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Abstract

One of the most significant and difficult problems in a mixture study is the selection
of the number of components. In this paper, using a Monte Carlo study, we evaluate
and compare the performance of several information criteria for selecting the number of
components arising from a mixture of Birnbaum-Saunders distributions. In our compari-
son, we consider information criteria based on likelihood-based statistics and classification
likelihood-based statistics. The performance of information criteria is determined based
on the success rate in selecting the number of components. In the simulation study, we
investigate the effect of degrees of separation, sample sizes, mixing proportions, and true
model complexity on the performance of information criteria. Furthermore, we compare
the performance of the proposed information criteria under unpenalized and penalized
estimation. Finally, we discuss the performance of the proposed information criteria for
a real data set.

Keywords: EM algorithm, finite mixture, Monte Carlo method, order selection, penalized
estimation.

1. Introduction

Finite mixture models are a popular statistical modeling technique used to model situations
in which data arises from a population consisting of several homogeneous sub-populations.
Several authors have applied mixture modeling in various practical issues such as agriculture,
botany, economics, industrial engineering, marketing, medicine, reliability, survival analy-
sis, zoology, and so on. Titterington, Smith, and Makov (1985), McLachlan and Basford
(1988), Lindsay (1995), McLachlan and Peel (2000), Böhning, Seidel, Alfò, Garel, Patilea,
and Walther (2007), Schlattmann (2009), and references therein include detailed description
and applications of mixture modeling.

One of the most important tasks in mixture modeling is selecting the appropriate number
of components that describe the data, since the number of components g refers to the num-
ber of separate groups in the data. Proper selection of the correct number of components
is critical because the number of components selected can have a significant effect on the
practical interpretations of the modeling results. In the literature, different approaches have
been suggested for selecting the number of components in mixture models, in both frequentist
and Bayesian settings. These approaches can be classified as, information-based approaches,
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penalized distance-based approaches, penalized log-likelihood-based approaches, Bayesian ap-
proaches, and testing hypothesis-based approaches (see, McLachlan and Peel (2000) and Niu
(2014) for a detailed review).

In this study, we focus on information-based approaches to select the number of components
in a Birnbaum-Saunders (BS) mixture model. The information criteria can be categorized
into statistics based on the log-likelihood function and statistics based on the classification
function. The methodology of using information criteria in order selection in mixture models
consists of estimating the models with different number of components using the expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) and comparing those esti-
mated models using information criteria, where the model with the lowest information criteria
values is chosen as the best model.

Balakrishnan, Gupta, Kundu, Leiva, and Sanhueza (2011) introduced a two-component mix-
ture model based on BS distributions for modeling heterogeneous populations when the sub-
populations have skewed distributions, since the BS distribution (Birnbaum and Saunders
1969) is positively skewed, and studied the characteristics and estimation procedure of the
proposed model. Benites, Maehara, Vilca, and Marmolejo-Ramos (2017) extended the work
proposed by Balakrishnan et al. (2011) via considering a g-component mixture of BS distri-
butions for modeling multimodel populations to provide flexibility in different data analysis
situations. Benites et al. (2017) proved the identifiability for a two-component mixture of
BS distributions and suggested in the EM algorithm the k-bumps initialization algorithm
to estimate the parameters of the BS distribution mixture model. Also, they implemented
bootstrap procedures via real data to test the hypotheses about the number of components
g in a mixture of BS distributions. El-Sharkawy and Ismail (2020) proved the identifiability
for a g-component mixture of BS distributions, and they discussed parameter estimation and
testing homogeneity in the mixture of BS distributions using EM algorithm and EM test,
respectively, based on random censoring data. El-Sharkawy and Ismail (2021) proposed the
modified likelihood ratio test and the shortcut method of the bootstrap test for testing the
number of components g in a mixture of BS distributions under a random right censoring
scheme. Nevertheless, to our knowledge there are no studies that use information criteria to
select the number of components g in a mixture of BS distributions.

The purpose of the paper is to compare the performance of all the information criteria intro-
duced in the next section for selecting the number of components g in a mixture of BS distri-
butions. We investigate the performance of these criteria through a Monte Carlo simulation
study under different conditions for degrees of separation, sample sizes, mixing proportions,
and true model complexity. The objective is to evaluate the effect of these factors on the
proper selection of the number of components and construct a comparison between criteria
based on log-likelihood and classification functions. Also, we evaluate the performance of
these criteria based on unpenalized and penalized estimates of the model’s parameters.

The paper is organized as follows. Section 2 reviews several information criteria to select the
number of components in a finite mixture model considered in our study. Section 3 describes
the finite mixture of the BS distributions and the procedure of model fitting using the EM
algorithm. Section 4 presents the simulation study design and the results. Section 5 provides
an illustrative example of real life. Finally, Section 6 presents some concluding remarks.

2. Information criteria

In this section, we introduce several information criteria for order selection in finite mixture
models. The information criteria can be classified into likelihood-based statistics and classifi-
cation likelihood-based statistics, also referred to as complete data likelihood-based statistics.
These criteria have been developed to balance between accuracy and complexity of the model.
The general form can be expressed as

−2`+ P, (1)
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where ` is the log likelihood of a fitted model and P is the penalty term that may depend on
the number of free model parameters k, sample size n, or both. The first term is interpreted
in (1) as a measure of the accuracy of the model, while the second term is interpreted as
a measure of the complexity of the model. Selecting the optimal number of components is
that corresponding to the minimum value of the criterion in (1). Next to the information
criteria, depending on the complete data likelihood function, classification likelihood-based
statistics have been developed for finite mixture models. These statistics are used to measure
the quality of the classification given by a model.

2.1. Likelihood-based information criteria

The most widely known and used model selection criterion is Akaike information criterion
(AIC), proposed by Akaike (1973, 1974). It’s derived as an estimate of expected relative
Kullback-Leibler (K-L) divergence (Kullback and Leibler 1951) between the true model and
the fitted model, based on the maximized empirical log-likelihood function of the expected
K-L divergence. The AIC is defined as

AIC = −2`+ 2k, (2)

with penalty term P = 2k.

Another more popular criterion that is used for model selection is the Bayesian information
criterion (BIC) proposed by Schwarz (1978). This criterion has a Bayesian derivation to select
a model from a set of candidate models with the largest posterior probability, but it can also
be used for model selection in a non-Bayesian context. It is defined as

BIC = −2`+ k log n, (3)

with penalty term P = k log n, which is a complexity penalization as opposed to 2k in the
AIC. This criterion has the property of consistency which as n grows large, selects the true
model with probability one ( for more details see, Andrews and Currim (2003), Andrew and
Joseph (2012), and Vrieze (2012)).

Various extensions of AIC have been proposed to overcome its lack of performance in model
selection applications. A small sample correction of AIC was proposed by Hurvich and Tsai
(1989) to overcome that the AIC tends to overfit models in small samples and that led to a
criterion called corrected AIC (AICc). AICc is defined as

AICc = −2`+ 2k

(
n

n− k − 1

)
, (4)

with penalty term P = 2k
(

n
n−k−1

)
(also see Sugiura (1978)). Burnham and Anderson (2002)

recommended use of AICc if the ratio n/k is small (say < 40). Both AIC and AICc will
be nearly identical and have a strong tendency to choose the same model if the ratio n/k is
sufficiently large.

Bozdogan (1987) extended the AIC to make it consistent, namely consistent Akaike’s infor-
mation criterion (CAlC) is defined as

CAIC = −2`+ k (log n+ 1) , (5)

with penalty term P = k ((log n) + 1).

In the context of the mixture-model cluster analysis, Bozdogan (1994) modified the AIC to
use it in estimating the number of mixture clusters where the marginal cost per parameter in
the AIC definition, the so-called magic number 2 is not adequate for the mixture-model and
he increased it to 3 and called it AIC3. AIC3 is defined as

AIC3 = −2`+ 3k, (6)
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with penalty term P = 3k.

Although the derivation of these criteria depends on regularity conditions that do not hold in
the framework for mixture models, they are still used to select the order of a finite mixture
model (see e.g.Bozdogan, Sclove, and Gupta (1994), Konishi and Kitagawa (2007), McLach-
lan and Peel (2000), McLachlan and Rathnayake (2014), M and van der Laan M J (2003),
Fernández and Arnold (2016) for a theoretical and practical support).

2.2. Classification likelihood-based information criteria

The classification likelihood-based information criteria which are based on the complete data
log-likelihood were developed for finite mixture models. Such criteria take into account clas-
sification and aim to pick models which can classify the observations in a consistent fashion.
A simple relation between the log-likelihood and the complete data log-likelihood which was
first noted by Hathaway (1986) can be written as

` = `c + EN(g), (7)

where EN(g) = −
∑g

j=1

∑n
i=1 τ̂ij log τ̂ij ≥ 0 is an entropy function composed of elements τ̂ij

which represent the estimated posterior probabilities that the subject i arises from the j-th
mixture component. This entropy can be interpreted as a penalization term which measures
the overlap of the mixture components and can be viewed as a measure of the model’s ability to
provide a relevant data partition. The entropy will be close to zero if the mixture components
are well separated, but will take large values if the mixture components are poorly separated
(see, Celeux and Soromenho (1996) and McLachlan and Peel (2000)).

Banfield and Raftery (1993) derived an approximate Bayesian criterion based on the complete
data log-likelihood called the approximate weight of evidence (AWE) criterion having the form

AWE = −2`c + 2k

(
3

2
+ log n

)
. (8)

When the mixture components are well separated that leads to `c ' `, therefore the AWE
approximates to the BIC. The penalty term in AWE criterion is complex, which makes it
select more parsimonious models than BIC (Fernández and Arnold 2016). The weakness
of this criterion is that when the mixture components are not well separated, parameter
estimation is biased (see, McLachlan and Peel (2000) for more details ).

Biernacki and Govaert (1997) suggested using the relationship that exists between the log-
likelihood and the complete data log-likelihood for order selection. This criterion is known as
the classification likelihood information criterion (CLC) and is derived directly from equation
(7) as

CLC = −2`+ 2EN(g). (9)

The performance of CLC works well under equal mixing proportions but it appeared to
overestimate the appropriate number of components when no constraints were imposed on
the mixing proportions. The explanation for this behavior is that the number of parameters in
the mixture model is not penalized by the CLC (see, Biernacki, Celeux, and Govaert (1998)).

Based on the estimated entropy function, Celeux and Soromenho (1996) introduced the nor-
malized entropy criterion (NEC) as follows

NEC(g) =
EN(g)

`− `(1)
, g > 1, (10)

where `(1) is the maximum log-likelihood in a one component mixture. The decision of NEC
for choosing the number of components in the mixture model between one component and
greater than one is not valid, because it is undefined at g=1. The improved version of NEC
to deal with this problem was proposed by Biernacki, Celeux, and Govaert (1999) for the
Gaussian mixture.
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To overcome the drawbacks of the CLC and BIC, Biernacki et al. (1998) proposed the inte-
grated classification likelihood (ICL) criterion and an approximated version of it using BIC.
ICL-BIC was used by McLachlan and Peel (2000) to refer to an approximate form of ICL
criterion which is given by

ICL−BIC = BIC + 2EN(g). (11)

See, for example, McLachlan and Peel (2000), Oliveira-Brochado and Martins (2005), and
Depraetere and Vandebroek (2014) for a detailed review of all order selection criteria in the
framework of the mixture model.

3. Finite mixture of BS distributions and parameter estimation

3.1. Model formulation

A finite mixture of BS distributions is a weighted sum of g component BS densities as given
by

f(t;θ) =

g∑
j=1

πjf(t;αj , βj), t > 0, (12)

where θ = (θ1, ..., θg), θj = (πj , αj , βj), with αj > 0, βj > 0 and πj ≥ 0,
∑g

j=1 πj = 1 are the
shape, scale, and mixing parameters, respectively, and f(t;αj , βj) is the probability density
function (pdf) of the jth component

f(t;αj , βj) =
1

2αjβj
√

2π
exp

{
− 1

2α2
j

(
t

βj
+
βj
t
− 2

)}[(
βj
t

)1/2

+

(
βj
t

)3/2
]
, j = 1, ..., g.

(13)

The BS distribution is a two-parameter, unimodal, and positively skewed distribution used to
model fatigue failure of materials subject to cyclic stress. It is also famous as the fatigue life
distribution, since it originated from the fatigue of materials but has been expanded to solve
problems in areas such as biology, business, economics, reliability, environmental and medical
sciences, and many others. For several implementations, the BS distribution was considered
as a rival of the log-normal, Weibull, gamma, and inverse Gaussian. A comprehensive review
and additional details on the BS distribution, see Balakrishnan (2019) and Leiva (2016).

3.2. Parameter estimation via the EM algorithm

Let T = (T1, T2, ..., Tn) denote the observed data of size n from a mixture of BS distributions
as given in (12). The log-likelihood for the observed-data is given by

`(θ|t) =
n∑

i=1

log


g∑

j=1

πjf(ti, ;αj , βj)

 . (14)

To use the EM algorithm for calculating the MLE of the parameters involved in (14), we need
to formulate the mixture of BS distributions in the EM framework by introducing allocation
indicators Z = (Z1,Z2, ...,Zn), where Zi = (Zi1, Zi2, ..., Zig), i = 1, ..., n and

Zij =

{
1 if observation i belongs to component j,

0 otherwise.

Therefore, log-likelihood for the complete-data (T,Z) is given by

`c(θ|t, z) =

n∑
i=1

g∑
j=1

Zij {log πjf(ti, ;αj , βj)} . (15)
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By maximizing `c(θ|t, z), the resulting estimates may not guarantee the optimal properties
of the likelihood approach (consistency property). Since the maximum likelihood estimates of
mixing parameters may be on or near the boundary and as a result, some of the ML estimates
of the other parameters become inconsistent, see Chen, Chen, and Kalbfleisch (2004) and
Wong and Li (2014). Chen, Chen, and Kalbfleisch (2001) suggested a penalized penalty term
on the log-likelihood function dependent on the mixing proportions to push these estimates
away from the boundary. Therefore, the penalized log-likelihood for the complete-data (T,Z)
is given by

p`c(θ|t, z) = `c(θ|t, z) + p(π). (16)

where `c(θ|t, z) is the log-likelihood function defined in (15), p(π) = C
∑g

j=1 log(2πj) is the
penalty function on mixing proportions such that p(π) gets its maximum at πj = 1/g and
p(π)→ −∞ when πj → 0 or 1, j = 1, ..., g, whereas C is a positive constant.

The EM algorithm for ML estimation of the mixture of BS distributions works as follows:
1- Start with randomly initial value θ0 of the parameter θ.
2- E-step: At iteration l ≥ 0, compute

Q(θ,θ(l)) = Eθ(l) [p`c(θ|t, z)|t]

=

n∑
i=1

g∑
j=1

Eθ(l) [Zij |ti]

{
log πj +

(
A− 1

2α2
j

[
ti
βj

+
βj
ti
− 2

]

+ log

[(
βj
ti

)1/2

+

(
βj
ti

)3/2
]
− logαjβj

)}
+ p(π),

where A is a constant independent of θ and

Eθ(l) [Zij |ti] =
π
(l)
j

[
f(ti;α

(l)
j , β

(l)
j )
]

∑g
m=1 π

(l)
m

[
f(ti;α

(l)
m , β

(l)
m )
] .

3- M-step : Maximizing (16) with respect to θj , j = 1, ..., g, gives the following equations:

πj
(l+1) =

[
n∑

i=1

z
(l)
ij + C

]
/ (n+ gC) ,

and
∂Q

∂αj
=

n∑
i=1

z
(l)
ij

{
α−3
j

[
ti
βj

+
βj
ti
− 2

]
− α−1

j

}
, (17)

∂Q

∂βj
=

n∑
i=1

z
(l)
ij

{
ti

2α2
jβ

2
j

− 1

2α2
j ti
− 1

2βj
+

1

ti + βj

}
, (18)

where z
(l)
ij = Eθ(l) [Zij |ti].

We obtain α
(l+1)
j and β

(l+1)
j by setting (17) and (18) to zero and solving them for αj and βj

, j = 1, 2, ..., g.
4- Iteratively update the estimate θ(l) with the new estimate θ(l+1) by alternating between
the E- and M- steps until p`c(θ(l+1)|t, z)− p`c(θ(l)|t, z) < ε, for some ε > 0.

To avoid getting stuck at local maxima while running the EM algorithm in our numerical
illustrations, we provide a random initialization technique to improve the chances of achieving
the global maximum. This technique can be summarized as follows:

1- Generate random initial positions. This is could by drawing random initial values for
πj , denoted by π0j , j = 1, ..., g from a Dirichlet distribution with all parameters equal

to 1. Then, based on the π0j values, the ordered sample is separated into g sets and
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for each set the modified moment estimates of α and β presented by Ng, Kundu, and
Balakrishnan (2003) are calculated as the initial values for the parameters αj and βj ,
for j = 1, ..., g.

2- Run the EM algorithm with few iterations when C = 0 and C = 1.

3- Repeat the Steps 1 and 2, r times, and select the solution with the highest likelihood
among those r trials.

4. Simulation study

In this section, we explain the procedure and results of a Monte Carlo simulation study
for evaluating and comparing the performance of the information criteria based on the log-
likelihood function and classification function, to select the number of components in a mixture
of BS distributions using unpenalized and penalized estimation.

4.1. Simulation procedure and design

The simulation procedure involves three stages: (i) Generate data sets from the mixture of
BS distributions. (ii) Use the EM algorithm to estimate the parameters of the mixture of BS
distributions for different component numbers and then apply each information criterion to
choose the best number of components. (iii) Evaluation and comparison of the performances
of these information criteria, through studying some design factors such as the degree of sep-
aration between the components, the sample size n, the mixing proportion π, and the true
number of components that may affect the choice of the number of components in mixture
models. Comparison between different information criteria is based on the results of the pro-
portion of selecting the number of components correctly, which are provided by the simulation
study. All the computations have been implemented by using R software.

In particular, we randomly generate data sets for various sample sizes namely n = 25, 50, 100,
and 250 from the mixture of BS distributions when the true number of components g = 2 and
3. The penalty constant C is set to be 0 and 1. We consider different scenarios for models
of mixtures of BS distributions by varying the mixing proportions and degrees of separation
between the components. The Mahalanobis distance is used to measure the distance between
the two components of the mixture model and is defined as ∆ = |µ1 − µ2|/σ, where σ
is the common standard deviation, and µ1 and µ2 are the means for the first and second
components in the mixture model, respectively. Table 1 displays the full sets of parameters
for each scenario, where models M1, M2, M3, and M8, M9, M10 are used to study the effect of
degrees of separation using ∆ when the true number of components g = 2 and 3, respectively.
While, M4, M5, and M6, M7 are used to study the effect of mixing proportions when the true
number of components g = 2 but for ∆ = 2 and 4, respectively. The simulation procedure is
repeated 5000 times.

4.2. Results

In each table, the quantities corresponding to the highest proportion of selected number of
components are shown in boldface. Tables 2-4 display the results of each information criterion
for the competing models g* = 1, 2, 3, and 4 when the true number of components g = 2 for
M1, M2, and M3, respectively. The overall findings in these tables show that the degree of
separation and the sample size significantly affect the performance of information criteria,
since the performance of all information criteria increases by increasing both the values of the
degree of separation and the sample size or either of them, holding all other factors fixed. It is
also noted from these tables that all the information criteria perform well as they are able to
select the correct model (a mixture of BS distributions with g* = 2) with varying percentages,
regardless of the values of ∆ and n. Furthermore, we observe that the classification based
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Table 1: Parameter settings for mixture of BS distributions when g = 2 and 3

Model parameter ∆

M1 0.5BS(0.25,0.5)+0.5BS(0.5,2) 2
M2 0.5BS(0.25,1)+0.5BS(0.25,2.5) 3
M3 0.5BS(0.2,1.5)+0.5BS(0.2,4) 4
M4 0.3BS(0.25,1)+0.7BS(0.25,2.5) 2
M5 0.1BS(0.25,1)+0.9BS(0.25,2.5) 2
M6 0.3BS(0.2,1.5)+0.7BS(0.2,4) 4
M7 0.1BS(0.2,1.5)+0.9BS(0.2,4) 4
M8 1/3BS(0.25,0.5)+1/3BS(0.5,2)+1/3BS(0.3,5) 2
M9 1/3BS(0.25,1)+1/3BS(0.25,2.5)+1/3BS(0.2,5.2) 3
M10 1/3BS(0.2,1.5)+1/3BS(0.2,4)+1/3BS(0.1,7.2) 4

criteria perform better than the log-likelihood based criteria when the values of ∆ and n are
small. However, the performances of the classification based criteria and log-likelihood based
criteria converge as the values of ∆ and n increase. A possible explanation for this result is
that the percentages of selecting the mixture of BS distribution with g* = 1 in the classification
based criteria have been omitted since these criteria can not be numerically defined for the
mixture model with g = 1. The effect of the unpenalized and penalized estimation on the
performance of information criteria is also observed from these tables, as it is clear that all
the information criteria have higher percentages of correct fitting when C = 1 than when
C = 0, and these percentages converge when the values of ∆ and n increase. Comparing the
results of all criteria, it is observed that AWE and ICL-BIC perform the best in tables 2-4,
even when both values of ∆ and n are small, with percentages of correct fitting ≥ 85%, while
the other criteria perform quite satisfactory.

The effect of the mixing proportions on the performance of information criteria can be ob-
served for π = 0.5, 0.3, and 0.1 in Tables 2, 5, and 6 when ∆ = 2 and in Tables 4, 7, and 8
when ∆ = 4, respectively. It is observed that the performance of the criteria decreases when
the mixing proportions within a model are less similar. It is noted from Tables 2 and 4-8,
that the classification based criteria select the correct model always with varying percentages,
where percentages decrease as π decreases, increase as the values of ∆ and n increase, and
are higher for C = 1 than for C = 0, holding all other factors fixed in each case. On the
other hand, the log-likelihood based criteria don’t perform well for lower mixing proportions
π and small ∆. Looking across the Tables 5-8 to compare the criteria, we note that AWE and
ICL-BIC show the best performance even when both values of ∆ and n are small with the
percentages of correct fitting > 70%. While the CLC and NEC show much less performance
compared to AWE and ICL-BIC when the mixing proportion π decreases especially when the
values of ∆ and n are small. The likelihood-based information criteria reveal worse perfor-
mance at small sample sizes and the performance becomes more satisfactory as the values of
∆ and n increase.

Tables 9-11 show the results of each information criterion for the competing models g*=
1, 2, 3, 4, and 5 when the true number of components g= 3 for M8, M9, and M10, respectively.
In Table 9, poor performance is observed from all information criteria as the correct model (a
mixture of BS distributions with g* = 3) is not selected even when n = 250. When both the
values of ∆ and n increase, all information criteria show improvement for selecting the correct
model. It is observed from Table 10, that for ∆ = 3 and n = 50, only CLC and NEC select
the correct model with percentages reaching to 43%. However, all the information criteria
select the correct model with percentages reaching to 63% and 89% when n = 100 and 250,
respectively. From Table 11, where ∆ = 4, only the classification criteria select the correct
model with percentages reaching to 46% when n = 25, whereas when n = 50 all the criteria
select the correct model with percentages reaching to 59% expect CAIC and BIC and the
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percentages increase to reach 100% when n = 250. Comparing the information criteria in
these tables, we observe that the classification based criteria have better performance than
the log-likelihood based criteria for ∆ = 3 and n ≥ 100 and ∆ = 4 and n < 100 and both
classification based and log-likelihood based criteria have similar performance for ∆ = 4 and
n ≥ 100.

On the average, AWE and ICL-BIC perform much better across different values of ∆ and
n. Also, we observe from these tables that the percentages of correct fitting are lower as
compared to the corresponing results in Tables 2-4. This shows that the mixture model with
more components is more difficult to detect when each of the two neighboring components is
the same distance from each other, especially when ∆ is small. The same conclusion was given
in Usami (2014), Yu and Harvill (2014) and El-Sharkawy and Ismail (2021). The simulation
results for a three-component mixture of BS distributions with unequal mixing proportions
are omitted because almost similar behavior is observed as under the models M4, M5, M6
and M7.

Table 2: Results of the Monte Carlo study for the true number of components g= 2,
according to M1

n g* Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.09 0.26 0.31 0.28 0.31 — — — —
C = 1 0.16 0.32 0.36 0.31 0.36 — — — —

2
C = 0 0.43 0.43 0.46 0.48 0.41 0.57 0.87 0.72 0.85
C = 1 0.60 0.54 0.53 0.57 0.51 0.62 0.91 0.78 0.90

3
C = 0 0.23 0.15 0.09 0.11 0.12 0.20 0.07 0.17 0.11
C = 1 0.13 0.08 0.06 0.07 0.07 0.18 0.05 0.14 0.08

4
C = 0 0.25 0.16 0.14 0.13 0.16 0.23 0.06 0.11 0.04
C = 1 0.11 0.06 0.05 0.05 0.06 0.20 0.04 0.08 0.02

50

1
C = 0 0.01 0.05 0.26 0.02 0.29 — — — —
C = 1 0.01 0.06 0.27 0.03 0.29 — — — —

2
C = 0 0.67 0.74 0.66 0.74 0.67 0.82 0.96 0.84 0.93
C = 1 0.85 0.85 0.71 0.86 0.69 0.86 0.96 0.89 0.94

3
C = 0 0.18 0.14 0.03 0.16 0.03 0.10 0.03 0.10 0.06
C = 1 0.11 0.07 0.01 0.09 0.01 0.08 0.03 0.07 0.05

4
C = 0 0.14 0.07 0.05 0.08 0.01 0.08 0.01 0.06 0.01
C = 1 0.03 0.02 0.01 0.02 0.01 0.06 0.01 0.04 0.01

100

1
C = 0 0.00 0.00 0.02 0.00 0.01 — — — —
C = 1 0.00 0.00 0.01 0.00 0.00 — — — —

2
C = 0 0.87 0.93 0.95 0.90 0.95 0.98 0.99 0.95 0.99
C = 1 0.97 0.98 0.98 0.98 0.98 0.99 1.00 0.98 0.99

3
C = 0 0.08 0.05 0.02 0.06 0.03 0.01 0.01 0.04 0.01
C = 1 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.02 0.01

4
C = 0 0.05 0.02 0.01 0.04 0.01 0.01 0.00 0.01 0.00
C = 1 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

250

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.93 0.98 1.00 0.94 0.99 1.00 1.00 0.97 1.00
C = 1 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00

3
C = 0 0.04 0.02 0.00 0.04 0.01 0.00 0.00 0.03 0.00
C = 1 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00

4
C = 0 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 3: Results of the Monte Carlo study for the true number of components g= 2,
according to M2

n g* Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.17 0.40 0.47 0.39 0.43 — — — —
C = 1 0.23 0.46 0.47 0.43 0.46 — — — —

2
C = 0 0.56 0.47 0.50 0.52 0.46 0.61 0.93 0.75 0.94
C = 1 0.72 0.51 0.51 0.54 0.51 0.67 0.98 0.80 0.97

3
C = 0 0.12 0.06 0.02 0.04 0.05 0.16 0.02 0.12 0.05
C = 1 0.04 0.02 0.01 0.02 0.02 0.14 0.01 0.10 0.03

4
C = 0 0.15 0.07 0.01 0.05 0.06 0.23 0.05 0.13 0.01
C = 1 0.01 0.01 0.01 0.01 0.01 0.19 0.01 0.10 0.00

50

1
C = 0 0.04 0.15 0.23 0.08 0.29 — — — —
C = 1 0.05 0.15 0.23 0.08 0.29 — — — —

2
C = 0 0.78 0.79 0.67 0.84 0.67 0.87 0.98 0.88 0.97
C = 1 0.91 0.83 0.72 0.89 0.69 0.90 0.99 0.93 0.98

3
C = 0 0.09 0.04 0.06 0.05 0.03 0.06 0.01 0.06 0.02
C = 1 0.03 0.01 0.04 0.02 0.01 0.05 0.01 0.04 0.01

4
C = 0 0.09 0.02 0.04 0.03 0.01 0.07 0.01 0.06 0.01
C = 1 0.01 0.01 0.01 0.01 0.01 0.05 0.00 0.03 0.01

100

1
C = 0 0.00 0.01 0.00 0.00 0.04 — — — —
C = 1 0.00 0.01 0.00 0.00 0.01 — — — —

2
C = 0 0.86 0.95 0.95 0.91 0.94 0.97 0.99 0.97 0.99
C = 1 0.98 0.98 0.98 0.98 0.98 0.99 1.00 0.98 0.99

3
C = 0 0.08 0.03 0.05 0.06 0.01 0.02 0.01 0.02 0.01
C = 1 0.02 0.01 0.02 0.02 0.01 0.01 0.00 0.02 0.01

4
C = 0 0.06 0.01 0.00 0.03 0.01 0.01 0.00 0.01 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

250

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.94 0.99 1.00 0.94 1.00 1.00 1.00 0.99 1.00
C = 1 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

3
C = 0 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
C = 1 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4
C = 0 0.03 0.01 0.00 0.03 0.00 0.00 0.00 0.01 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
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Table 4: Results of the Monte Carlo study for the true number of components g= 2,
according to M3

n g* Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.01 0.05 0.19 0.05 0.07 — — — —
C = 1 0.01 0.06 0.20 0.05 0.08 — — — —

2
C = 0 0.74 0.82 0.73 0.87 0.82 0.89 0.94 0.92 0.94
C = 1 0.92 0.90 0.77 0.92 0.88 0.93 0.97 0.93 0.97

3
C = 0 0.13 0.08 0.04 0.05 0.06 0.15 0.03 0.06 0.04
C = 1 0.05 0.03 0.02 0.02 0.03 0.12 0.02 0.05 0.02

4
C = 0 0.12 0.05 0.04 0.03 0.05 0.04 0.03 0.02 0.02
C = 1 0.02 0.01 0.01 0.01 0.01 0.05 0.01 0.02 0.01

50

1
C = 0 0.00 0.00 0.01 0.00 0.00 — — — —
C = 1 0.00 0.00 0.01 0.00 0.00 — — — —

2
C = 0 0.84 0.94 0.96 0.93 0.96 0.97 0.98 0.97 0.98
C = 1 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98

3
C = 0 0.08 0.04 0.02 0.05 0.03 0.03 0.02 0.03 0.01
C = 1 0.03 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01

4
C = 0 0.08 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.01
C = 1 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01

100

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.90 0.97 1.00 0.93 0.99 1.00 1.00 0.98 1.00
C = 1 0.98 0.99 1.00 0.99 1.00 1.00 1.00 0.99 1.00

3
C = 0 0.04 0.02 0.00 0.04 0.01 0.00 0.00 0.02 0.00
C = 1 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00

4
C = 0 0.06 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00
C = 1 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

250

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.95 0.99 1.00 0.95 1.00 1.00 1.00 1.00 1.00
C = 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3
C = 0 0.05 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4
C = 0 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 5: Results of the Monte Carlo study for the true number of components g= 2,
according to M4

n Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.24 0.50 0.71 0.50 0.54 — — — —
C = 1 0.34 0.56 0.73 0.54 0.60 — — — —

2
C = 0 0.38 0.29 0.15 0.34 0.27 0.43 0.83 0.52 0.77
C = 1 0.49 0.32 0.16 0.35 0.28 0.48 0.90 0.59 0.84

3
C = 0 0.21 0.12 0.08 0.10 0.11 0.30 0.11 0.29 0.18
C = 1 0.13 0.09 0.08 0.08 0.08 0.28 0.07 0.25 0.14

4
C = 0 0.17 0.09 0.06 0.06 0.08 0.27 0.06 0.19 0.05
C = 1 0.04 0.03 0.03 0.03 0.04 0.24 0.03 0.16 0.02

50

1
C = 0 0.10 0.27 0.61 0.16 0.45 — — — —
C = 1 0.13 0.29 0.62 0.19 0.46 — — — —

2
C = 0 0.55 0.54 0.31 0.61 0.44 0.64 0.93 0.62 0.83
C = 1 0.72 0.61 0.31 0.70 0.46 0.72 0.94 0.71 0.89

3
C = 0 0.23 0.15 0.07 0.19 0.10 0.21 0.06 0.21 0.13
C = 1 0.13 0.09 0.06 0.10 0.07 0.17 0.05 0.17 0.10

4
C = 0 0.12 0.04 0.01 0.04 0.01 0.15 0.01 0.17 0.04
C = 1 0.02 0.01 0.01 0.01 0.01 0.11 0.01 0.12 0.01

100

1
C = 0 0.01 0.04 0.27 0.01 0.16 — — — —
C = 1 0.01 0.04 0.27 0.02 0.16 — — — —

2
C = 0 0.68 0.79 0.66 0.74 0.75 0.84 0.96 0.76 0.92
C = 1 0.85 0.84 0.66 0.85 0.75 0.88 0.97 0.81 0.95

3
C = 0 0.20 0.14 0.07 0.19 0.08 0.09 0.04 0.13 0.05
C = 1 0.13 0.11 0.07 0.12 0.09 0.08 0.03 0.11 0.04

4
C = 0 0.11 0.03 0.00 0.06 0.01 0.07 0.00 0.11 0.03
C = 1 0.01 0.01 0.00 0.01 0.00 0.04 0.00 0.08 0.01

250

1
C = 0 0.00 0.00 0.01 0.00 0.00 — — — —
C = 1 0.00 0.00 0.01 0.00 0.01 — — — —

2
C = 0 0.77 0.86 0.91 0.78 0.91 0.93 0.95 0.85 0.94
C = 1 0.91 0.92 0.93 0.91 0.93 0.95 0.99 0.84 0.97

3
C = 0 0.15 0.11 0.07 0.14 0.08 0.02 0.02 0.08 0.02
C = 1 0.08 0.07 0.06 0.08 0.06 0.01 0.01 0.10 0.01

4
C = 0 0.08 0.03 0.01 0.08 0.01 0.05 0.03 0.07 0.04
C = 1 0.01 0.01 0.00 0.01 0.00 0.04 0.00 0.06 0.02
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Table 6: Results of the Monte Carlo study for the true number of components g= 2,
according to M5

n Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.42 0.65 0.78 0.66 0.68 — — — —
C = 1 0.63 0.79 0.87 0.78 0.81 — — — —

2
C = 0 0.27 0.17 0.08 0.18 0.15 0.39 0.75 0.37 0.71
C = 1 0.25 0.12 0.04 0.13 0.10 0.36 0.83 0.31 0.80

3
C = 0 0.19 0.12 0.09 0.11 0.12 0.27 0.20 0.28 0.20
C = 1 0.08 0.06 0.06 0.06 0.06 0.29 0.15 0.29 0.15

4
C = 0 0.12 0.06 0.05 0.05 0.05 0.34 0.05 0.35 0.09
C = 1 0.04 0.03 0.03 0.03 0.03 0.35 0.02 0.40 0.05

50

1
C = 0 0.41 0.57 0.83 0.43 0.73 — — — —
C = 1 0.49 0.70 0.88 0.58 0.81 — — — —

2
C = 0 0.31 0.30 0.10 0.41 0.18 0.53 0.89 0.40 0.73
C = 1 0.40 0.22 0.05 0.33 0.12 0.48 0.90 0.32 0.78

3
C = 0 0.18 0.10 0.05 0.12 0.06 0.27 0.09 0.29 0.20
C = 1 0.08 0.05 0.05 0.07 0.05 0.27 0.08 0.30 0.17

4
C = 0 0.10 0.03 0.02 0.04 0.03 0.20 0.02 0.31 0.07
C = 1 0.03 0.03 0.02 0.02 0.02 0.25 0.02 0.38 0.05

100

1
C = 0 0.15 0.32 0.74 0.18 0.60 — — — —
C = 1 0.24 0.46 0.80 0.27 0.71 — — — —

2
C = 0 0.55 0.54 0.20 0.57 0.33 0.60 0.85 0.45 0.73
C = 1 0.64 0.46 0.14 0.62 0.23 0.54 0.85 0.32 0.72

3
C = 0 0.20 0.10 0.04 0.17 0.05 0.25 0.14 0.25 0.21
C = 1 0.10 0.06 0.05 0.09 0.05 0.29 0.14 0.33 0.22

4
C = 0 0.10 0.04 0.02 0.08 0.02 0.15 0.01 0.30 0.06
C = 1 0.02 0.02 0.01 0.02 0.01 0.17 0.01 0.35 0.06

250

1
C = 0 0.00 0.03 0.31 0.01 0.25 — — — —
C = 1 0.01 0.04 0.37 0.02 0.20 — — — —

2
C = 0 0.56 0.72 0.67 0.59 0.74 0.62 0.82 0.47 0.73
C = 1 0.80 0.86 0.63 0.81 0.76 0.67 0.85 0.37 0.75

3
C = 0 0.31 0.22 0.02 0.30 0.01 0.29 0.18 0.26 0.23
C = 1 0.18 0.09 0.00 0.17 0.04 0.21 0.13 0.38 0.18

4
C = 0 0.13 0.03 0.00 0.10 0.00 0.09 0.00 0.27 0.04
C = 1 0.01 0.01 0.00 0.00 0.00 0.12 0.02 0.25 0.07
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Table 7: Results of the Monte Carlo study for the true number of components g= 2,
according to M6

n Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.50 0.46 0.50 0.53 0.47 0.55 0.63 0.50 0.74
C = 1 0.54 0.59 0.61 0.62 0.60 0.57 0.73 0.54 0.75

3
C = 0 0.10 0.10 0.10 0.10 0.10 0.12 0.13 0.50 0.12
C = 1 0.11 0.11 0.11 0.11 0.11 0.13 0.14 0.46 0.13

4
C = 0 0.40 0.44 0.39 0.36 0.43 0.33 0.24 0.00 0.14
C = 1 0.35 0.30 0.27 0.27 0.29 0.30 0.13 0.00 0.12

50

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.65 0.70 0.76 0.70 0.73 0.87 0.90 0.56 0.92
C = 1 0.82 0.84 0.89 0.84 0.86 0.89 0.91 0.64 0.94

3
C = 0 0.01 0.01 0.01 0.01 0.01 0.00 0.08 0.44 0.05
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.35 0.04

4
C = 0 0.34 0.29 0.23 0.29 0.26 0.13 0.02 0.01 0.02
C = 1 0.18 0.16 0.11 0.16 0.14 0.11 0.01 0.00 0.02

100

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.83 0.89 0.93 0.87 0.91 0.88 0.93 0.74 0.95
C = 1 0.94 0.98 0.98 0.95 0.98 0.93 0.97 0.76 0.95

3
C = 0 0.04 0.04 0.04 0.04 0.04 0.012 0.07 0.26 0.05
C = 1 0.02 0.02 0.02 0.02 0.02 0.07 0.03 0.23 0.05

4
C = 0 0.13 0.07 0.03 0.09 0.05 0.00 0.00 0.00 0.00
C = 1 0.04 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.00

250

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.91 0.93 0.93 0.92 0.93 0.95 0.96 0.84 0.99
C = 1 0.95 0.95 0.95 0.95 0.98 0.99 0.98 0.93 1.00

3
C = 0 0.07 0.07 0.07 0.07 0.07 0.04 0.04 0.16 0.01
C = 1 0.05 0.05 0.05 0.05 0.02 0.01 0.02 0.07 0.00

4
C = 0 0.02 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 8: Results of the Monte Carlo study for the true number of components g= 2,
according to M7

n Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.04 0.04 0.04 0.04 0.04 — — — —
C = 1 0.04 0.04 0.06 0.04 0.04 — — — —

2
C = 0 0.46 0.51 0.53 0.54 0.52 0.51 0.68 0.45 0.62
C = 1 0.59 0.61 0.62 0.64 0.61 0.51 0.71 0.52 0.60

3
C = 0 0.19 0.18 0.18 0.19 0.18 0.25 0.21 0.47 0.25
C = 1 0.10 0.09 0.09 0.10 0.09 0.27 0.14 0.41 0.28

4
C = 0 0.31 0.27 0.25 0.23 0.26 0.24 0.11 0.08 0.13
C = 1 0.27 0.26 0.23 0.22 0.26 0.22 0.15 0.08 0.12

50

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.58 0.64 0.71 0.64 0.66 0.89 0.87 0.61 0.89
C = 1 0.71 0.74 0.76 0.74 0.76 0.89 0.90 0.76 0.93

3
C = 0 0.03 0.03 0.03 0.03 0.02 0.05 0.01 0.37 0.01
C = 1 0.00 0.00 0.00 0.00 0.00 0.07 0.05 0.22 0.06

4
C = 0 0.39 0.33 0.26 0.33 0.32 0.05 0.12 0.02 0.10
C = 1 0.29 0.26 0.24 0.26 0.24 0.04 0.05 0.02 0.01

100

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.77 0.83 0.90 0.80 0.89 0.85 0.93 0.80 0.95
C = 1 0.92 0.94 0.95 0.94 0.94 0.89 0.98 0.89 0.95

3
C = 0 0.01 0.01 0.01 0.01 0.01 0.05 0.02 0.20 0.04
C = 1 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.11 0.05

4
C = 0 0.22 0.16 0.09 0.19 0.10 0.10 0.05 0.00 0.01
C = 1 0.07 0.05 0.04 0.05 0.05 0.09 0.00 0.00 0.00

250

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.89 0.90 0.91 0.83 0.90 0.91 0.94 0.78 0.97
C = 1 0.90 0.92 0.93 0.94 0.93 0.95 0.96 0.87 0.99

3
C = 0 0.10 0.10 0.09 0.10 0.10 0.09 0.06 0.22 0.03
C = 1 0.10 0.08 0.07 0.06 0.07 0.05 0.04 0.13 0.01

4
C = 0 0.01 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 9: Results of the Monte Carlo study for the true number of components g= 3,
according to M8

n Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.25 0.48 0.64 0.56 0.52 — — — —
C = 1 0.61 0.76 0.81 0.76 0.78 — — — —

2
C = 0 0.16 0.14 0.09 0.19 0.13 0.36 0.78 0.36 0.66
C = 1 0.15 0.10 0.06 0.10 0.08 0.38 0.87 0.32 0.81

3
C = 0 0.19 0.17 0.14 0.15 0.16 0.34 0.13 0.36 0.13
C = 1 0.08 0.07 0.07 0.07 0.07 0.27 0.07 0.21 0.07

4
C = 0 0.21 0.12 0.09 0.08 0.11 0.19 0.07 0.27 0.15
C = 1 0.12 0.05 0.05 0.06 0.05 0.20 0.05 0.25 0.11

5
C = 0 0.19 0.09 0.04 0.02 0.08 0.11 0.02 0.16 0.06
C = 1 0.04 0.02 0.01 0.01 0.02 0.15 0.01 0.12 0.01

50

1
C = 0 0.10 0.33 0.65 0.23 0.52 — — — —
C=1 0.28 0.45 0.68 0.35 0.57 — — — —

2
C = 0 0.30 0.26 0.16 0.31 0.23 0.42 0.88 0.57 0.76
C = 1 0.41 0.36 0.18 0.43 0.26 0.51 0.86 0.61 0.80

3
C = 0 0.24 0.21 0.12 0.25 0.16 0.27 0.10 0.30 0.20
C = 1 0.19 0.12 0.09 0.15 0.10 0.27 0.12 0.29 0.18

4
C = 0 0.16 0.14 0.05 0.16 0.07 0.18 0.02 0.09 0.04
C = 1 0.10 0.06 0.04 0.06 0.05 0.15 0.02 0.08 0.02

5
C = 0 0.20 0.06 0.02 0.05 0.02 0.13 0.00 0.04 0.00
C = 1 0.02 0.01 0.01 0.01 0.01 0.07 0.00 0.02 0.00

100

1
C = 0 0.00 0.00 0.02 0.00 0.00 — — — —
C = 1 0.00 0.00 0.02 0.00 0.01 — — — —

2
C = 0 0.49 0.53 0.80 0.50 0.76 0.68 0.95 0.73 0.84
C = 1 0.57 0.72 0.84 0.63 0.81 0.70 0.95 0.74 0.85

3
C = 0 0.27 0.39 0.15 0.36 0.21 0.22 0.05 0.20 0.14
C = 1 0.38 0.26 0.13 0.33 0.16 0.21 0.05 0.22 0.14

4
C = 0 0.11 0.04 0.01 0.07 0.01 0.09 0.00 0.06 0.01
C = 1 0.02 0.01 0.00 0.02 0.00 0.08 0.00 0.04 0.01

5
C = 0 0.13 0.04 0.02 0.07 0.02 0.01 0.00 0.01 0.01
C = 1 0.03 0.01 0.01 0.02 0.02 0.01 0.00 0.00 0.00

250

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.70 0.72 0.56 0.64 0.56 0.88 0.94 0.90 0.92
C = 1 0.72 0.75 0.70 0.73 0.57 0.91 0.95 0.91 0.95

3
C = 0 0.13 0.23 0.44 0.21 0.40 0.10 0.06 0.08 0.08
C = 1 0.26 0.24 0.29 0.25 0.42 0.08 0.05 0.07 0.05

4
C = 0 0.09 0.03 0.00 0.09 0.04 0.02 0.00 0.02 0.00
C = 1 0.02 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.00

5
C = 0 0.08 0.02 0.00 0.06 0.00 0.00 0.00 0.00 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
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Table 10: Results of the Monte Carlo study for the true number of components g= 3,
according to M9

n Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.04 0.16 0.19 0.18 0.19 — — — —
C = 1 0.08 0.20 0.17 0.19 0.25 — — — —

2
C = 0 0.26 0.30 0.34 0.43 0.31 0.43 0.68 0.43 0.62
C = 1 0.55 0.48 0.39 0.53 0.45 0.50 0.75 0.51 0.75

3
C = 0 0.26 0.24 0.27 0.23 0.22 0.27 0.19 0.27 0.25
C = 1 0.22 0.19 0.33 0.18 0.18 0.29 0.17 0.25 0.20

4
C = 0 0.20 0.16 0.13 0.12 0.15 0.27 0.10 0.22 0.09
C = 1 0.09 0.09 0.07 0.07 0.08 0.14 0.06 0.17 0.04

5
C = 0 0.24 0.14 0.07 0.04 0.13 0.03 0.03 0.08 0.04
C = 1 0.06 0.04 0.04 0.03 0.04 0.07 0.02 0.07 0.01

50

1
C = 0 0.00 0.04 0.21 0.01 0.10 — — — —
C = 1 0.00 0.03 0.18 0.02 0.08 — — — —

2
C = 0 0.38 0.57 0.58 0.58 0.63 0.20 0.85 0.22 0.67
C = 1 0.68 0.71 0.64 0.72 0.71 0.25 0.86 0.29 0.75

3
C = 0 0.28 0.23 0.14 0.26 0.18 0.36 0.12 0.43 0.23
C = 1 0.25 0.19 0.14 0.21 0.16 0.37 0.11 0.41 0.19

4
C = 0 0.13 0.06 0.04 0.07 0.04 0.32 0.03 0.27 0.10
C = 1 0.04 0.04 0.02 0.03 0.03 0.28 0.03 0.24 0.06

5
C = 0 0.21 0.10 0.03 0.08 0.05 0.12 0.00 0.08 0.00
C = 1 0.03 0.03 0.02 0.02 0.02 0.10 0.00 0.06 0.00

100

1
C = 0 0.00 0.05 0.03 0.01 0.03 — — — —
C = 1 0.03 0.12 0.04 0.05 0.04 — — — —

2
C = 0 0.23 0.23 0.45 0.23 0.27 0.34 0.38 0.07 0.34
C = 1 0.34 0.24 0.37 0.34 0.38 0.34 0.35 0.30 0.36

3
C = 0 0.41 0.52 0.46 0.49 0.52 0.44 0.62 0.60 0.61
C = 1 0.51 0.57 0.57 0.50 0.54 0.50 0.65 0.64 0.64

4
C = 0 0.19 0.13 0.05 0.17 0.17 0.20 0.00 0.28 0.05
C = 1 0.10 0.06 0.01 0.08 0.04 0.15 0.00 0.05 0.04

5
C = 0 0.17 0.07 0.01 0.10 0.01 0.02 0.00 0.05 0.00
C = 1 0.02 0.01 0.01 0.03 0.00 0.01 0.00 0.01 0.00

250

1
C = 0 0.00 0.00 0.01 0.00 0.01 — — — —
C = 1 0.00 0.00 0.03 0.00 0.02 — — — —

2
C = 0 0.20 0.30 0.20 0.20 0.20 0.11 0.19 0.09 0.22
C = 1 0.10 0.20 0.20 0.10 0.20 0.08 0.11 0.10 0.16

3
C = 0 0.60 0.60 0.73 0.63 0.73 0.79 0.81 0.76 0.75
C = 1 0.79 0.74 0.74 0.79 0.74 0.85 0.89 0.81 0.83

4
C = 0 0.13 0.07 0.05 0.12 0.05 0.10 0.00 0.14 0.02
C = 1 0.09 0.04 0.03 0.09 0.04 0.07 0.00 0.06 0.01

5
C = 0 0.07 0.03 0.01 0.05 0.01 0.00 0.00 0.01 0.00
C = 1 0.02 0.02 0.00 0.02 0.00 0.00 0.00 0.03 0.00
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Table 11: Results of the Monte Carlo study for the true number of components g= 3,
according to M10

n Method AIC AIC3 CAIC AICc BIC CLC AWE NEC ICL-BIC

25

1
C = 0 0.04 0.24 0.25 0.28 0.29 — — — —
C = 1 0.28 0.19 0.34 0.28 0.27 — — — —

2
C = 0 0.55 0.44 0.39 0.42 0.30 0.12 0.34 0.27 0.06
C = 1 0.45 0.52 0.52 0.58 0.49 0.25 0.30 0.34 0.26

3
C = 0 0.10 0.10 0.10 0.12 0.10 0.38 0.40 0.45 0.45
C = 1 0.06 0.06 0.06 0.07 0.06 0.36 0.46 0.44 0.45

4
C = 0 0.05 0.10 0.20 0.17 0.20 0.26 0.25 0.22 0.38
C = 1 0.16 0.20 0.07 0.06 0.16 0.32 0.23 0.19 0.27

5
C = 0 0.26 0.12 0.06 0.01 0.11 0.24 0.01 0.06 0.11
C = 1 0.05 0.03 0.01 0.01 0.02 0.07 0.01 0.03 0.02

50

1
C = 0 0.00 0.01 0.12 0.01 0.04 — — — —
C = 1 0.01 0.03 0.14 0.02 0.07 — — — —

2
C = 0 0.24 0.26 0.46 0.15 0.39 0.06 0.43 0.41 0.44
C = 1 0.27 0.44 0.60 0.39 0.54 0.07 0.41 0.42 0.41

3
C = 0 0.36 0.46 0.36 0.42 0.35 0.47 0.56 0.50 0.48
C = 1 0.43 0.45 0.25 0.52 0.36 0.50 0.59 0.51 0.57

4
C = 0 0.21 0.10 0.05 0.38 0.19 0.37 0.01 0.07 0.08
C = 1 0.28 0.07 0.01 0.07 0.03 0.39 0.00 0.07 0.02

5
C = 0 0.19 0.07 0.01 0.04 0.03 0.10 0.00 0.02 0.00
C = 1 0.01 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.00

100

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.00 0.00 0.01 0.00 0.00 0.01 0.04 0.15 0.30
C = 1 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.11 0.01

3
C = 0 0.82 0.92 0.98 0.87 0.98 0.88 0.96 0.80 0.95
C = 1 0.96 0.99 0.99 0.98 0.99 0.85 0.99 0.89 0.98

4
C = 0 0.12 0.06 0.01 0.10 0.02 0.10 0.00 0.05 0.02
C = 1 0.04 0.01 0.00 0.02 0.00 0.13 0.00 0.00 0.01

5
C = 0 0.06 0.02 0.00 0.03 0.00 0.01 0.00 0.00 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

250

1
C = 0 0.00 0.00 0.00 0.00 0.00 — — — —
C = 1 0.00 0.00 0.00 0.00 0.00 — — — —

2
C = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

3
C = 0 0.90 0.95 1.00 0.91 0.99 1.00 1.00 0.97 1.00
C = 1 0.97 0.99 1.00 0.97 1.00 1.00 1.00 0.98 1.00

4
C = 0 0.06 0.04 0.00 0.07 0.01 0.00 0.00 0.00 0.00
C = 1 0.03 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00

5
C = 0 0.04 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00
C = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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5. Application

We consider a data set consisting of 245 observations of enzymatic activity in the blood,
which involves the metabolism of carcinogenic substances. The data have been first analyzed
by Bechtel, Bonaiti-Pellie, Poisson, Magnette, and Bechtel (1993), which observed that these
enzyme data are suited for a mixture of two skewed distributions. Also, it was recently studied
by Balakrishnan et al. (2011) and Benites et al. (2017), who considered a two-component
mixture of BS distributions for modeling these data. Here we consider the mixture of BS
distributions with different number of components for modeling the enzyme data and use the
proposed information criteria to select the appropriate number of components in the mixture
of BS distributions that fit these data correctly. The resulting fits from the information
criteria for the enzyme data based on unpenalized and penalized estimates are given in Table
12. According to the results, all the proposed information criteria can successfully estimate
the correct number of components of the enzyme data set, under both the unpenalized and
penalized estimates of the model parameters.

Table 12: Comparison results of the log-likelihood based and the classification based criteria
in the selection of the number of components for the enzyme data

C = 0 C = 1
g* g*

1 2 3 4 1 2 3 4

−2` 211.0142 108.4054 103.28848 100.73532 213.7868 111.30792 111.0313 117.18782
AIC 215.0141 118.4054 119.2885 122.7353 217.7867 121.3079 127.0313 139.1878
AIC3 217.0141 123.4054 127.2885 133.7353 219.7867 126.3079 135.0313 150.1878
AICc 215.0637 118.6565 119.8986 123.8684 217.8363 121.559 127.6415 140.3209
CAIC 224.0167 141.0671 155.2985 172.2492 226.7893 143.8142 163.0414 188.7017
BIC 222.0167 136.0671 147.2985 161.2492 224.7893 138.8142 155.0414 177.7017
CLC — 114.7880 170.1996 133.1538 — 117.6984 177.9424 149.6063
AWE — 184.0037 282.2197 287.1814 — 187.7110 289.9626 303.6339
NEC — 0.060781 0.621125 0.29397 — 0.060863 0.651169 0.335598

ICL-BIC — 142.2943 214.2097 193.6676 — 145.2047 221.9525 210.1201

6. Conclusion

In this paper, a Monte Carlo simulation study is conducted to evaluate and compare the per-
formance of the log-likelihood based information criteria and classification based information
criteria for selecting the number of components in a mixture of BS distributions, considering
two different types of estimation, unpenalized and penalized. Based on the simulation analy-
sis, all the information criteria show both good and poor performance in detecting the correct
number of components. Therefore, in general, we can conclude that no particular information
criterion is always the best. According to the comparison results, it is observed that the clas-
sification based information criteria have the best overall performance in selecting the number
of components, especially both AWE and ICL.BIC show better performance than any other
criterion. It is also found that the information criteria based on penalized estimates have
better performance compared to those based on unpenalized estimates. We also investigate
the influence of degrees of separation, sample sizes, mixing proportions, and true model com-
plexity on the performance of information criteria. The investigation show that the degree of
separation is the most influential factor on the performance of information criteria and the
sample size has less influence as compared to the degree of separation. While the influence of
mixture proportions on the performance of information criteria is small as compared to the
degree of separation and sample size. Also, it is observed that the performance of all infor-
mation criteria gets worse with increasing the true model complexity. Finally, an example of
enzyme data set is used to illustrate the performance of the proposed information criteria for
selecting the appropriate number of components in the mixture of BS distributions that fit
these data correctly.
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Böhning D, Seidel W, Alfò M, Garel B, Patilea V, Walther G (2007). “Advances in Mixture
Models.” Computational Statistics & Data Analysis, 51, 5205–5210. doi:https://doi.

org/10.1016/j.csda.2006.10.025.

Bozdogan H (1987). “Model Selection and Akaike’s Information Criterion (AIC): The General
Theory and Its Analytical Extensions.” Psychometrika, 52, 345–370. doi:https://doi.

org/10.1007/BF02294361.

Bozdogan H (1994). Mixture-Model Cluster Analysis Using Model Selection Criteria and a
New Informational Measure of Complexity. Proceedings of the First US/Japan Conference
on the Frontiers of Statistical Modeling: An Informational Approach. Springer, Dordrecht.
doi:https://doi.org/10.1007/978-94-011-0800-3_3.

Bozdogan H, Sclove SL, Gupta AK (eds.) (1994). Information-Based Validity Functionals for
Mixture Analysis. Springer. doi:https://doi.org/10.1007/978-94-011-0800-3_5.

Burnham KP, Anderson DR (2002). Model Selection and Multi-Model Inference: A Practical
Information-Theoretic Approach, 2nd edn. Berlin, Heidelberg: Springer.

Celeux G, Soromenho G (1996). “An Entropy Criterion for Assessing the Number of Clusters
in a Mixture Model.” Journal of Classification, 13, 195–212. URL https://doi.org/10.

1007/BF01246098.

Chen H, Chen J, Kalbfleisch JD (2001). “A Modified Likelihood Ratio Test for Homogeneity
in Finite Mixture Models.” Journal of the Royal Statistical Society, Series B, 63(1), 19–29.
URL https://www.jstor.org/stable/2680631.

Chen H, Chen J, Kalbfleisch JD (2004). “Testing for a Finite Mixture Model with Two
Components.” Journal of the Royal Statistical Society. Series B (Statistical Methodology),
66(1), 95–115. URL https://www.jstor.org/stable/3647629.

Dempster AR, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data
via EM Algorithm.” Journal of the Royal Statistical Society, Series B, 39, 1–38. URL
https://www.jstor.org/stable/2984875.

Depraetere N, Vandebroek M (2014). “Order Selection in Finite Mixtures of Lin-
ear Regressions.” Statistical Papers, 55, 871–911. doi:https://doi.org/10.1007/

s00362-013-0534-x.

El-Sharkawy WA, Ismail MA (2020). “Mixture of Birnbaum-Saunders Distributions: Iden-
tifiability, Estimation and Testing Homogeneity with Randomly Censored Data.” Ameri-
can Journal of Mathematical and Management Sciences. doi:https://doi.org/10.1080/
01966324.2020.1837041.

El-Sharkawy WA, Ismail MA (2021). “Testing the Number of Components in a Birnbaum-
Saunders Mixture Model under a Random Censoring Scheme.” Statistics, Opti-
mization & Information Computing, 9, 157–175. doi:https://doi.org/10.19139/

soic-2310-5070-919.

Fernández D, Arnold R (2016). “Model Selection for Mixture-Based Clustering for Ordinal
Data.” Australian & New Zealand Journal of Statistics, 58(4), 437–472. doi:https://doi.
org/10.1111/anzs.12179.

Hathaway RJ (1986). “Another Interpretation of the EM Algorithm for Mixture Distri-
butions.” Statistics & Probability Letters, 4(2), 53–56. doi:https://doi.org/10.1016/

0167-7152(86)90016-7.

Hurvich CM, Tsai CL (1989). “Regression and Time Series Model Selection in Small Samples.”
Biometrika, 76, 297–307. doi:https://doi.org/10.1093/biomet/76.2.297.

http://dx.doi.org/https://doi.org/10.1016/j.csda.2006.10.025
http://dx.doi.org/https://doi.org/10.1016/j.csda.2006.10.025
http://dx.doi.org/https://doi.org/10.1007/BF02294361
http://dx.doi.org/https://doi.org/10.1007/BF02294361
http://dx.doi.org/https://doi.org/10.1007/978-94-011-0800-3_3
http://dx.doi.org/https://doi.org/10.1007/978-94-011-0800-3_5
https://doi.org/10.1007/BF01246098
https://doi.org/10.1007/BF01246098
https://www.jstor.org/stable/2680631
https://www.jstor.org/stable/3647629
https://www.jstor.org/stable/2984875
http://dx.doi.org/https://doi.org/10.1007/s00362-013-0534-x
http://dx.doi.org/https://doi.org/10.1007/s00362-013-0534-x
http://dx.doi.org/https://doi.org/10.1080/01966324.2020.1837041
http://dx.doi.org/https://doi.org/10.1080/01966324.2020.1837041
http://dx.doi.org/https://doi.org/10.19139/soic-2310-5070-919
http://dx.doi.org/https://doi.org/10.19139/soic-2310-5070-919
http://dx.doi.org/https://doi.org/10.1111/anzs.12179
http://dx.doi.org/https://doi.org/10.1111/anzs.12179
http://dx.doi.org/https://doi.org/10.1016/0167-7152(86)90016-7
http://dx.doi.org/https://doi.org/10.1016/0167-7152(86)90016-7
http://dx.doi.org/https://doi.org/10.1093/biomet/76.2.297


Austrian Journal of Statistics 119

Konishi S, Kitagawa G (2007). Information Criteria and Statistical Modeling. Springer, New
York.

Kullback S, Leibler RA (1951). “On Information and Sufficiency.” Annals of Mathematical
Statistics, 22, 76–86. URL https://doi.org/10.1214/aoms/1177729694.

Leiva V (2016). The Birnbaum-Saunders Distribution. Amsterdam, Elsevier.

Lindsay BG (1995). “Mixture Models: Theory, Geometry and Applications.” INSF-CBMS
Regional Conference Series in Probability and Statistics, 5, I–163. URL http://www.jstor.

org/stable/4153184.

M M, van der Laan M J (2003). “Fitting of Mixtures with Unspecified Number of Components
Using Cross Validation Distance Estimate.” Computational Statistics & Data Analysis,
41(3), 413–428. URL https://doi.org/10.1016/S0167-9473(02)00166-4.

McLachlan G, Peel D (2000). Finite Mixture Models. Wiley, New York.

McLachlan GJ, Basford KE (1988). Mixture Models: Inference and Applications to Clustering.
New York: Marcel Dekker.

McLachlan GJ, Rathnayake S (2014). “On the Number of Components in a Gaussian Mixture
Model.” WIREs Data Mining and Knowledge Discovery, 4, 341–355. doi:https://doi.

org/10.1002/widm.1135.

Ng HKT, Kundu D, Balakrishnan N (2003). “Modified Moment Estimation for the Two-
parameter Birnbaum-Saunders Distribution.” Computational Statistics & Data Analysis,
3(43), 283–298. doi:https://doi.org/10.1016/S0167-9473(02)00254-2.

Niu X (2014). Homogeneity Test in Finite Mixture Models Using EM-Test. PhD thesis,
University of Alberta, Canada. URL https://doi.org/10.7939/R3X63BC3Z.

Oliveira-Brochado A, Martins FV (2005). Assessing the Number of Components in Mixture
Models: A Review. FEP Working Papers 194, Universidade do Porto, Faculdade de Econo-
mia do Porto. URL https://EconPapers.repec.org/RePEc:por:fepwps:194.

Schlattmann P (2009). Medical Applications of Finite Mixture Models. Springer.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6,
461–464. doi:https://doi.org/10.1214/aos/1176344136.

Sugiura N (1978). “Further Analysis of the Data by Akaike’s Information Criterion and
the Finite Corrections.” Communications in Statistics, Theory and Methods, A7, 13–26.
doi:https://doi.org/10.1080/03610927808827599.

Titterington DM, Smith AF, Makov UE (1985). Statistical Analysis of Finite Mixture Dis-
tributions (Vol. 7). New York: Wiley.

Usami S (2014). “Performance of Information Criteria for Model Selection in a Latent Growth
Curve Mixture Model.” Japanese Society of Computational Statistics, 27, 17–48. doi:

https://doi.org/10.5183/jjscs.1309001_207.

Vrieze SI (2012). “Model Selection and Psychological Theory: A Discussion of the Differ-
ences between the Akaike Information Criterion and the Bayesian Information Criterion.”
Psychological Methods, 17(2), 228–243. doi:https://doi.org/10.1037/a0027127.

Wong TST, Li WK (2014). “Test for Homogeneity in Gamma Mixture Models Using Like-
lihood Ratio.” Computational Statistics & Data Analysis, 70, 127–137. doi:https:

//doi.org/10.1016/j.csda.2013.09.001.

https://doi.org/10.1214/aoms/1177729694
http://www.jstor.org/stable/4153184
http://www.jstor.org/stable/4153184
https://doi.org/10.1016/S0167-9473(02)00166-4
http://dx.doi.org/https://doi.org/10.1002/widm.1135
http://dx.doi.org/https://doi.org/10.1002/widm.1135
http://dx.doi.org/https://doi.org/10.1016/S0167-9473(02)00254-2
https://doi.org/10.7939/R3X63BC3Z
https://EconPapers.repec.org/RePEc:por:fepwps:194
http://dx.doi.org/https://doi.org/10.1214/aos/1176344136
http://dx.doi.org/https://doi.org/10.1080/03610927808827599
http://dx.doi.org/https://doi.org/10.5183/jjscs.1309001_207
http://dx.doi.org/https://doi.org/10.5183/jjscs.1309001_207
http://dx.doi.org/https://doi.org/10.1037/a0027127
http://dx.doi.org/https://doi.org/10.1016/j.csda.2013.09.001
http://dx.doi.org/https://doi.org/10.1016/j.csda.2013.09.001


120 Order Selection

Yu Y, Harvill JL (2014). “Bootstrap Likelihood Ratio Test for Weibull Mixture Models Fitted
to Grouped Data.” Communications in Statistics - Theory and Methods, 48(18), 4550–4568.
doi:https://doi.org/10.1080/03610926.2018.1494838.

Affiliation:

Walaa A. El-Sharkawy
Department of Mathematics
Faculty of Science,
Cairo University, Egypt
E-mail: shwalaa@sci.cu.edu.eg

Moshira A. Ismail
Department of Statistics,
Faculty of Economics and Political Science,
Cairo University, Egypt
E-mail: moshiraahmed@feps.edu.eg

Austrian Journal of Statistics http://www.ajs.or.at/

published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 51 Submitted: 2020-11-24
July 2022 Accepted: 2021-02-18

http://dx.doi.org/https://doi.org/10.1080/03610926.2018.1494838
mailto:shwalaa@sci.cu.edu.eg
mailto:moshiraahmed@feps.edu.eg
http://www.ajs.or.at/
http://www.osg.or.at/

	Introduction
	Information criteria
	Likelihood-based information criteria
	Classification likelihood-based information criteria

	Finite mixture of BS distributions and parameter estimation
	 Model formulation
	Parameter estimation via the EM algorithm

	Simulation study
	Simulation procedure and design
	Results

	Application
	Conclusion

