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Abstract

In this paper, the Rayleigh distribution is generalized using the cubic transmuted
(CT) family studied by Rahman, Al-Zahrani, Shahbaz, and Shahbaz (2019) to propose a
cubic transmuted Rayleigh distribution. An overall description is presented here for the
distributional properties, parameter estimation, inference procedure, reliability behavior,
and distribution of different order statistics. A real-life data set is used to demonstrate
the applicability of the proposed distribution for modeling data.

Keywords: cubic transmutation, maximum likelihood estimation, order statistics, Rayleigh
distribution, reliability analysis.

1. Introduction

Modeling every phenomenon with the well-known standard probability distributions is not
always straightforward. Again in statistical analysis, the feature of the procedures mostly
depends on the assumed probability model. Generalizing the probability distributions is a
popular and ever-existing process in statistics to capture extra variation in the data. The gen-
eralization by induction of the shape parameter(s) started at the end of the last century. The
main target of the article is to generalize the Rayleigh distribution to increase the flexibility
in the analysis of real-life data by induction of a shape parameter. The Rayleigh distribution
is a continuous probability distribution for nonnegative-valued random variables, named after
the English Lord Rayleigh (1842-1919). The distribution function of the distribution is

G(x;σ) = 1− e−
x2

2σ2 , x ∈ R0+, (1)

where σ ∈ R+ is the scale parameter. The Weibull distribution with shape parameter 2 is
nothing but the Rayleigh distribution. When the scale parameter (σ) is 1, the Rayleigh is
the same as the chi-square distribution of 2 degrees of freedom. Shaw and Buckley (2009)
introduced the transmuted family of distributions, which has the cumulative distribution
function (CDF) as

F (x;λ) = (1 + λ)G(x)− λG2(x), x ∈ R, (2)

where λ ∈ [−1, 1]. Several standard probability models are developed and added to the liter-
ature using (2), including transmuted extreme value by Aryal and Tsokos (2009); transmuted
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Weibull by Aryal and Tsokos (2011); and transmuted Pareto by Merovci and Puka (2014).
Merovci (2013) introduced the transmuted Rayleigh distribution using (1) in (2), which can
take a simple quadratic form as

F (x;σ, λ) =

[
1− e−

x2

2σ2

] [
1 + λe−

x2

2σ2

]
, x ∈ R0+,

where λ ∈ [−1, 1] is the shape parameter. Rahman et al. (2019) introduce the cumulative
distribution function of a new family of cubic transmuted distributions, which can take the
simple cubic form as

F (x;λ) = (1− λ)G(x) + 3λG2(x)− 2λG3(x), x ∈ R, (3)

where λ ∈ [−1, 1]. Observe that at λ = 0, one has the distribution of the base random
variable. Akter, Khan, Rana, and Rahman (2021) develop the cubic transmuted Burr-XII
distribution using (3). Researchers in this area can develop several other cubic transmuted
distributions by using this family of distributions.

The layout plan of this article follows: The cubic transmuted Rayleigh distribution is intro-
duced and described in Section 2. Section 3 describes the moments and associated results,
as well as the generating functions and quantile function. In Section 4, the random number
generation and parameter estimation techniques of the distribution are discussed. Section 5
provides the reliability behavior of the distribution along with the distributions of different
order statistics in Section 6. Section 7 provides a real-life example for evaluating the proposed
distribution’s applicability. Section 8 concludes with some closing remarks.

2. Cubic transmuted Rayleigh distribution

The cumulative distribution function of the cubic transmuted Rayleigh distribution is obtained
by using (1) in (3), which can be written as

F (x;σ, λ) = 1− e−
3x2

2σ2

[
(1− λ)e

x2

σ2 + 3λe
x2

2σ2 − 2λ

]
, x ∈ R0+, (4)

where σ ∈ R+ and λ ∈ [−1, 1] are the scale and shape parameters of the distribution respec-
tively. Differentiating (4) with respect to x provides the probability density function (PDF),
which is defined as follows.

Definition. A continuous random variable X is said to have a cubic transmuted Rayleigh
distribution if its density function is defined by

f(x;σ, λ) =
x

σ2
e−

3x2

2σ2

[
(1− λ)e

x2

σ2 + 6λe
x2

2σ2 − 6λ

]
, x ∈ R0+, (5)

where σ ∈ R+ and λ ∈ [−1, 1].

Special cases

The cubic transmuted Rayleigh distribution has the following specific situations:

(i) For a value of λ = 0, the CDF of the cubic transmuted Rayleigh distribution in (4)
reduces to the CDF of the Rayleigh distribution in (1).

(ii) The cubic transmuted Rayleigh distribution given in (5) for λ = 0 and σ = 1 is equivalent
to the chi distribution with 2 degrees of freedom.
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Figure 1: The PDF (left) and CDF (right) are obtained for the CT-Rayleigh distribution

(iii) The half-normal distribution is the univariate specific case of the cubic transmuted
Rayleigh distribution given in (5) for λ = 0.

For selected values of the model parameters λ and σ, Figure 1 shows some potential shapes for
the density function (left) and distribution function (right) of the proposed cubic transmuted
Rayleigh distribution. The cubic transmuted Rayleigh distribution can capture different be-
havior in the data set, as shown in Figure 1.

3. Moments and related results

The moments are very much essential to know the shape characteristic of a distribution. The
mean of a distribution is the first raw moment, while the variance, skewness, and kurtosis
of the distribution are the second central moment, third standardized moment, and fourth
standardized moment, respectively. The moments, as well as some related outcomes, are
listed in the subsections below.

3.1. Moments

The following theorem describes the rth raw moment of the proposed cubic transmuted
Rayleigh distribution.

Theorem 1. Let the continuous random variable X follow a cubic transmuted Rayleigh distri-
bution, then the rth raw moment, µ

′
r, is

µ
′
r =

rσr

2
Γ

(
r

2

)[
3λ+ (1− λ)2

r
2 − 2λ

(
2

3

) r
2

]
. (6)

Proof. The rth raw moment is defined and further proceed as

µ
′
r =

∫ ∞
0

xrf(x;σ, λ) dx

=

∫ ∞
0

xr
[
x

σ2
e−

3x2

2σ2

{
(1− λ)e

x2

σ2 + 6λe
x2

2σ2 − 6λ

}]
dx

=
1− λ
σ2

∫ ∞
0

xr+1e−
x2

2σ2 dx+
6λ

σ2

∫ ∞
0

xr+1e−
x2

σ2 dx− 6λ

σ2

∫ ∞
0

xr+1e−
3x2

2σ2 dx

=
1− λ
σ2

[
σr+22

r
2

(
r

2

)
Γ

(
r

2

)]
+

6λ

σ2

[
σr+2

(
1

2

)(
r

2

)
Γ

(
r

2

)]
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−6λ

σ2

[
σr+2

(
1

3

)(
2

3

) r
2
(
r

2

)
Γ

(
r

2

)]

=
σr+2

(
r
2

)
Γ
(
r
2

)
σ2

[
(1− λ)2

r
2 +

6λ

2
− 6λ

3

(
2

3

) r
2

]

=
rσr

2
Γ

(
r

2

)[
3λ+ (1− λ)2

r
2 − 2λ

(
2

3

) r
2

]
.

Hence, proved the theorem.

The first raw moment is obtained by setting r = 1 in (6) and given as

µ
′
1 =

σ

2

√
π

[
3λ+ (1− λ)

√
2− 2λ

√
2

3

]
,

which is the mean of the distribution. The second raw moment can also be computed as

µ
′
2 = σ2

(
2− λ

3

)
.

The variance of the distribution, also known as the second central moment, is obtained as

µ2 = µ
′
2 −

[
µ

′
1

]2
= σ2

(2− λ

3

)
− π

4

{
3λ+ (1− λ)

√
2− 2λ

√
2

3

}2
 .

Table 1: The mean and variance (in parentheses) of the CT-Rayleigh distribution

λ =-1 λ =-0.5 λ =0 λ =0.5 λ =1

σ =0.5 0.648 0.637 0.627 0.616 0.606
(0.164) (0.136) (0.107) (0.079) (0.050)

σ =1 1.295 1.274 1.253 1.232 1.211
(0.656) (0.543) (0.429) (0.315) (0.199)

σ =2 2.590 2.548 2.507 2.465 2.423
(2.624) (2.172) (1.717) (1.258) (0.796)

σ =3 3.885 3.823 3.760 3.697 3.634
(5.903) (4.887) (3.863) (2.831) (1.791)

σ =4 5.181 5.097 5.013 4.930 4.846
(10.495) (8.688) (6.867) (5.033) (3.184)

The mean and variance chart for the proposed cubic transmuted Rayleigh distribution is
provided in Table 1 and plotted in Figure 2. When the value of σ increases, the mean and
variance increase, and when the value of λ increases, the mean and variance decreases.

The normalized rth central moment of the random variable X is

µr
σr

=
E [(X − µ)r]

σr
. (7)

The first and second standardized moments are 0 and 1, respectively, as seen in (7). Also, the
skewness (γ1) and kurtosis (γ2) of the random variable are the third and fourth standardized
moments, respectively. The skewness and kurtosis of the proposed distribution are determined
and expressed as follow

γ1 =
µ3

(µ2)
3
2

=
2
√
π

(−πξ2 − φ)
3
2

[
πξ3 +

3

2
φξ − 9δλ+ 162

√
2

]
,
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Figure 2: The mean (left) and variance (right) are plotted for the CT-Rayleigh distribution

and

γ2 =
µ4

µ2
2

=
3

(πξ2 + φ)2

[
−π2ξ4 − 2πφξ2 + 24π

{
δλ− 18

√
2
}
ξ + 96(36− 17λ)

]
,

where ξ =
(
9− 3

√
2− 2

√
6
)
λ+ 3

√
2, φ = 12(λ− 6) and δ = 18

√
2 + 4

√
6− 27.

Table 2: The skewness and kurtosis of the CT-Rayleigh distribution

any σ
λ =-1 λ =-0.5 λ =0 λ =0.5 λ =1

Skewness 0.486 0.562 0.631 0.656 0.446
Kurtosis 2.384 2.77 3.245 3.716 3.136

Figure 3: The skewness (left) and kurtosis (right) are plotted for the CT-Rayleigh distribution

Table 2 shows the skewness and kurtosis chart for the proposed cubic transmuted Rayleigh
distribution. It’s worth noting that skewness and kurtosis are unaffected by the scale parame-
ter σ. Figure 3 illustrates the skewness (left) and kurtosis (right) of the proposed distribution
for different combinations of the model parameters, confirming that it is positively skewed
and leptokurtic.
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3.2. Moment generating function

The moment generating function, MX(t), of a real-valued random variable X is an alternative
specification of its probability distribution. It can be used to obtain the moments of a distri-
bution. Specifically, the rth moment about 0 is the rth derivative of the moment generating
function, evaluated at 0. The moment generating function of the proposed cubic transmuted
Rayleigh distribution is described by the following theorem.

Theorem 2. Let the continuous random variable X follow a cubic transmuted Rayleigh distri-
bution, then the moment generating function, MX(t), is

MX(t) =
∞∑
r=0

tr

r!

rσr

2
Γ

(
r

2

)[
3λ+ (1− λ)2

r
2 − 2λ

(
2

3

) r
2

]
, (8)

where t ∈ R.

Proof. The moment generating function is defined as

MX(t) = E
[
etX

]
=

∫ ∞
0

etxf(x)dx,

where f(x) is given in (5). Using the series representation of etx given by Gradshteyn and
Ryzhik (2014), above equation can be further expressed as

Mx(t) =

∫ ∞
0

∞∑
r=0

tr

r!
xrf(x)dx =

∞∑
r=0

tr

r!
E(Xr). (9)

Using E(Xr) from (6) in (9), we have (8).

3.3. Characteristic generating function

The characteristic function of a real-valued distribution is always existed, unlike the mo-
ment generating function. The following theorem describes the characteristic function of the
proposed cubic transmuted Rayleigh distribution.

Theorem 3. Let the continuous random variable X follow a cubic transmuted Rayleigh distri-
bution, then the characteristic generating function, φX(t), is

φX(t) =
∞∑
r=0

(it)r

r!

rσr

2
Γ

(
r

2

)[
3λ+ (1− λ)2

r
2 − 2λ

(
2

3

) r
2

]
,

where i =
√
−1 is the imaginary unit and t ∈ R.

Proof. The proof is simple.

3.4. Quantile function and median

The quantile function of a distribution specifies the value of a random variable. It is also
called the inverse cumulative distribution function. The proposed cubic transmuted Rayleigh
distribution’s qth quantile xq is obtained by using (4) as follow

1− e−
3x2q

2σ2

[
(1− λ)e

x2q

σ2 + 3λe
x2q

2σ2 − 2λ

]
= q,
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which can be further presented as

xq = σ

[
2 log

{
3
√
δ1

3 3
√

2(q − 1)
−

3
√

2ξ

3(q − 1) 3
√
δ1
− 1− λ

3(q − 1)

}] 1
2

, (10)

where

ξ = −λ2 − 7λ+ 9λq − 1,

δ1 = δ2 +
√

(δ2 + δ3)2 + 4ξ3 + δ3,

δ2 = 2λ3 + 21λ2 + 33λ, and
δ3 = 54λq2 − 27λ2q − 81λq − 2.

 (11)

By setting q = 1
4 , 1

2 and 3
4 in (10), respectively, will give the first quartile, median (second

quartile), and third quartile.

4. Random number generation and parameter estimation

An inversion method is applied to generate random numbers from the proposed cubic trans-
muted Rayleigh distribution with parameters σ and λ. According to the inverse transform
sampling method, this can proceed as

1− e−
3x2

2σ2

[
(1− λ)e

x2

σ2 + 3λe
x2

2σ2 − 2λ

]
= u,

where u ∼ U(0, 1) and which can be further expressed as

x = σ

[
2 log

{
3
√
δ1

3 3
√

2(u− 1)
−

3
√

2ξ

3(u− 1) 3
√
δ1
− 1− λ

3(u− 1)

}] 1
2

, (12)

where ξ, δ1, δ2 and δ3 are obtained from (11) by setting u in place of q. One can use (12) to
generate random numbers from the cubic transmuted Rayleigh distribution when the model
parameters σ and λ are known.

Let x1, x2, · · · , xn be a random sample of size n drawn from a cubic transmuted Rayleigh
distribution. The likelihood function of the distribution is

L(x;σ, λ) =
n∏
i=1

f(x;σ, λ)

=

∏n
i=1 xi
σ2n

· e−
∑n

i=1
3x2

2σ2 ·
n∏
i=1

[
(1− λ)e

x2

σ2 + 6λe
x2

2σ2 − 6λ

]
,

with respective sample log-likelihood function as

`(x;σ, λ) =
n∑
i=1

log (xi)− 2n log(σ)−
n∑
i=1

3x2
i

2σ2
+

n∑
i=1

log

[
(1− λ)e

x2
i
σ2 + 6λe

x2
i

2σ2 − 6λ

]
. (13)

The estimators of the model parameters σ, and λ are obtained by maximizing (13). The
derivatives of (13) with respect to the unknown parameters are

δ`

δσ
=

n∑
i=1

3x2
i

σ3
− 2n

σ
−

n∑
i=1

2(1−λ)
σ3 x2

i e
x2
i
σ2 + 6λ

σ3x
2
i e

x2
i

2σ2

(1− λ)e
x2
i
σ2 + 6λe

x2
i

2σ2 − 6λ

, (14)
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and

δ`

δλ
=

n∑
i=1

6e
x2
i

2σ2 − e
x2
i
σ2 − 6

(1− λ)e
x2
i
σ2 + 6λe

x2
i

2σ2 − 6λ

. (15)

The maximum likelihood estimator Θ̂ =
(
σ̂, λ̂

)′
of Θ = (σ, λ)′ is obtained by solving the

resulting nonlinear system of equations, setting δ`
δσ = 0, and δ`

δλ = 0. It is usually more
convenient to use nonlinear optimization algorithms such as quasi-Newton algorithm to nu-
merically maximize the log-likelihood function given in (13). Applying the usual large sample
approximation, the maximum likelihood estimator of Θ̂ can be treated as being approxi-
mately bivariate normal with mean Θ and variance-covariance matrix equal to the inverse of
the expected information matrix. That is,

√
n
(
Θ̂−Θ

)
∼ N2

[
0, I−1(Θ)

]
,

where I−1(Θ) is the limiting variance-covariance matrix of Θ̂. The elements of the 2 × 2
matrix I(Θ) can be estimated by

Iij
(
Θ̂
)

= −`ΘiΘj |Θ=Θ̂, i, j ∈ {1, 2} .

The second partial derivatives of the log-likelihood function (13) are obtained from the equa-
tions (14) and (15), and further expressed as

I11 = − δ
2`

δσ2

=
n∑
i=1

9x2
i

σ4
− 2n

σ2
+

n∑
i=1


{
−2(1−λ)

σ3 x2
i e

x2
i
σ2 − 6λ

σ3x
2
i e

x2
i

2σ2

}2

{
(1− λ)e

x2
i
σ2 + 6λe

x2
i

2σ2 − 6λ

}2

−

{
4(1−λ)
σ6 x4

i e
x2
i
σ2 + 6λ

σ6x
4
i e

x2
i

2σ2 + 6(1−λ)
σ4 x2

i e
x2
i
σ2 + 18λ

σ4 x
2
i e

x2
i

2σ2

}
{

(1− λ)e
x2
i
σ2 + 6λe

x2
i

2σ2 − 6λ

}
 ,

I12 = − δ2`

δσ · δλ

=
n∑
i=1


6
σ3x

2
i e

x2
i

2σ2 − 2
σ3x

2
i e

x2
i
σ2

(1− λ)e
x2
i
σ2 + 6λe

x2
i

2σ2 − 6λ

−

(
6e

x2
i

2σ2 − e
x2
i
σ2 − 6

){
2(1−λ)
σ3 x2

i e
x2
i
σ2 + 6λ

σ3x
2
i e

x2
i

2σ2

}
{

(1− λ)e
x2
i
σ2 + 6λe

x2
i

2σ2 − 6λ

}2

 ,

and

I22 = − δ
2`

δλ2
=

n∑
i=1

(
6e

x2
i

2σ2 − e
x2
i
σ2 − 6

)2

{
(1− λ)e

x2
i
σ2 + 6λe

x2
i

2σ2 − 6λ

}2 .
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Approximate two sided 100(1 − α)% confidence intervals for the model parameters σ and λ
are respectively given by

σ̂ ± zα/2
√
I−1

11

(
Θ̂
)

and λ̂± zα/2
√
I−1

22

(
Θ̂
)
,

where zα is the upper αth percentile of the standard normal distribution. R coding is used
to obtain the Hessian matrix and its inverse, as well as the standard errors and asymptotic
confidence intervals.

In order to check the superiority of the cubic transmuted Rayleigh distribution as compared
with transmuted and base Rayleigh distributions, use the LR test statistic. Actually a LR
test is used to tests the hypothesis H0 : Θ = Θ0 versus H1 : Θ 6= Θ0. Hence, the LR test

statistic for testing H0 versus H1 is λLR = −2
[
`
(
Θ̂0

)
− `

(
Θ̂
)]

, where Θ̂0 and Θ̂ are the

maximum likelihood estimates (MLEs) under H0 and H1 respectively. The test statistic λLR
asymptotically (as n→∞) distributed as χ2

k, where k is the difference in dimensionality of Θ
and Θ0. The LR test reject H0 if λLR > χ2

k;α, where χ2
k;α denotes the upper 100α% quantile

of the χ2
k distribution.

5. Reliability analysis

The reliability function (RF) is used recurrently in life data analysis and reliability engineering.
This function returns the probability of an item operating for a certain amount of time
t without failure. This function is defined by R(t) = 1 − F (t) and obtained for a cubic
transmuted Rayleigh distribution as

R(t) = e−
3t2

2σ2

[
(1− λ)e

t2

σ2 + 3λe
t2

2σ2 − 2λ

]
, t ∈ R+.

In reliability analysis, the hazard function (HF) is a way to model data distribution. This
function may be interpreted as the frequency of failure within a very narrow time frame. Let
f(t) be the density function of the time-to-failure of a random variable T , and let R(t) be its
reliability function. Then the hazard rate function, h(t), is defined as

h(t) =
f(t)

R(t)
=

f(t)

1− F (t)
,

and further obtained for the cubic transmuted Rayleigh distribution as

h(t) =

t
σ2

[
(1− λ)e

t2

σ2 + 6λe
t2

2σ2 − 6λ

]
(1− λ)e

t2

σ2 + 3λe
t2

2σ2 − 2λ
, t ∈ R+.

Figure 4 illustrates the reliability function (left) and hazard rate function (right) of the pro-
posed cubic transmuted Rayleigh distribution for various combinations of the model parame-
ters σ and λ. The increasing hazard rate, followed by an increasing then bathtub hazard rate
are observed from Figure 4.

6. Order statistics

The rth order statistic of a sample, as described by David and Nagaraja (2003), is equal to its
rth smallest value. The first order statistic (or smallest order statistic) is always the minimum
of the sample, that is, X1:n = min{X1, X2, · · · , Xn}, following a common convention, here use
upper-case letters to refer to random variables. Similarly, for a sample of size n, the nth order
statistic (or largest order statistic) is the maximum, that is, Xn:n = max{X1, X2, · · · , Xn}.
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Figure 4: The RF (left) and HF (right) are obtained for the CT-Rayleigh distribution

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denotes the order statistic of a random sample X1, X2, · · · , Xn

from a continuous population with distribution function FX(x) and density function fX(x)
then the density function of Xr:n is given by

fXr:n(x) =
n!

(r − 1)!(n− r)!
[F (x)]r−1[1− F (x)]n−rf(x). (16)

By using (16), the probability density function of the rth order statistic for the cubic trans-
muted Rayleigh distribution is

fXr:n(x) =
n!

(r − 1)!(n− r)!

[
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, (17)

where r = 1, 2, · · · , n. Using r = 1 in (17), obtain the density function of the lowest order
statistic X1:n, and is given as

fX1:n(x) =
nx
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,

and for using r = n in (17), the density function of the highest order statistic Xn:n, is

fXn:n(x) =
nx
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.

Note that for λ = 0, one has the density function of the rth order statistic for the Rayleigh
distribution, expressed as

gXr:n(x) =
n!

(r − 1)!(n− r)!
x
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e−
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2σ2

[
1− e−
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2σ2

]r−1 [
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]n−r
, r = 1, 2, · · · , n.
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The kth order moment of Xr:n for the cubic transmuted Rayleigh distribution is obtained by
using the following formula

E(Xk
r:n) =

∫ ∞
0

xkr · fXr:n(x) · dx,

where fXr:n(x) is given in (17).

7. Application

To investigate the applicability of the proposed cubic transmuted Rayleigh distribution con-
siders the transmuted and base Rayleigh distributions. A real-life data set is used here, which
has previously been used by Choulakian and Stephens (2001); Merovci and Puka (2014). Ta-
ble 3 shows some descriptive statistics based on the data. The obtained skewness value is
greater than 0, indicating that the distribution is skewed to the right (positive skewness).
Again the obtained kurtosis value confirms that the distribution is platykurtic.

Table 3: Summary statistics for the Wheaton River flood data

Min. 1st Qu. Median Mean 3rd Qu. Max. Variance Skew. Kurt.

0.100 2.125 9.500 12.204 20.125 64.000 151.222 1.442 2.727

Along with the selected models, the maximum likelihood estimation method is used to es-
timate the model parameters of the proposed distribution. The majority of the numerical
solutions are based on the R package “bbmle” created by Bolker and Team (2016). The nu-
merical estimate of the model parameters, standard error of the estimates, 95% confidence
interval, and log-likelihoods are given in Table 4. The log-likelihood obtained for the proposed
distribution holds maximum when compared to other selected models, as shown in Table 4.

Table 4: MLEs of the parameters for the Rayleigh and transmuted Rayleigh of first and
second orders distributions

Distribution
Parameter
estimate

Standard
error

95% Confidence
interval

`(x; ·)

Cubic transmuted Rayleigh σ̂ =11.952 0.717 [10.547, 13.357] -285.439

λ̂ =-1 0.230 [-1, -0.549]

Transmuted Rayleigh σ̂ =13.896 1.169 [11.605, 16.187] -296.565

λ̂ =0.634 0.172 [0.297, 0.971]

Rayleigh σ̂ =12.209 0.719 [10.8, 13.618] -302.838

The likelihood ratio test statistic to test the hypothesis H0 : λ = 0 versus H1 : λ 6= 0 is
λLR = 34.79857 > 3.841 = χ2

1,0.05, hence reject the null hypothesis.

The TTT plot (total time on test) introduced by Barlow and Campo (1975) is used here to
observe the behavior of the empirical hazard function. Figure 5 shows a TTT plot (left) and
an approximate hazard curve plotted over an empirical plot (right) for the cubic transmuted
Rayleigh distribution. According to the TTT plot, there is an indication that the hazard
function has an increasing shape, which is observed by the estimated hazard plot as presented
in the right of Figure 5.

The variance covariance matrix of the maximum likelihood estimates under the cubic trans-
muted Rayleigh distribution is computed as

I(Θ̂)−1 =

[
0.514 −0.002
−0.002 0.053

]
,
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Figure 5: TTT plot (left) and hazard curve (right) empirical and estimated by CT-Rayleigh
distribution are obtained for the Wheaton River flood data

thus, the variances of the maximum likelihood estimates of σ and λ are Var (σ̂) = 0.514 and

Var
(
λ̂
)

= 0.053. The 95% confidence intervals for the proposed model parameters σ and λ

are given in Table 4.

0.00

0.02

0.04

0 20 40 60
x

D
en

si
ty

linetype

Empirical

Distributions

CTR

R

TR

0.00

0.25

0.50

0.75

1.00

0 20 40 60
x

F
n(

x)

linetype

Empirical

Distributions

CTR

R

TR

Figure 6: The PDF (left) and CDF (right) of the empirical, fitted Rayleigh, first and second
order transmuted Rayleigh distributions are plotted for the Wheaton River flood data

The estimated density and distribution functions of the cubic transmuted Rayleigh distri-
bution along with other selected models are plotted over empirical density and distribution
functions and presented in Figure 6. The proposed model, as seen in Figure 6, provides a
better fit than the other models.

Several model selection criteria including -2`, AIC (Akaike information criterion), AICc (cor-
rected Akaike information criterion), BIC (Bayesian information criterion), KS (Kolmogorow-
Smirnow statistic), AD (Anderson-Darling statistic), and C-vM (Cramér-von Mises statistic),
are considered to make a comparative study among the proposed and selected models. The
better distribution corresponds to the smaller -2`, AIC, AICc, BIC, KS, AD, and C-vM values:

AIC = 2k − 2 ln(L̂),

AICc = AIC +
2k2 + 2k

n− k − 1
,
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BIC = k ln(n)− 2 ln(L̂),

KS = sup
x
|Fn(x)− F (x)|,

AD = n

∫ ∞
−∞

[Fn(x)− F (x)]2w(x)dF (x),

and

CvM =

∫ ∞
−∞

[Fn(x)− F (x)]2 dF (x),

where k is the number of parameters, L̂ is the maximized value of the likelihood function, n
is the sample size and ` is the maximized value of the log-likelihood function, as well as supx
is the supremum of the set of distances, Fn(x) is the empirical distribution function, F (x) is
the cumulative distribution function and w(x) = [F (x) {1− F (x)}]−1 is the weight function
of the considered model.

Table 5: Several model selection criteria estimated for the Rayleigh and transmuted Rayleigh
of first and second orders distributions

Distribution −2`(x; ·) AIC AICc BIC KS AD C-vM

Cubic transmuted Rayleigh 570.878 574.877 575.051 579.430 0.295 9.270 0.250
Transmuted Rayleigh 593.130 597.130 597.304 601.683 0.322 10.119 0.259
Rayleigh 605.676 607.676 607.733 609.952 0.332 10.637 0.284

The obtained values of -2`, AIC, AICc, BIC, KS, AD, and C-vM are presented in Table 5. It
has been investigated from Table 5 that the proposed cubic transmuted Rayleigh distribution
provides quite better fits as compare with the transmuted Rayleigh distribution and base
Rayleigh distribution.

8. Concluding remarks

The cubic transmuted Rayleigh distribution, which extends the Rayleigh distribution, to cap-
ture complex behavior in the analysis of real-life data, is proposed in this study. Modeling
real-life data is flexible enough with the proposed distribution. Moments, moment generating
function, characteristic function, and quantile function are some of the distributional proper-
ties described here. The maximum likelihood estimation technique is applied to estimate the
model parameters, also obtain its information matrix and confidence interval. The reliabil-
ity behavior, as well as the distributions of various order statistics, are also discussed. The
likelihood ratio statistic is applied to compare the proposed model with its base model. The
cubic transmuted Rayleigh distribution performs significantly better in real-life application
than any other models considered in this study.
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