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Recent works have demonstrated the promise of using resistive random access memory (ReRAM) to per-
form neural network computations in memory. In particular, ReRAM-based crossbar structures can perform
matrix-vector multiplication directly in the analog domain, but the resolutions of ReRAM cells and digi-
tal/analog converters limit the precisions of inputs and weights that can be directly supported. Although
convolutional neural networks (CNNs) can be trained with low-precision weights and activations, previous
quantization approaches are either not amenable to ReRAM-based crossbar implementations or have poor
accuracies when applied to deep CNNs on complex datasets. In this article, we propose a new CNN training
and implementation approach that implements weights using a trained biased number representation, which
can achieve near full-precision model accuracy with as little as 2-bit weights and 2-bit activations on the
CIFAR datasets. The proposed approach is compatible with a ReRAM-based crossbar implementation. We
also propose an activation-side coalescing technique that combines the steps of batch normalization, non-
linear activation, and quantization into a single stage that simply performs a clipped-rounding operation.
Experiments demonstrate that our approach outperforms previous low-precision number representations for
VGG-11, VGG-13, and VGG-19 models on both the CIFAR-10 and CIFAR-100 datasets.
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1 INTRODUCTION

Convolutional neural networks (CNNs) have achieved breakthrough performance on a variety of
artificial intelligence applications, including image classification, video object tracking, natural
language processing, two-player games, and autonomous-driving vehicles. However, to continue
breakthrough performance on increasingly complex artificial intelligence problems, CNNs have
steadily increased in complexity, with recent CNNs requiring more than 16 billion floating point
operations for a single inference across a deep network with nearly 140 million parameters [13, 14].

Although conventional processor architectures provide plenty of processing power for training
deep CNNs, they are often not well suited for deployment in mobile and wearable applications
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where energy efficiency is paramount. In particular, conventional processor architectures typically
require frequent data movements between the processor and off-chip memory, which consume
enormous amounts of energy. Moreover, although not as significant as the energy cost for data
movements, the tens of billions of full-precision floating point operations per inference are also
often cost prohibitive in terms of energy consumption.

Recently, there has been considerable excitement surrounding the use of emerging non-volatile
memory technologies for the implementation of neural network accelerators. In particular, recent
efforts have demonstrated that metal-oxide resistive random access memory (ReRAM) [15] can
be used to efficiently implement crossbar structures that provide both storage and computation
capabilities. For neural network computations, ReRAM crossbars can be used to both store synap-
tic weights and perform matrix-vector multiplications directly in the analog domain [16-25]. A
number of promising dataflow-like ReRAM-based neural network accelerator architectures (e.g.,
ISAAC [1], PRIME [2], and PipeLayer [3]) have been proposed that show a substantial advantage
in energy efficiency over conventional processor architectures.

Although a ReRAM crossbar can directly perform matrix-vector multiplication, several critical
challenges are presented to ReRAM-based neural network acceleration:

e The precision of weights that can be stored in the crossbar is limited by the resolution of
the ReRAM cells, and the precision of inputs to the crossbar is limited by the resolutions
of the digital-to-analog converters (DACs) and analog-to-digital converters (ADCs) that are
used at the crossbar interface. In particular, practical implementations of ReRAM crossbars
are limited to some m-bit weight precision and some p-bit input precision. For example,
in ISAAC [1], the weight precision is m = 2 bits, and the input precision is just p = 1 bit.
In PRIME [2], the weight precision is m = 4 bits, and the input precision is p = 3 bits. In
PipeLayer [3], a spike-based scheme is used in which the inputs are provided as spikes,
which eliminates the need for DACs. This effectively corresponds to an input precision of
just p = 1 bit, whereas ADCs are replaced with integrate and fire units. PipeLayer supports
a weight precision of m = 4 bits. Higher-precision inputs can be achieved by evaluating the
ReRAM crossbar multiple times with successive p-bit inputs. For example, both ISAAC [1]
and PipeLayer [3] support 16-bit inputs by evaluating the ReRAM crossbar 1 bit at a time
successively 16 times. However, this way of achieving higher-precision inputs increases the
processing time. To increase the precision of weights, a group of multiple crossbars can be
used, where the j*" column of each crossbar in the group logically implements a portion
of the weights for the same kernel. However, both means of increasing input and weight
precisions cost proportional increases in energy consumption. Moreover, the use of multiple
crossbars to increase weight precision limits the size of CNNs that can be implemented as
weights are persistent in ReRAM-based neural network implementations.

o Ideally, we would like to use native ReRAM cell precisions of m = 2 to 4 bits. However, as
observed in Song et al. [3], the accuracies of ReRAM-based neural network accelerators are
sensitive to weight precisions. For deep CNNs on complex datasets, accuracies drop sharply
when weight and activation precisions are decreased to low bit widths. In particular, the
full-precision VGG-19 network achieves about 6.7% test error on the CIFAR-10 dataset, but
this error dramatically increases to 90% if we simply “truncate” it into 4-bit weights and
activations. Alternatively, CNNs can be trained with low-precision weights and activations
[4-10, 27, 28]. In particular, in Chi et al. [2], a low-precision number representation called
dynamic fixed point (DFP) [7, 8] is used for ReRAM-based accelerators, in which an m-bit
number is viewed as a 2’s complement number that is scaled by a power-of-2 fractional
scaling factor M: {—=M - 2™71,...,0,...,M - (2™! — 1)}. This means that the representation
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Fig. 1. The distribution of full-precision weights on the Conv5-2 layer (left) and the comparison of the nor-
malized mean square error between our trained biased number (TBN) representation and DFP representation
for m = 2 bits (right).

is symmetric in the range of positive and negative numbers. However, when examining
actual weights that these number representations are suppose to approximate, we find that
the set of weights on a given CNN layer is often not symmetric. Consider the VGG-11 CNN
architecture [14] trained on the CIFAR-10 dataset. The distribution of weights on the Conv5-
2 layer, which contains about 2.36 million weights, spans the range [-0.075, 0.128], with the
positive range 71% larger than the negative range. This leads to poor approximations when
using low-precision numbers in DFP to represent the weights.

e ReRAM crossbar cells can only represent “positive” conductance values. However, neural
networks generally require both positive and negative weights. To implement both positive
and negative weights in ReRAM-based neural network accelerators, previous approaches [2,
3] have implemented kernels with positive and negative weights as two separate crossbar
arrays. This “sign-splitting” approach significantly increases the hardware cost.

In this article, we propose to use a trained biased number (TBN) representation to approximate
low-precision weights. In particular, we view an m-bit number as an unsigned integer that is scaled
by a fractional scaling factor M and offset by a biasing term K. Each m-bit integer therefore rep-
resents a number from the set {0 - K,M — K,...,M - (2™ — 1) — K}, where the range of positive
and negative numbers can be arbitrarily shifted by the biasing term K, and the step size M can be
any fractional scaling factor. The parameters M and K can be independently trained on a per-layer
basis to best approximate the distribution of weights on a given layer.

To illustrate the benefits of our proposed TBN representation, let us consider again the weights
on the Conv5-2 layer of VGG-11 that have been trained on the CIFAR-10 dataset. For a precision
of m = 2 bits, we computed the optimal parameters for these weights for DFP and our proposed
TBN representation, and we computed the mean square error of each representation relative to
full-precision weights. Figure 1 shows the normalized mean square errors, which shows that DFP
has 49.3% higher mean square errors vs. our proposed TBN representation.

The main contributions of this article are as follows:

e We propose a new low-precision quantization approach for CNNs based on a novel TBN
representation of weights. Our representation can represent both positive and negative
numbers for ReRAM-based implementations without the need for separate crossbar arrays.
Moreover, the trained biasing term in our approach enables our representation to approxi-
mate well sets of weights that have asymmetric ranges of positive and negative numbers.
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e Our number representation is well suited to the inherent matrix-vector multiplication capa-
bilities of ReRAM-based crossbar structures. In particular, our low-precision quantization
approach can match the resolution limitations of digital/analog converters and memory
cells in ReRAM-based crossbars.

e To take full advantage of ReRAM-based analog computational capabilities, the amount of
computations that must be performed in the digital domain should be minimized. To this
end, we propose a novel activation-side coalescing approach that coalesces the steps of
batch normalization (BN), non-linear activation, and quantization into a single stage that
simply performs a clipped-rounding operation.

e We explore the configuration space of different combinations of weight precisions and ac-
tivation precisions by training different versions of the popular VGG deep CNN architec-
ture [14] on the CIFAR datasets. Experimental results show that our approach substan-
tially outperforms previous low-precision number representations and can achieve near
full-precision model accuracy with as little as 2-bit weights and 2-bit activations.

The remainder of the article is organized as follows. Section 2 introduces some background
on CNNs and ReRAM-based acceleration. Section 3 describes our training algorithm for training
CNNs with TBN representations. Section 4 describes our activation-side coalescing approach that
combines BN, non-linear activation, and quantization into a single efficient stage. Sections 5 and
6 present our evaluation results. Section 7 concludes the article.

2 BACKGROUND
2.1 Convolutional Neural Networks

A CNNiis a class of deep, feed-forward artificial neural networks that has successfully been applied
to multi-channel image classification. A typical CNN comprises a pipeline of connected layers, each
performing transformations from a set of input feature maps to a new set of output feature maps.
The inputs to the first layer correspond to the channels of an input image, and the outputs of the
last layer correspond to the probabilities of classes that best describe that image. Each layer of the
CNN is associated with a set of parameters, usually called weights, that are typically trained offline
with a labeled dataset. The goal of supervised learning of CNNs is to train these parameters so
that the CNN can accurately classify new data points.

In a standard CNN structure, the layers are typically convolutional layers, pooling layers, or fully
connected (FC) layers. Each convolutional (Conv) layer consists of a number of h X w X C;,, kernels,
each of which is convolved with an H;, X W;,, X C;,, multi-channel input feature map to produce
the corresponding H,y,; X Wy, output channel. Together, a three-dimensional Hy,; X Woyp X Coyy
output feature map is produced from C,,; kernels. The convolution operation for the z!* kernel
can be expressed as follows:

h-1 w—1Cip
Zout (X, Y, 2 Z Wo(i,j, k) - Xin(x + i,y + . k). (1)
i=0 j=0 k=0

The elements of a h X w X C;;, kernel are weights to be trained, and a bias term is usually added
to Zoy: (x, y, ), which is also trained.

A pooling layer maps each input feature map to an output feature map, where each output
feature is the maximum or average of an h X w window of input features. A pooling layer reduces
the height and width dimensions of the output feature map by a factor of h and w, respectively.
Pooling layers are inserted throughout a CNN to gradually reduce the size of the intermediate
feature maps.
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Fig. 2. ReRAM-based crossbar structure.

An FC layer takes an input vector and performs a dot product with a weight vector, which can
be expressed as follows:
Cin—1
Zour = ), W(i) - Xin(0). (2)
i=0
A bias term is also usually added to this output, and this bias term together with the weights is
also trained.
For Conv and FC layers, the result of Equation (1) or (2) is usually passed through a BN layer
[11], which solves the problem of internal covariate shift. The BN operation can be expressed as
Zout — |
y=v (—) +p, (3)
Vo? +e
where p and o are statistics collected over the training set, y and f are trained parameters, € is
used to avoid round-off errors.
Finally, the output of BN is usually passed through a non-linear activation function like ReLU
or Sigmoid. In this work, we will assume ReLU activation, which performs max(0, y).

2.2 ReRAM-Based Crossbar Structure

Figure 2 depicts an N X N ReRAM crossbar structure where each ReRAM cell can be programmed
with one of multiple possible resistance states. The corresponding conductance of an ReRAM cell
at the i*" row and j* column of the crossbar is represented by g; ;. These ReRAM cells can be used
to encode the synaptic weights of a neural net. In the case of a convolutional (Conv) layer in a CNN,
each column of the ReRAM crossbar, j = 0,1,..., N — 1, can be used to implement a different Conv
kernel. The input voltage of each row is represented by v;, which can be used to encode an input
feature of a neural net. Each column j of the ReRAM crossbar can then perform an analog dot

product of the input voltage vector {vg, vy, . .., vn-1} with the corresponding conductivity vector
{90.j,91,j» - - -»g1,N-1} as follows:
A N-1
Ly = Z 9i.j " Vi- 4)
i=0
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These dot product operations across the columns are performed simultaneously as a single matrix-
vector multiplication operation. A DAC is used to convert a digital input into an analog voltage
v;, and an ADC is used to convert an output voltage derived from If;u , into a digital output. In the
case of an FC layer, the entire crossbar can be used to implement the corresponding weight matrix.

3 LEARNING THE BIASED NUMBER REPRESENTATIONS
AND WEIGHT APPROXIMATIONS

3.1 Gradient Calculations

In our training algorithm, we begin with a pre-trained model with full-precision weights, with
each latent full-precision weight denoted as w;. The goal of our training procedure is to assign

an m-bit integer g; = 0,1,...,2™ — 1 to each w; so that the latent full-precision weight can be
approximated with the following biased number representation:
w; = Mg; — K. %)

Here, M is the scaling factor, and K is the biasing term that gets subtracted from the scaled
term Mg;. Note that in this biased number representation, both positive and negative numbers
are represented using the same m-bit integers g; = 0,1, ...,2™ — 1. However, unlike signed fixed
point representations that represent a symmetric range of positive and negative numbers, our
utilization of a biasing term K allows us to asymmetrically partition the range of positive and
negative numbers. Further, the scaling factor M allows us to provide the appropriate resolution
for approximating full-precision weights. For example, for m = 2 bits, M = 0.541, and K = 1.182,
gi = 0,1,2,3 correspond to the approximate weights w; = —1.182, —0.641, —0.1, 0.441, respectively.

The key idea in our training procedure is that M and K are independent parameters that are
trained together with other parameters, including the latent full-precision weights. These inde-
pendent parameters M and K are defined on a per-layer basis, meaning that a different pair of
parameters is used for each layer to approximate the latent full-precision weights.

During each feed-forward pass, we assign g; to w; as follows:

g; = clip (round (WI—+K) ,0,2™M — 1) , (6)
M
where
clip(x, Xmin» Xmax) = Max(Xmin, Min(x, Xmax))- (7)
During backpropagation, we calculate the gradient for the scaling factor M as follows:
oL oL
o7 = Zgﬁ ®)

where L is the loss to be optimized.
For the biasing term K, we calculate its gradient as follows:

oL oL
oL _ _ in 9
0K (Z c'ivﬁi) ©)
Finally, the gradient that we use to update each latent full-precision weight is simply the gradient
of the corresponding approximate weight:
oL oL
ow; O’
Since the latent full-precision weights w; are updated together with the independent parameters
M and K during backpropagation, a different g; may get assigned to approximate w; in the next

(10)
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feed-forward pass. In turn, the new weight approximations w; would be used to derive gradients
to update the latent full-precision weights w; and the independent parameters M and K in the next
backpropagation phase. This way, the biased number representations are trained together with the
weights and other parameters of the neural network to minimize classification loss.

The benefits of using a TBN representation is that the trained scaling factor provides the appro-
priate resolution to represent the weights and the trained biasing term provides an asymmetric
partitioning of the number range between positive and negative weights. Together, these trained
parameters enable our biased number representation to provide more model capacity to the neural
network.

3.2 The Initialization of M and K

As discussed earlier, M and K are independent parameters that are defined and trained on a per-
layer basis. Before we start on the training procedure described in Section 3.1, we must first initial-
ize M and K for each layer based on the latent full-precision weights from the pre-trained model.
The main idea is that each g; = 0,1, ...,2™ — 1 defines a separate centroid w; = Mg; — K, and we
want to initialize M and K so that the corresponding centroids are linearly spaced across the range
of pre-trained full-precision weights in a layer. Let [Fnin, 7max ] denote this range. Then, we initialize
M and K as follows:

M = Tmax — rmin, (11)
2m —1
K = —Tnin- (12)

Experimentally, we have found that limiting the range of weights to those within two standard
deviations from the mean weight of a layer, which covers 95.4% of the weights, leads to a better
initialization of M and K. In particular, let uy;, and oy; be the mean and standard deviation of the
latent full-precision weights in a layer. Then, we define i, and ryay as follows:

Tmin = fw — 204, (13)
Tmax = Hw + 207%. (14)

Then, M and K are defined accordingly. We have found that if the number range needs to be
increased to minimize loss, then gradient descent can quickly update M and K accordingly to
increase the range.

4 ACTIVATION-SIDE COALESCING

In the previous section, we described how latent full-precision weights can be accurately approxi-
mated using an m-bit integer that matches the weight precision of an ReRAM cell. For example, in
ISAAC [1], PRIME [2], and PipeLayer [3], the ReRAM cell precisions are 2 bits, 4 bits, and 4 bits, re-
spectively. Besides overcoming the precision challenge of ReRAM cells, we also have to overcome
the precision challenge of input precision to the ReRAM crossbar. In ISAAC [1] and PipeLayer [3],
a 1-bit input precision is used, whereas a 3-bit input precision is used in PRIME [2]. In general,
a p-bit input precision can be used, which means that we are limited to a p-bit activation and in-
termediate features are store using p-bits. Unfortunately, when p is small, for example p = 2 bits,
the results for deep CNNs on complex datasets can be prohibitively inaccurate. Higher effective
input precision p can be achieved by evaluating the ReRAM crossbar multiple times. For exam-
ple, an effective input precision of p = 4 can be achieved by evaluating the input 2 bits at a time
using an ReRAM crossbar with a 2-bit input precision. However, this incurs proportionally more
energy and more processing time, both of which are undesirable. Thus, in general, it is important
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to minimize the number of bits p for representing the activations as long as high accuracy can be
maintained. This problem is discussed in this section.

In particular, we first describe in Section 4.1 how activations are quantized based on a Gaussian
distribution. Then, in Section 4.2, we describe an activation-side coalescing technique that combines
the steps of BN, activation, and quantization into a single stage that simply performs a clipped-
rounding operation. We describe in Section 4.2 how our TBN representation of weights described
in Section 3 can be combined with activation-side coalescing.

4.1 Gaussian-Based Quantization

To achieve accuracy when using low-bitwidth quantized activations, we use the half-wave Gauss-
ian quantization (HWGQ) approach proposed in Cai et al. [10]. The HWGQ idea is based on the
observation that state-of-the-art neural network architectures generally employ BN [11], which
forces the responses of each network layer to be a Gaussian distribution with zero mean and
unit variance. Moreover, ReLU is widely used as the activation function in state-of-the-art neural
network architectures, which acts as an half-wave rectifier that produces linear outputs for non-
negative responses. Therefore, the p-bits used to encode the activations only needs to quantized
the non-negative range of responses. For example, an activation x; can be quantized and encoded
with an p-bit integer ¢; = 0,1,...,27 — 1 so that the activation x; can be approximated with a
uniform quantizer as follows:

Q(x;) = X; = Sqi, (15)
where ¥; =0, S,2S,... (2 — 1)§ are the corresponding quantization levels, which in general can
be floating point values since the quantization step S can in general be a floating point number.
For a uniform quantizer, we can derive g; from x; as follows:

q; = clip (round (%) ,0,2P — 1) . (16)

In Cai et al. [10], an optimal uniform quantizer is derived from a Gaussian distribution with zero
mean and unit variance. This is based on the observation that BN network layers generally produce
response distributions that are approximately Gaussian with zero mean and unit variance across
all units and layers. Therefore, the same uniform quantizer can be used for all activations. There is
no need to train a number representation for activations. The activations are indirectly trained by
training the BN parameters. In particular, the optimal uniform quantization step S can be derived
from a Gaussian distribution with zero mean and unit variance by minimizing the following mean
square error:

arg innf o(x)(Q(x) — x)%dx, (17)

where ¢(x) is the corresponding probability density function. The optimal step S can be derived by
solving Equation (17) by adding the constraint that Q(x) is a uniform quantizer with step S [10, 12].

4.2 Combining Trained Biased Weights With Activation-Side Coalescing

In this section, we discuss how our TBN representation of weights described in Section 3 can be
combined with the Gaussian-based quantized activation approach described earlier in Section 4.1.
In particular, we wish to store each weight as an m-bit integer g; and each activation as a p-bit
integer q;, which can be interpreted by the corresponding parameter S for activation and the cor-
responding per-layer parameters M and K for the weights. For inference, a naive implementation
would operate as follows:

Al. JE,- = Sqi;
A2. W,’ = Mg, —K;
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A3. z =3 WiX; + b;

A4. y = BatchNorm(z) = y (\/%) +pi
le3 €

A5. r = ReLU(y);

A6. Qour = chp(r/S, 0, 20 — 1);

In Step A6, 2P — 1 is the maximum integer for a p-bit integer encoding of the activations.

As can be readily observed in the preceding inference algorithm, the steps do not match the
hardware capabilities of a ReRAM crossbar since the steps involve floating point operations. In
particular, a ReRAM crossbar is capable of efficiently computing in the analog domain an integer
dot product operation of the form

Z 9iqi» (18)
1

where each g; is an m-bit integer that corresponds to the ReRAM cell precision, and each g; is
a p-bit integer that corresponds to the input precision of the ReRAM crossbar. Ideally, we would
like to avoid expanding the integers g; and g; into floating point numbers in Steps Al and A2
and performing the dot product in the floating point domain in Step A3. Instead, we would like
to perform the dot product in the integer domain to match the hardware capabilities of a ReRAM
crossbar. This can be achieved by rewriting Steps A1 through A3 as follows:

D Wik +b = ) (Mgi —K)(Sqi) +D, (19)
=5 Z(Mgiqi —Kq;) +b, (20)
= S(M<ZgiCIi)_K<Z Qi))"'b» (21)
= S5(Mp; — Kpy) + b, (22)
where
P = Zgi% (23)

P2 = Z qi- (24)

As can be readily observed, p; can be directly implemented as an integer dot product using
a column in a ReRAM crossbar. In particular, each column in a ReRAM crossbar can be used to
implement this p; computation for a different kernel, as depicted in Figure 2.

The computation for p, can also readily be implemented directly as an integer dot product using
a column in a ReRAM crossbar by programming the corresponding ReRAM cells with unit weights.
However, since the computation of p, is kernel independent, the p, computation can be shared by all
the kernels that are implemented on the same ReRAM crossbar. For example, if we have a baseline
128 x 128 ReRAM crossbar, we can add one more column to create a 128 X 129 array and use the
last column to implement p,, which can be shared by all 128 kernels implemented in the array.
Thus, the amortized cost of p, is negligible.

Besides performing integer dot products directly using g; and gq;, we propose to further optimize
BN, ReLU activation, and quantization steps (Steps A4 through A6) by combining them into a
single step. In particular, we wish to eliminate the floating point operations in BN and absorb the
BN parameters as well as the quantization step parameter S in Equation (22) directly into a simple
clipped-rounding operation.
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The optimized algorithm is as follows:

B1l. p1 = X 9i95;
B2. p2=2iqis

B3. qour = activation_side_coalescing(ps, p2);

In particular, given Equation (22), we have z = S(Mp; — Kp,) + b. Then the BN operation can be
stated as follows:

y=y(m)+l3 (25)

SMp, — SKps + b — /1)
= + p, (26)
( Vo? +e P
yS(Mpy — Kps)  y(b—p)
= + + 5. (27)
Vo? +e Vo? +e P
Then we can compute
q = round(y/S), (28)
y(Mp —Kps) | . ]
= round (29)
[ Vol + e S\/a2 +e€

Given thaty, p, 0, €, f, and S are all constants after training, we can pre-compute these constants
for all activations:

p— (30)
Volt+e
K
B =1 (31)
o’ +e
b—
c-yb=p b (32)
SVo2+e S
Then we have
q = round(Ap; — Bp, + C), (33)
Gour = clip(g,0,2P —1). (34)

We can directly implement Equations (33) and (34) in a single clipped-rounding operation in
activation_side_coalescing(p;, p»). Note that the clip operation effectively performs a clipped ReLU
activation. The operations in Equations (33) and (34) can be easily implemented in the digital
domain.

5 EVALUATION

5.1 Evaluation Setup

We have implemented our proposed training algorithm based on a TBN representation described
in Section 3 and our proposed activation-side coalescing technique described in Section 4 in the
PyTorch framework [26]. We use the CIFAR-10 and CIFAR-100 datasets to evaluate our solutions
on three versions of the popular VGG deep CNN architecture [14]: VGG-11, VGG-13, and VGG-
19. Since VGG networks were originally proposed for the ImageNet dataset whose input size is

1Given the clipped-rounding operations to just a few bits, the operands in Equation (33) do not need to be full precision.
Experimentally, we found that an 8-bit fixed point representation of the operands is more than enough for small values of

P
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Table 1. CNN Configurations

15:11

| Layer |  VGG-11 |  VGG-13 VGG-19
3x3x3, 64 3x3x3, 64
Convl 3X3X3, 64 3x3%64, 64 3x3%64, 64
Max-pool 2%2
3x3%64, 128 3x3%64, 128
Conv2 3x3x64, 128 3x3%128, 128 3x3%128, 128
Max-pool 2%2
3%3%128, 256
. 3%3x128, 256 | 3x3x128, 256 TR
3x3%256, 256
X3X X3X
3x3%256, 256 | 3x3%256, 256 e
Max-pool 2X2
3%3%256, 512 3%3%256, 512 3X3X256, 512
Conva 3x3%512, 512
3x3%512, 512
X
3x3%512, 512 3%3x512, 512 T
Max-pool 2X2
3x3%512, 512
3%3x512, 512 3%3%512, 512 SOz
Convs 3x3%512, 512
3%3x512, 512 3%3x512, 512 T
Max-pool 2X2
FCI 512x512
FC2 512x512
FC3 512x10 (100)

FC layers have been adjusted to fit the size of the CIFAR dataset.

224 X 224 X 3, whereas the CIFAR images are 32 X 32 X 3, we reduce the size of the FC layers to
match the input features. The configurations of networks are summarized in Table 1. All convo-
lutional and FC layers except the last layer are followed by a BN layer and ReLU non-linearity in
sequence. The Adam optimizer is used to update the scaling and shifting factors, with the learning
rate initialized to be 1e-6. The other parameters of the network are optimized by stochastic gradi-
ent descent (SGD) with a learning rate starting at 0.01. The momentum and weight decay factor
that we use for SGD are 0.9 and 1le-4, respectively. We use a mini-batch size of 128 and divide the
learning rates for both optimizers by 10 every 75 epochs. The minimal learning rates for SGD and
Adam are le-7 and 1le-8, respectively. The results are computed by taking the average of the last
seven test accuracy numbers with the maximal and minimal values removed.

5.2 Evaluation Results

As discussed in Section 1, weights can be quantized into low-precision representations using DFP
[7, 8] implementations. To evaluate the performance of our TBN representation, we apply these
two methods to compress weights into the resolutions from 2 to 8 bits with features remaining in
full precision. The scaling factors of DFP are derived by minimizing the quadratic error from a pre-
trained model, whereas the scaling and shifting factors of TBN are trained according to (8) and (9)
from the same pre-trained model. The results are shown in Table 2 together with the full-precision
accuracies added as a baseline.
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Table 2. Classification Accuracy on CIFAR-10

Weight Bits | 2 | 3 | 4 | 5 | 6 | 7 | 8 |FullPrecision

DFP | 10.0% | 71.6% | 86.9% | 88.1% | 90.0% | 90.0% | 90.0%
VGG-11 91.6%
TBN | 91.1% | 91.2% | 91.3% | 91.3% | 91.4% | 91.4% | 91.5%

DFP | 10.0% | 35.2% | 87.6% | 91.6% | 93.1% | 93.4% | 93.3%
CIFAR-10 | VGG-13 93.7%
TBN | 93.4% | 93.3% | 93.5% | 93.4% | 93.3% | 93.4% | 93.5%

DFP | 10.0% | 10.0% | 71.5% | 90.0% | 92.7% | 93.1% | 93.1%
VGG-19 93.3%
TBN | 93.0% | 93.2% | 93.2% | 93.0% | 93.1% | 93.2% | 93.1%

DFP | 1.0% | 5.0% | 61.6% | 67.7% | 69.0% | 70.2% | 70.1%
VGG-11 70.2%
TBN | 68.2% | 69.4% | 69.7% | 70.1% | 70.1% | 70.2% | 70.2%

DFP | 1.0% | 4.7% | 61.3% | 69.0% | 72.4% | 72.7% | 72.8%
CIFAR-100| VGG-13 73.3%
TBN | 72.9% | 73.2% | 73.2% | 73.0% | 73.1% | 73.2% | 73.5%

DFP | 1.0% | 1.0% | 36.5% | 61.7% | 69.0% | 70.4% | 71.2%
VGG-19 72.2%
TBN | 71.6% | 72.3% | 72.2% | 72.2% | 72.3% | 72.3% | 72.2%

It can be seen that, compared to DFP, TBN achieves a significantly higher accuracy. On the
CIFAR-10 dataset, TBN keeps the loss within 1% with 2-bit weights while the performance of DFP
drops below 30%, in comparison with full-precision weights. In particular, since there are only
10 classes in total in CIFAR-10, an accuracy of 10% implies that the model is seriously damaged
and fails to produce any reasonable classification. When evaluated using the CIFAR-100 dataset,
2-bit TBN results in a more significant accuracy drop on VGG-11, which is 2% worse than the full-
precision model, whereas this loss shrinks sharply with the increase of bitwidth and reduces to
0.5% with 4-bit weights. However, DFP turns to have an extremely poor performance with 2-bit
weights and the 4-bit degradation is still larger than 5%, compared to the full-precision models.
Moreover, on the VGG-11 network and CIFAR-10 dataset, even when using 8-bit representations,
DFP still results in an obvious loss in accuracy, due to the fact that the quantization errors from the
pre-trained model remain substantial, which determines an upper bound on the accuracy. Here, we
note that M and K for TBN are updated according to gradients that are derived to directly minimize
classification loss, and that the latent full-precision weights are also trained to compensate for
errors caused by low precision.

Next, we compare our TBN representation approach with activation-side coalescing on different
combinations of precisions for weights and activations on the same VGG network configurations
(VGG-11, VGG-13, and VGG-19). In particular, for both weights and activations, we vary the pre-
cision from 2 to 8 bits, and we compare each configuration to full-precision accuracy. The results
of CIFAR-10 and CIFAR-100 are illustrated in Figure 3 and Figure 4, respectively, as a function of
weight precision with multiple lines to show different activation precisions.

In all cases, the bottom blue line corresponding to 2-bit activations shows the lowest accuracy.
However, even with 2-bit activations, our approach achieves accuracies within about 1% of full-
precision activations on average under different weight precisions. With 3-bit activations, our
approach achieves accuracies within just 0.5% of full-precision activations on average, which is
negligible consider the substantial energy savings in ReRAM-based implementations. The slopes
of the lines reflect the accuracy loss due to decreasing weight precisions. There exists some ripples
in the curves due to the inherent randomness of SGD-based training in the experiments, but it
can be identified that, as expected, the accuracy tends to decrease as the precision of weights
is reduced. It can be seen that the drops corresponding to CIFAR-100 are sharper than those of
CIFAR-10, potentially because of the less redundancy in networks for more complicated datasets.
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Fig. 3. Classification errors of CIFAR-10 dataset on VGG-11 (left), VGG-13 (middle), and VGG-19 (right) with
different weight and activation precisions.
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Fig. 4. Classification errors of CIFAR-100 dataset on VGG-11 (left), VGG-13 (middle), and VGG-19 (right)
with different weight and activation precisions.

On CIFAR-10, the largest degradation from 2-bit to full precision is only about 0.5%, and when
using 4-bit weights and activations, we achieve virtually no loss relative to full-precision models
on both the CIFAR-10 and CIFAR-100 datasets.

In particular, with 2-bit weights and 2-bit activations, our proposed approach on the CIFAR-10
dataset achieves accuracies of 90.2%, 91.9%, and 92.1% on VGG-11, VGG-13, and VGG-19, respec-
tively. Comparing with full-precision model accuracy, which are 91.6%, 93.7%, and 93.3%, the ac-
curacy loss is about 1.5%. Moreover, the difference in accuracies vs. full-precision accuracies on
both the CIFAR-10 and CIFAR-100 datasets can be further reduced to <1% with 3-bit weights and
activations and to virtually no loss with 4-bit weights and activations.

6 ENERGY AND AREA ESTIMATION

In this section, we evaluate the energy and area consumption of our approach based on a recent
ReRAM-based hardware accelerator architecture [1]. The analyses are performed on the VGG-11
network trained on the CIFAR datasets.? As shown in Shafiee et al. [1], at 32nm, the optimal de-
sign point is achieved by using 128 X 128 ReRAM crossbar arrays with a cell precision of 2 bits,
which are considered as the basic unit in our evaluation. To increase the precision of weights, a

%In particular, the energy and area estimations are based on the CIFAR-10 dataset, noting that the difference in overhead
between CIFAR-10 and CIFAR-100 is negligibly close to 0 due to the fact that their architectures only differ in the last FC
layer.
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Table 3. Unit Cost of the ReRAM Array and eDRAM Buffer

W. Wang and B. Lin

ReRAM Properties
Component Parameter Spec Power (mW) | Area (mm?)
Resolution 2 bits
M . . 2
ReRAM array Size 128 X 123 0.3 0.000025
Resolution 8 bits
ADC 2 0.0012
Number 1
Resolution 1 bit
DAC 0.5 0.000021
Number 128
Interface® 0.319375 0.000787
Total 3.119375 0.002033
eDRAM Properties
eDRAM? || Size 1KB | 0432813 0.002703

“The interface component comprises the amortized cost of input/output registers and routers to interface
with eDRAM buffers and other ReRAM arrays, as well as the sample-and-hold and shift-and-add units
for data accumulation.

b The unit cost of the eDRAM component is provided on a per-page (1KB) basis, and this unit cost includes
the amortized cost of the memory bus for interfacing with ReRAM arrays.

group of multiple crossbars can be used, which spatially increases both energy and area consump-
tion. Also as proposed in Shafiee et al. [1], we use an input precision of 1 bit, which effectively
replaces the DACs with trivial inverters, and 128 such 1-bit DACs are used for the 128 rows of
every crossbar array. Higher-precision inputs can be achieved by evaluating the ReRAM crossbar
multiple times with successive 1-bit inputs, which temporally increases energy consumption. At
the output side of a crossbar array, an 8-bit ADC is shared by all 128 columns. As shown in Shafiee
et al. [1], the cycle time is bounded by the large latency of crossbar arrays, which is on the order of
100ns, whereas a frequency on the level of giga samples per second (GSps) can be achieved for an
8-bit ADC. Thus, an 8-bit ADC can be time multiplexed by the columns of the crossbar without
performance degradation. Moreover, an additional column per crossbar is also added in Shafiee
et al. [1], and the extra cost has already been accounted for, so there is no need to further re-scale
the overhead. For the storage of intermediate features, the architecture proposed in Shafiee et al.
[1] uses on-chip eDRAM buffers. In Table 3, we summarize the power and area costs of crossbar
arrays and eDRAM buffers, as derived from Shafiee et al. [1].

We evaluate our TBN representation approach in comparison with a DFP approach using 2-bit
weights and activations (namely 2-bit precision for both weights and activations). For the DFP
approach, “sign splitting” is required since an ReRAM crossbar cannot directly implement both
positive and negative weights when the DFP representation is used, as explained in Chi et al. [2]
and Section 1. Therefore, two separate crossbars are required to represent positive and negative
weights, respectively, and the final results can be obtained by subtracting the outputs of two arrays.
The costs of two separate crossbars are reflected in the DFP results. In addition, we include the
estimations of a 16-bit fixed point implementation (labeled as “16-bit”) to provide a baseline for
comparison.

In Table 4, we summarize the energy and area results for the three models. In particular, the
table reports the number of ReRAM crossbar arrays and the size of the eDRAM buffers for each of
the three implementations. As explained in Shafiee et al. [1] and Song et al. [3], with the dataflows
fully pipelined, the energy consumption is proportional to the processing time of dot-product
operations, whose bottleneck is the layer with the largest latency, which can be up to thousands
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Table 4. Area and Energy Estimations

Parameter 16 Bit 2-Bit DFP | 2-Bit TBN
Number of ReRAM arrays 4,948 1,352 742
eDRAM size (KB) 298 40 40
Area (mm?) 10.87 2.86 1.62
Normalized area 6.72 1.77 1
Energy (1J/img) 159372 | 54.20 29.85
Normalized energy 53.39 1.82 1

of cycles. To optimize the critical layers, we adopt the parallelism granularity scheme described
in Song et al. [3]. In particular, for the 16-bit fixed point implementation, the number of ReRAM
crossbar arrays reported in Table 4 has the Convl and Conv2 layers duplicated 16 and 4 times,
respectively, to match the speed of other layers. As the input images of the Conv1 layer have a
precision of 16 bits, the Conv1 layer for the 2-bit TBN and DFP implementations has to be further
duplicated by another factor of 16/2 = 8 times to match the processing times of the other layers
with 2-bit input features. In addition to reporting the absolute energy and area results for the three
implementations, we also provide in Table 4 the normalized results with respect to the 2-bit TBN
cost to illustrate our overhead reduction.

As shown in Table 4, our TBN approach has lower energy and area costs than both the DFP
and 16-bit models. In particular, in comparison to the 16-bit results, 2-bit TBN achieves 6.7 times
area reduction since it uses fewer crossbar arrays to encode synaptic weights and smaller buffers
to store intermediate features. Moreover, the 16-bit model consumes 53.4 times as much energy
as TBN does to process an image, due to the quadratic decrease in energy caused by lower power
and faster speed of the low-precision models. When compared to 2-bit DFP results, TBN achieves
1.8 times reduction in both area and energy costs because of the double crossbar arrays introduced
in DFP to represent positive and negative weights.

7 CONCLUSION

In this article, we consider the problem of training CNNs with low-precision weights and activa-
tions in a manner that is compatible with an implementation on ReRAM-based neural network
accelerators. Low-precision weights and activations are needed to match the low resolutions of
memory cells and input voltages in ReRAM-based structures. In particular, non-uniform quan-
tization approaches are not amenable to ReRAM-based crossbar implementations, and previous
uniform quantization approaches have poor accuracies when applied to deep CNNs on complex
datasets. We propose a TBN representation with trainable scaling and shifting factors that can
approximate well asymmetric number ranges, which can achieve near full-precision model accu-
racy with as little as 2-bit weights and 2-bit activations on difficult datasets. Moreover, we propose
an activation-side coalescing technique that combines the steps of BN, non-linear activation, and
quantization into a single stage that simply performs a clipped-rounding operation. Evaluation re-
sults show that our TBN representation significantly outperforms previous quantization approach
in terms of both classification errors and the costs of energy and area. In particular, our models
achieve accuracies within about of 1.5% of full-precision model accuracy with 2-bit weights and ac-
tivations on the CIFAR-10 dataset and about 0.1% of accuracy degradation with 4-bit weights and
activations on both the CIFAR-10 and CIFAR-100 datasets. Moreover, when using 2-bit weights
and activations, our proposed approach yields about 6.7 and 53.4 times reduction in terms of area
and energy consumption, respectively.
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