copula, and Gumbel’s bivariate exponential copula. For the GH copula, the variation
in R with respect to θ is more than that for the other three copulas. If α1 = α2, R equals 1/2
for every θ in case of the FGM, the AMH, and the Gumbel’s bivariate exponential copulas.
However, it depends on θ for the GH copula. We were not able to obtain an explicit expression
for R in the case of GH copula and used the MC technique for its computation. For this copula,
there seems to be a fairly large variation in R with respect to θ compared to the other three
copulas considered. The performance of the estimators of the dependence parameter θ and
R are studied via simulations. In general, it is observed that the estimates of θ are close to
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Table 12: Estimates Rθ,n for the GH copula with the sample size n=50. The values in the
second row are MSE for Rθ,n.

θ
(α1, α2) 2 4 6 8 10

(2, 3) 0.6994 0.8232 0.8853 0.9192 0.9311
0.0033 0.0041 0.0040 0.0028 0.0021

(2, 5) 0.8383 0.9376 0.9624 0.9804 0.9825
0.0018 0.0013 0.0008 0.00033 0.00029

(3, 2) 0.2884 0.1792 0.1225 0.0844 0.0726
0.0027 0.0049 0.0039 0.0030 0.0021

(5, 2) 0.1400 0.0633 0.0354 0.0243 0.0147
0.0017 0.0014 0.0009 0.0005 0.0003

Table 13: Strength X and stress Y

X 1.77 0.9457 1.8985 2.6121 1.0929 0.0362 1.0615 2.3895
Y 0.0352 0.0397 0.0677 0.0233 0.087 0.1156 0.0286 0.0200
X 0.0982 0.7971 0.8316 3.2304 0.4373 2.5648 0.6377
Y 0.0793 0.0072 0.0245 0.0251 0.0469 0.0838 0.0796

its true value using the conditional likelihood procedure as compared to using Blomqvist’s
beta except for the FGM copula. The estimation procedure based on Blomqvist’s beta is
computationally simpler and the resulting estimates are fairly good. The pattern of variation
in the estimates of R with respect to θ is found to be the same as the pattern of variation
in true R with respect to θ for both the methods of estimation of θ. Mean square errors
for estimates of R are considerably small. Next, we have studied the asymptotic properties
of all the estimators. We have also, obtained an estimate of the corresponding Godambe
information matrix. Finally, we apply our results to a real data set. It is found that Gumbel’s
bivariate exponential copula is the only copula that can model the dependency between the
variables among the four copulas considered, for the given data set.

Appendix 1

1. The asymptotic variance σ2R,C of Rθ,n for the FGM copula, from Equation (8), is given by

σ2R,C =
{
h
′
θ(θ)

}2
σ2θ,C

=

{
α1α2(−α1 + α2)

(α1 + α2)(2α1 + α2)(α1 + 2α2)

}2 {
16− θ2

}
(32)

2. The asymptotic variance σ2R,C of Rθ,n for the AMH copula is given by

σ2R,C =
{
h
′
θ(θ)

}2
σ2θ,C (33)
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where, from Equation (11),

h
′
θ(θ) =

α1

(α1 + α2)θ

{
1

(1− θ)2
−Hypergeometric2F1

[
2,

α1

α1 + α2
,
2α1 + α2

α1 + α2
, θ

]}

+
α1

(α1 + α2)

{
1

−1 + θ
− 1 + θ

(−1 + θ)2

}
+
α1(α1 + 2α2)Gamma

(
α1+2α2
α1+α2

)
(α1 + α2)2 Gamma

(
2α1+3α2
α1+α2

)
×
[

1

(1− θ)2
−Hypergeometric2F1

[
2,
α1 + 2α2

α1 + α2
,
2α1 + 3α2

α1 + α2
, θ

]]

+
Gamma

(
α1+2α2
α1+α2

)
Hypergeometric2F1

[
2, α1+2α2

α1+α2
, 2α1+3α2
α1+α2

, θ
]

Gamma
(
2α1+3α2
α1+α2

) , (34)

and σ2θ,C is defined in Section 4.2.

3. The asymptotic variance σ2R,C of Rθ,n for the Gumbel’s bivariate exponential copula, from
Equation (14), is given by

σ2R,C =
{
h
′
θ(θ)

}2
σ2θ,C

=

(α2
1 − α2

2)

8α1α2θ2
+
e

(α1+α2)
2

4α1α2θ
√
π(α1 − α2)Erfc

[
α1+α2

2
√
α1α2θ

]
8θ
√
α1α2θ

[
1 +

(α1 + α2)
2

2α1α1θ

]
2

σ2θ,C ,

(35)

where σ2θ,C is defined in Section 4.3.

Appendix 2

1. FGM copula: From Equation (7) the conditional distribution function of Y given X = x
is given by

FY |X(y|x) =
(
1− e−α2y

) [
1 + θe−α2y

(
−1 + 2e−α1x

)]
, x > 0; y > 0. (36)

Therefore, using the inverse transformation, we get

y = − 1

α2
ln

[
(1 + θ − 2θe−α1x)−

√
(1 + θ − 2θe−α1x)2 − 4θ(1− 2e−α1x)(1−W )

2θ(1− 2e−α1x)

]
(37)

where W ∼ U(0, 1).

2. AMH copula: From Equation (10) the conditional distribution function of Y given X = x
is given by

FY |X(y|x) =
(1− e−α2y) (1− θe−α2y)

(1− θe−α1xe−α2y)2
, x > 0; y > 0. (38)

Therefore, using the inverse transformation, we get

y = − 1

α2
ln

[
−(1 + θ − 2θWe−α1x)−

√
(1 + θ − 2θWe−α1x)2 + 4θ(θWe−2α1x − 1)(1−W )

2θ(θWe−2α1x − 1)

]
(39)

where W ∼ U (0, 1).
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3. Gumbel’s bivariate exponential copula: From Equation (13) the conditional distribution
function of Y given X = x is given by

FY |X(y|x) = 1− e−θα1α2xy−α2y (1 + θα2y) , x > 0; y > 0. (40)

The inverse transformation, for this copula, is not possible for θ. We, therefore, use rejection
method (Ross 1997) to draw a sample from Y. For rejection method, we consider the density
function

g(y) = α2e
−α2y y > 0; α2 > 0 (41)

as a basis, i.e., simulate a value from g(y) and accept this simulated value with probability
proportional to f(y|X = x)/g(y) where f(y|X = x) is given by Equation (23). We note that

f(y|X = x)

g(y)
= e−θα1α2xy [(1 + θα1x)(1 + θα2y)− θ]

is bounded for all y by the constant k given as

k = (1 + θα1x)

(
1 +

1

α1x

)
. (42)

4. GH copula : From Equation (16) the conditional distribution function of Y given X = x
is given by

FY |X(y|x) =
(− ln [1− e−α1x])

θ−1

(1− e−α1x)

[(
− ln

[
1− e−α1x

])θ
+
(
− ln

[
1− e−α2y

])θ] 1
θ
−1

×Exp
(
−
[(
− ln

[
1− e−α1x

])θ
+
(
− ln

[
1− e−α2y

])θ] 1
θ

)
, x > 0; y > 0.

Then, using the inverse transformation, we get

y = − 1

α2
ln

[
1− e−{−(E1)

θ+[(−1+θ)ProductLog[z]]θ}(1/θ)
]

(43)

where E1 = − ln [1− e−α1x], z =
[W(1−e−α1x)(E1)

(1−θ)]
1

1−θ

−1+θ , W ∼ U (0, 1) and ProductLog[z]
gives the principal solution for z = wew.
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