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We provide here a novel method, called hypercolumn sparsification, to achieve high recognition performance
for convolutional neural networks (CNNs) despite low-precision weights and activities during both training
and test phases. This method is applicable to any CNN architecture that operates on signal patterns (e.g.,
audio, image, video) to extract information such as class membership. It operates on the stack of feature maps
in each of the cascading feature matching and pooling layers through the processing hierarchy of the CNN by
an explicit competitive process (k-WTA, winner take all) that generates a sparse feature vector at each spatial
location. This principle is inspired by local brain circuits, where neurons tuned to respond to different patterns
in the incoming signals from an upstream region inhibit each other using interneurons, such that only the
ones that are maximally activated survive the quenching threshold. We show this process of sparsification is
critical for probabilistic learning of low-precision weights and bias terms, thereby making pattern recognition
amenable for energy-efficient hardware implementations. Further, we show that hypercolumn sparsification
could lead to more data-efficient learning as well as having an emergent property of significantly pruning
down the number of connections in the network. A theoretical account and empirical analysis are provided
to understand these effects better.
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1 INTRODUCTION

The broad class of deep learning methods, which includes the convolutional neural networks
(CNNs) (Sermanet et al. 2013), HMAX model (Serre et al. 2007), and hierarchy of auto-encoders
(Masci et al. 2011), has shown good performance on a variety of pattern classification tasks. Still,
these methods can have difficulty dealing with the challenge of the 3 Vs (volume, velocity, and
variety), where data should be processed at the point of collection to minimize decision latency.
The key disadvantage of these methods, with respect to low-energy mobile hardware implemen-
tations, is that they require high numerical precision to store and process the great number of
weights and cell activities. This is the case because, at low precision, the weight updates in both
incremental and batch learning modes are relatively small compared to the interval between the
quantization levels for the weights and so are unlikely to be registered. CNNs are leading archi-
tectures for pattern recognition but are expensive in terms of the large scale of multiplications
that are required. CNNs typically use several alternating layers of convolution and pooling, with
the convolution layers extracting increasingly complex features through the hierarchy and the
pooling layers creating invariances to position, size, rotation, and so on. Energy per multiplication
scales exponentially with the number of bits. So, reducing numerical precision reduces energy con-
sumption, but recognition performance suffers. The minimum number of bits required to adapt the
weights online and achieve reasonable performance for CNNs can be prohibitive for meeting low-
energy and high-throughput challenges when input size and depth of the pipeline increases. The
challenge, then, is to achieve online learning for pattern recognition at low numerical precision
for activities and learned weights without compromising accuracy. The approach presented in this
article compensates for low precision in CNNs by incorporating the ubiquitous principle of lateral
inhibition (Ferster and Miller 2000) seen in several brain circuits across modalities. We call our
method hypercolumn sparsification, as a hypercolumn in mammalian cortical organization refers
to a pool of mutually inhibiting neurons with overlapping receptive fields in a same cortical area
that are tuned to detect different features (e.g., orientations of edges, directions of moving stimuli).
In our case, it is this inhibition between competing hypercolumn features to allow k winners that
cause a unique sparse distributed representation.

While more recent techniques such as the BinaryConnect algorithm (Courbariaux et al. 2014,
2015) and XNOR network (Rastegari et al. 2016) aggressively reduce the cell activities and/or
weights to single bit precision, and their extensions quantize the error gradients down to 6 bits
(Hubara et al. 2016; Miyashita et al. 2016; Zhou et al. 2016), the weights are only binarized in the
feedforward pass. These training methods all require saving a double precision (real-valued) rep-
resentation of weights to register high-resolution weight updates. Retaining such double precision
representations is not conducive for energy-constrained on-chip machine learning.

Techniques utilizing sparse representations for pattern recognition have been explored in
Graham (2013), Mutch and Lowe (2006), Mutch and Lowe (2008), and Liu et al. (2015), although
each of these approaches differs from our method of k-winner-take-all along the hypercolumns
of stacked feature maps. Sparse representation often means representing data using a subset of
basis vectors from an overcomplete dictionary, where essentially only a partial embedding is used
(Mairal et al. 2009). Sparse representations have been shown to be useful for face recognition, image
super-resolution, object detection, compressed sensing, image denoising, and so on. Hypercolumn
sparsification is a related but different kind of sparse representation to deal with low-precision
computations for on-chip learning in CNNs and differs from other applications of sparsity to CNNs
such as those operating on inputs (Graham 2014) or kernel weights (Liu et al. 2015).

Methods more closely related to our work can be found in Makhzani and Frey (2014) and Wen
et al. (2016). In Wen et al. (2016), sparsity was achieved at the level of filters, channels, and depth
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by virtue of using group Lasso regularization. This regularization tends to zero out non-essential
weights and can achieve a form of sparsity that is similar to the effects seen in our hypercolumn
sparsification approach, although the specific number of zeroed out hypercolumns may vary. Even
so, this method is aimed at reducing computational cost by zeroing-out various weights. There is
no indication that this method would be effective for training and testing in the presence of low-
precision weights. In Makhzani and Frey (2014), a method identical to ours is applied to autoen-
coders. Results show that their k-sparse autoencoder method outperforms denoising autoencoders
on MNIST and NORB datasets. Here again. though, the effects of low-precision weights are not
considered.

A well-known technique to deal with the issue of registering small weight updates with fewer
bits in multi-layer networks is the probabilistic rounding method (Hoehfeld and Fahlman 1992). In
this method, each weight change is first rectified and scaled by the interval between quantization
levels for the weights and then compared with a uniform random number between 0 and 1. If
the random number is relatively smaller, then the particular weight is updated to the neighboring
quantization level in the direction of the initial weight change. But even this method requires at
least 5-10 bits depending on the dataset, allowing for “gradual degradation in performance as
precision is reduced to 6 bits” (Hoehfeld and Fahlman 1992). We have validated that hypercolumn
sparsification can improve recognition performance compared to a five-layer baseline CNN for
weights and activities quantized at <5 bits during both training and test phases.

Our method operates on deep learning architectures, which comprise multiple feature chan-
nels, to sparsify feature vectors of hypercolumns at each layer in the hierarchy (see Figure 2). As
mentioned above, CNNs have several cascading stages of feature matching and pooling layers to
generate a high-level multi-channel representation of the input data for pattern recognition. Cells
in each feature matching layer infer the degree of match between different learned patterns (based
on feature channels) and cell activities in the upstream layer within their localized receptive fields.
Cells in each pooling layer either compute the mean or take the maximum of cell activities in the
upstream layer within their localized receptive fields. Hypercolumn sparsification, which is ap-
plied during both training and testing, introduces explicit competition throughout the pipeline
within each of the various sets of cells (hypercolumns) across the feature channels that share a
spatial receptive field. Within each such set of cells with a same spatial receptive field (namely,
location), this operation ensures that only a given fraction of cells with maximal activities (e.g.,
10%) are able to propagate their signals to the next layer in the deep learning network. Output
activities of non-selected cells are quenched to zero. Figure 1 is an illustration of how this method
works. When sparsification is applied in each hypercolumn across space and at each layer in a
deep learning network, sparse distributed representations are created. For a visual stimulus, this
is in line with the premise that at each spatial location there are at most a handful features that
can be present unambiguously; i.e., the various feature detectors for each location compete among
themselves such that a suitable stimulus representation is achieved across space.

The remainder of the article is organized into the Methods, Results, Discussion, and Conclusion
sections. The Methods section provides details of our simulation experiments, including the dataset
and the metric used. The Results section not only provides but also interprets the key results from
the simulation experiments to demonstrate the various effects of hypercolumn sparsification for
low-precision CNNs. The Discussion section summarizes the practical benefits of our method and
provides ideas for future work.

2 METHODS

We performed a series of simulation experiments to understand the contribution of hypercol-
umn sparsification to CNNs for achieving high recognition performance despite low numerical
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Fig. 1. lllustration of the hypercolumn sparsification process that operates in each hypercolumn of the
stacked feature maps in each layer of a CNN, by which a subset (10% in this case) of the cells with the
highest activity survive the cut while others are quenched to zero.

precision of stored parameters (<6 bits). Our baseline CNN (called “Conventional”) is a double
precision implementation comprised an input layer (IL) of size 64 X 64, which registers the gray-
scale image of an image patch; two cascading stages of alternating feature matching (S1, S2) and
pooling (C1, C2) layers with 20 feature channels each; and a classification layer (CL) with six output
cells (see Figure 2). The first matching layer (S1) consists of twenty 60 X 60 maps, the first pooling
layer (C1) of twenty 20 X 20 maps, the second matching layer (S2) of twenty 16 X 16 maps, and the
second pooling layer (C2) of twenty 6 X 6 maps. Each map in S1 is formed by convolving IL with
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Fig. 2. Block diagram of an illustrative five-layer convolution neural network—(CNN) based recognition sys-
tem, from the image patch to the classification layer (CL). This conventional CNN has two cascading stages
of feature matching and pooling layers.

one of twenty 5 X 5 kernels, and each map in S2 filters inputs from all feature channels in C1. Both
pooling layers (C1, C2) subsample their input matching layers by calculating mean values over
3 X 3 non-overlapping spatial windows in each of the 20 maps. Each map in feature matching lay-
ers S1 and S2 and each cell in the classification layer also had bias terms, and the logistic activation
function (1/(1 + e™*)) was used on outputs of S1, S2, and CL to suppress noise and also place
bounds on the corresponding cell activities ([0, 1]).

Our Conventional CNN was incrementally trained with backpropagation-based gradient de-
scent to minimize the sum of squared errors with a learning rate n = 0.1 for one epoch. The epoch
presented 100,000 labeled examples that were sampled randomly from the Training sequences of
the Stanford Tower dataset (http://ilab.usc.edu/neo2/dataset/). The initial values for all the weights
and bias terms were randomly sampled from a uniform distribution from 0 to 1. All bounding boxes
were converted to gray-scale and resized to 64 X 64 using bilinear interpolation. Six classes (“Car,”
“Truck,” “Bus,” “Person,” “Cyclist,” and “Background”) were present in the Training set with the
following base rates: 11.15%, 0.14%, 0.44%, 19.34%, 8.93%, and 60%, respectively. The trained Con-
ventional CNN was evaluated on a representative subset of 10,000 boxes that were sampled ran-
domly from the Test sequences of the Stanford Tower dataset, which maintained the base rates of
the classes used for training. Test performance was evaluated using a metric adapted from Kasturi
et al. (2014) and Wong et al. (2017) to assess recognition of multiple classes with varying base rates,
which is computed as follows:

(a) A normalized accuracy score was first computed for each of the five object classes (“Car,”
“Truck,” “Bus,” “Person,” “Cyclist”) across all the bounding boxes in the Test set:

P:l—cmM+cfaF, (1)
G

where M, F, and G are the number of misses, false alarms, and ground-truth objects, re-
spectively. P penalizes misses and false alarms using the associated costs c,, and cf, (each
set to a value of 1), which are normalized by the number of ground-truth instances of the
class. The P scores range from —co to 1. They are 0 when the system misses all objects
of a given class and has no false alarms. An object misclassification is considered a miss
for the ground-truth class but not a false alarm for the predicted class. However, a “Back-
ground” input image that is misclassified as one of the five object classes is counted as a

false alarm.
(b) A single performance score S was then calculated by a weighted average of the P scores
across the five object classes using their normalized frequencies f; (between 0 and 1) in
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Fig. 3. Application of hypercolumn sparsification to each layer (other than input and output layers) of a
conventional CNN, whose schematic is shown in Figure 2. Here each image patch (or bounding box) detected
in a video frame is processed through the classification pipeline to arrive at a class label.

the Test set:
S= Z fi-P;. )

We next applied hypercolumn sparsification to a Conventional CNN (see Figure 3) and per-
formed the same training as above with a parameter of k = 10% for sparsification in each of feature
matching and pooling layers (namely, S1, C1, S2, C2). For this version of CNN (called “Sparse”),
the weights were still learned with double precision as with the Conventional CNN. Cell activities
were also represented at double precision. For both Conventional and Sparse CNNs, we analyzed
test performance as a function of the number of training data examples (in steps of 5,000) to assess
any potential differences in data efficiency. We ran four separate runs for each architecture with
the Training set of 100,000 randomly ordered between runs.

For investigating low-precision CNNs, we employed two learning methods. For the first method,
we implemented four variations of quantized CNNs, two of which used hypercolumn sparsification
and two of which did not. For the CNNs without sparsification, the kernel weights and bias terms
in the feature matching layers S1 and S2 were taken from the pre-trained Conventional CNN and
hard-coded with quantization at 4 bits. And for the CNNs with sparsification, the kernel weights
and bias terms in the feature matching layers S1 and S2 were taken from the pre-trained Sparse
CNN and hard-coded with quantization at 4 bits. Cell activities throughout these new pipelines,
including the input and output layers, were quantized at 3 bits on the range 0-1. And training
comprised learning only the weights of connections from the final pooling layer (C2) to the classi-
fication layer (CL), and the bias terms at CL, at much lower than double precision with the number
of bits systematically varied from 3 to 12 in steps of one. The quantization ranges for these weights
and bias terms were obtained from the corresponding overall ranges of weights and bias terms for
CL from the respective pre-trained CNNs. This training was done with and without probabilistic
rounding, thus accounting for the four quantized CNNs. The quantized CNN that used hypercol-
umn sparsification, but not probabilistic rounding, is called “Gold” CNN. The other variants are
referred to as follows: Gold CNN with probabilistic rounding, Non-Sparse Gold CNN, and Non-
Sparse Gold CNN with probabilistic rounding.
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Fig. 4. The application of hypercolumn sparsification, through regular supervised training, automatically
down-selects the number of useful feature channels in each layer of the CNN depicted at the top. The effects
of sparsification on feature maps at the first matching layer (S1) after one epoch of training are shown here.

For the second method, we implemented the same four variations of quantized CNNs but all
the weights and bias terms throughout the network were learned from training (with numerical
precision systematically varied from 3 to 17 bits in steps of one). Cell activities throughout these
new pipelines were quantized at the same precision as the weights and bias terms on the range
0-1. The quantization ranges for the weights and bias terms in S1, S2, and CL were obtained
from the ranges of all weights and bias terms for the corresponding layers from the respective
pre-trained CNNGs, as in the first method.

3 RESULTS

While all 20 feature channels in each layer were employed for the Conventional CNN, the ap-
plication of hypercolumn sparsification for Sparse CNN gradually self-selected a subset of the
channels in each layer through the training. Figure 4 highlights this novel property for the first
feature matching layer (S1). In particular, we found that sparsification led to about 15X reduction
in network size without compromising performance.

Furthermore, Figure 5 shows that Sparse CNN learned faster with fewer training examples to
reach a particular Test performance level than Conventional CNN. A paired-sample ¢-test shows
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Fig. 5. Tracking performance during training shows that Sparse CNN tends to require fewer training exam-
ples to reach a particular performance level than Conventional CNN. Error bars show the standard error of
the mean (SEM) over four runs.

that the performance of Sparse CNN significantly outperforms that of Conventional CNN through
the entire training period (¢(53) = —5.106, p < le —5).

Figure 6 shows the Test performance for the four variations of quantized CNNs implemented us-
ing the first learning method as numerical precision was systematically varied for CL weights and
bias terms. Several observations can be made. First, the probabilistic rounding method improved
performance at low precision (<6 bits) for both Gold CNN and Non-Sparse Gold CNN (compare
green curve with red, and blue curve with cyan). Second, hypercolumn sparsification also improved
performance with probabilistic rounding (>3 bits) and without (>4 bits); compare the green curve
with the blue and the red curve with the cyan. Third, at lower precision (<4 bits) the best perfor-
mance is obtained using a combination of hypercolumn sparsification and probabilistic rounding,.
Indeed, Gold CNN with probabilistic rounding outperforms Non-Sparse Gold CNN without prob-
abilistic rounding (which is equivalent to a regular quantized CNN) at 3 bits by about 30% and
at 4 bits by about 45%. The probabilistic rounding method, by default, allows weights to jump at
most to neighboring quantization levels. As numerical precision for CL weights increases, the in-
terval between quantization levels decreases, causing the weights to register increasingly smaller
changes during training. This effectively reduces the learning rate, allowing Gold CNN to begin
outperforming Gold CNN with probabilistic rounding after 5 bits. Similarly, probabilistic rounding
would impair the performance of Non-Sparse Gold CNN as numerical precision is increased.

Figure 7 shows the Test performance for the four variations of quantized CNNs implemented
using the second learning method, where the entire pipeline is trained with quantized weights and
activities as a function of the numerical precision. Similarly to Figure 6, the probabilistic rounding
method yielded better performance at low precision for both Gold CNN (<7 bits) and Non-Sparse
Gold CNN (between 6 to 11 bits); compare the green curve with the red and the blue curve with the
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Fig. 6. Performances of Gold and Non-Sparse Gold CNNs with and without probabilistic rounding are shown
as a function of numerical precision (from 3 to 12 bits in steps of one) that was used to learn and store the
weights and bias terms for the last layer (namely, CL). For comparison, the performance of Conventional
CNN, which does not have any restrictions on weights and cell activities, is shown as a black line.

cyan. Further, hypercolumn sparsification yielded better performance with probabilistic rounding
(<10 bits) and without (between 6 to 16 bits); compare the green curve with the blue and the red
curve with the cyan. Moreover, at lower precision (<7 bits) the best performance is obtained by
Gold CNN with probabilistic rounding. The combined benefits of hypercolumn sparsification and
probabilistic rounding seen in Figure 6 are amplified here in the more challenging circumstance
of learning all the weights and bias terms throughout the pipeline at reduced precision. However,
Non-Sparse Gold CNN without probabilistic rounding (which is equivalent to a regular quantized
CNN) began to perform only at 16 bits.

As described under Methods, the results shown in Figures 6 and 7 are produced using the logis-
tic activation function. Many recent implementations of CNN and other deep learning networks,
however, use the rectified linear unit (ReLU) activation function (Krizhevsky et al. 2012). Figure 8
shows the effects of sparsity, with and without probabilistic rounding, on the network with ReLU
activations in the hidden layers. To show these effects at low precision, the number of bits used for
weights was swept from 4 to 8, while keeping the precision of activities constant at 3 bits. As for the
results shown in Figure 7, each of the four variations of quantized CNNs was initialized with layer-
specific quantization ranges from a trained Sparse CNN with ReLU activations before training on
one epoch of 100,000 labeled examples. Figure 8 shows the Test performances following training
with quantized weights and activities. Low-precision performances using ReLU activations appear
to be relatively impaired (compared to those using the logistic function), with the best results for
Gold CNN with probabilistic rounding. In other words, the combined benefits of hypercolumn
sparsification and probabilistic rounding at lower precision for weights and activities during both
training and testing are qualitatively replicated also with the ReLU activation function.
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Fig. 7. Performances of Gold and Non-Sparse Gold CNN with and without probabilistic rounding are shown
as a function of numerical precision (from 3 to 17 bits in steps of one) that was used to learn and store the
weights and bias terms throughout the entire network (namely, S1, S2, CL), as well as to represent all cell
activities. Error bars show the standard error of the mean (SEM) over four runs.

3.1 Explaining the Benefits of Hypercolumn Sparsification

The intuitive explanation for why hypercolumn sparsification leads to faster learning is that since
only strong activities are kept, only meaningful changes to kernel weights are made. This insight
comes from examining the process of backpropagation itself. Starting with an error vector at CL,
which is the difference between actual and desired output activities, errors (or deltas) are com-
puted sequentially down the hierarchy using the backpropagation algorithm using current-layer
activities and previous-layer errors as follows:

AL — XL (1 _XL) T{ALH}, (3)

where X is the activity matrix for layer L, T is the de-convolution operation (Duda et al. 1973),
and AL*! is the error matrix from layer L + 1. In turn, these deltas multiplied by subsequent-layer
activities and scaled by learning rate become kernel weight updates. The important aspect to note
is that if an activity is zero, in this case due to sparsification, then the corresponding delta term
will also be zero, and that particular cell will not contribute to changes in kernel weights.

This intuitive argument may be checked through the analysis of deltas during learning and
their correspondence to output classifications. Specifically, we calculated two information theo-
retic measures (Cover and Thomas 2012): conditional entropy, H(X|Y), and mutual information,
I(X;Y). Conditional entropy measures uncertainty of one variable provided you know the value
of another. Mutual information is a related measure with a slightly different interpretation, which
quantifies how much information is shared between two variables.

Using deltas A in Equation (3) as one variable of interest, we choose the other to be the detrended
cumulative sum of correct classifications. Given that output classifications are either correct or not,
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Fig. 8. Effects of ReLU activation function on the performances of Gold and Non-Sparse Gold CNN with
and without probabilistic rounding are shown as a function of numerical precision (from 4 to 8 bits in steps
of one) that was used to learn and store the weights and bias terms throughout the entire network (namely,
S1,52,CL).

we may think of this history of classifications as a binary-valued discrete time-series, x,, where
xp = 1if classification of example n was correct and zero otherwise. Changes in performance may
be captured using a cumulative sum y, such that

Yn = Zn:xi- (4)
i=0

Last, since this cumulative sum has an upward trend that is not strictly related to the deltas,
a linear trend g, is removed, resulting in a relatively stationary time series, the shape of which
details the history of classification performance,

Zn =Yn — gn- (5)

With these two variables of interest, we examined conditional entropy H(z|A) and mutual in-
formation I(A; z). If sparsification helps to produce more focused and efficacious deltas, then we
would expect sparse deltas to be more informative about classification performance than con-
ventional deltas. That is, we expect conditional entropy to be less and mutual information to be
greater.

We performed an empirical study comparing these measures by training both Conventional and
Sparse CNNs using 20 different random seeds and 10,000 training examples. For each random seed
run, the delta matrices in the first feature map in S2 are flattened in row-major order so that H
and I may be computed for each element across the training examples. The measures were then
averaged across the elements to get a summary value for each random seed. Results of this study
are summarized in Figures 9 and 10. Conditional entropy was lower in the sparse case, judged by
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Fig. 10. Histogram of mutual information difference scores (Sparse—Conventional), showing that sparse
deltas tend to share more information with classification performance than conventional deltas.
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Fig. 11. Graphical depiction of the backpropagation cycle. In the feedforward step, a kernel and activity are
combined resulting in a new activity in the next layer. In the backpropagation step, an activity and post-
layer delta are combined resulting in a new delta. In the parameter update step, the delta and previous layer
activity are combined resulting in a new kernel. These steps describe a cycle from kernel, to activity, to delta,
back to kernel.

a left-tailed ¢-test of difference scores (¢(19) = —7.09, p < 0.001). Mutual information was higher
in the sparse case, judged by a right-tailed ¢-test of difference scores (£(19) = 2.27, p < 0.05).

3.2 Sparse Activities Lead to Sparse Weights

Assume that kernel element ern wap> Where m indexes one of M input maps, n indexes one of N
output maps, L specifies the CNN layer, and (a, b) indexes the specific element of the kernel matrix,
was increased as a result of a backpropagation calculation. Then, in the next feedforward pass,
activity X, rfi ; 1s given by

L _ L-17 L L
Xnij = f<Z XonkiKmn(i—ryG-1) bn)’ (6)
m  k

where /() is the logistic activation function and b, is the bias term for feature map n in layer L. The
relationship between these components in the feedforward and backpropagation steps is depicted

in Figure 11.
In a Sparse CNN, there are two cases for the value of Xan;ll when a =i-k,b =j— 1l Either

X anjcll = 0, if its value was below the sparsification threshold, or X ﬁ;(ll = x, where x is a value greater
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than the sparsification threshold. In the latter case, the increase of kfn nab leads to an increase of
XL j» ceteris paribus, making it more likely that X L ; willitself be above the sparsification threshold.

If, however, XL?I =0 or kL , is small, then X L.
m mna nij

to be above the sparsification threshold.
Following the backpropagation process, AL is given by Equation (3) above, leading to a change

in kernel weights given by the convolution

will also be small or vanish, making it less likely

Sy = TV {X ) AL, )
where rev is a two-dimensional reversing operation, and 7 is the learning rate. At the element-wise
level, where Z)I;;l = rev{X,I;l’I }, or Z’I;;Ul = X#?Il(fi)(l(fj) when X is a K X K matrix, this convolution
is implemented as

L _ L-1AL
5mnab =nx* Z Z kalAn(a—k)(b—l)' (8)
k1
If we assume, as above, that X ’Ln;ll = xand that X ﬁi ; has increased above the sparsification thresh-
L-1 _
old, then Zm(K_k)(K_l) = x and
L L L L
Ak =Xk (1= X0,) T {Ar 9)

will be non-zero depending on the value of T{AL*};;, as will 5¢

The preceding shows that a probabilistic positive feedback loop exists. If an element in kernel
kL  isincreased, then it increases the likelihood that an activity in X% rises above the sparsification
threshold. Likewise, if an element of XL is increased above the sparsification threshold, then it
increases the probability that an element in kernel kL is increased. Specifically, if 5& >0,

mnab

then one of the terms of the sum in Equation (6) contains ern nab T 5an nap and X% will have an
element that is increased by X,Ln;} 5’51 wap- If the sparsification threshold for that feature is 0, then

P(XE . 4+ XL-1sL > 0) > P(X,I;ij > 0).In the other direction, ifXﬁl.j < 0, then P(5% >0)=0

nij mij “mnab mnab
but can be non-zero otherwise.

4 DISCUSSION

Our article shows that hypercolumn sparsification is critical when probabilistic rounding is
applied to learn weights at low numerical precision. Sparsification improves learning, because
it restricts the weight updates to only those projections whose input and output neurons have
“signal” activities. In the case without sparsification, weights do not stabilize toward minimizing
the loss at the final classification layer because of “noisy” jumps from one quantization level to
the other in almost all connections. In summary, our method not only is useful for reducing the
energy consumption of any CNN but also is critical for any learning to happen in the first place
when weights are to be learned and stored at low precision.

Our sparsification method serves a twofold purpose: (a) identify a subset of feature channels
that are sufficient and necessary to process a given dataset for pattern recognition and (b) ensure
optimal recognition performance for the situations in which the weights of connections between
cells in the network and the cell activities themselves can only be represented and processed at low
precision. It also allows for faster, more data-efficient learning. These goals play a critical role for
practical realizations of state-of-the-art deep learning architectures. As recognition problems grow
in complexity, the number of layers required grows as well, leading to ever-increasing processing
and memory requirements. For instance, the well-known OverFeat architecture (Sermanet et al.
2013) uses 11 layers (8 feature matching and 3 MAX pooling), with the number of channels ranging
from 96 to 1,024 at different layers. It recognizes objects from among 1,000 classes in response to
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input images sized at 231 X 231. The need for numerical precision leads to more size, weight, area,
and power requirements, which are prohibitive for practical real-world deployment of these state-
of-the-art deep learning networks.

Through the use of low-precision weights and cell activities in conjunction with our sparsifi-
cation method, we can greatly reduce both memory and processing loads while maintaining, or
even enhancing, learning, and performance of conventional CNNs. Moreover, as we seek to per-
form online training of these architectures without the benefit of the traditional memory-intensive
and power hungry floating-point hardware, the advantages sparsity provides for training low-
precision hardware will become evermore important. As the world continues to move toward
smaller, lightweight, more portable applications for cell phones, autonomous cars, UAVs, or even
stationary battery-powered surveillance cameras, the option for high numerical precision will be-
come prohibitive. In these cases, our proposed sparsification method may provide a viable alter-
native for achieving ultra-low-power and high-throughput recognition systems.

There are several directions for future work. First, we can validate the benefits of our sparsifica-
tion method on learning low-precision versions of state-of-the-art deeper CNNs such as AlexNet
(Krizhevsky et al. 2012) and ResNet (He et al. 2016) and using challenging datasets such as Ima-
geNet (Russakovsky et al. 2014) with 1,000 classes. A relevant research question is whether the
depth of the network can by itself compensate for learning at low precision. Second, we can in-
vestigate the benefits of sparsification for learning binarized CNNs such as the XNOR network
(Rastegari et al. 2016) with quantized gradients (Hubara et al. 2016; Miyashita et al. 2016; Zhou
et al. 2016) and without the need for storing a double precision representation of weights, making
them amenable for on-chip machine learning.

5 CONCLUSION

We presented a novel method to incorporate sparse distributed representations across feature
channels throughout the hierarchical pipeline in deep learning networks. This method proactively
reduces the number of non-zero cell activities throughout the pipeline, leading to significantly re-
duced energy consumption in transmitting signals between layers and significantly reduced stor-
age requirements for the weights and bias terms at each layer of the deep network. In particular,
this method facilitates probabilistic learning of weights and bias terms throughout the network
at low numerical precision without compromising recognition performance. Further, this method
facilitates more data-efficient learning and identifies the sufficient and necessary subset of feature
channels at each layer in the network.

REFERENCES

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Training deep neural networks with low precision
multiplications. (2014). arXiv:arXiv:1412.7024

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. BinaryConnect: Training deep neural networks with
binary weights during propagations. (2015). arXiv:arXiv:1511.00363

Thomas M. Cover and Joy A. Thomas. 2012. Elements of Information Theory. John Wiley & Sons, New York, NY.

Richard O. Duda, Peter E. Hart, and David G. Stork. 1973. Pattern Classification, Vol. 2. Wiley Press, New York, NY.

David Ferster and Kenneth D. Miller. 2000. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev.
Neurosci. 23, 1 (2000), 441-471.

Benjamin Graham. 2013. Sparse arrays of signatures for online character recognition. (2013). arXiv:arXiv:1308.0371

Benjamin Graham. 2014. Spatially-sparse convolutional neural networks. (2014). arXiv:arXiv:1409.6070

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016), 770-778.

Markus Hoehfeld and Scott E Fahlman. 1992. Learning with limited numerical precision using the cascade-correlation
algorithm. IEEE Trans. Neur. Netw. 3, 4 (1992), 602-611.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 20. Pub. date: March 2019.



20:16 P. K. Pilly et al.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Quantized neural networks:
Training neural networks with low precision weights and activations. (2016). arXiv:arXiv:1609.07061

Rangachar Kasturi, Dmitry B. Goldgof, Rajmadhan Ekambaram, Gill Pratt, Eric Krotkov, Douglas D. Hackett, Yang Ran,
Qinfen Zheng, Rajeev Sharma, Mark Anderson, et al. 2014. Performance evaluation of neuromorphic-vision object
recognition algorithms. In Proceedings of the International Conference on Pattern Recognition (2014). 2401-2406.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems (2012). 1097-1105.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. 2015. Sparse convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015). 806—814.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2009. Online dictionary learning for sparse coding. In Pro-
ceedings of the International Conference on Machine Learning (2009). 689-696.

Alireza Makhzani and Brendan Frey. 2014. k-sparse autoencoders. (2014). arXiv:arXiv:1312.5663

Jonathan Masci, Ueli Meier, Dan Ciresan, and Jiirgen Schmidhuber. 2011. Stacked convolutional auto-encoders for hierar-
chical feature extraction. In Proceedings of the International Conference on Artificial Neural Networks (2011), 52-59.

Daisuke Miyashita, Edward H Lee, and Boris Murmann. 2016. Convolutional neural networks using logarithmic data rep-
resentation. (2016). arXiv:arXiv:1603.01025

Jim Mutch and David G. Lowe. 2006. Multiclass object recognition with sparse, localized features. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2006), 11-18.

Jim Mutch and David G. Lowe. 2008. Object class recognition and localization using sparse features with limited receptive
fields. Int. J. Comput. Vis. 80, 1 (2008), 45-57.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: ImageNet classification using
binary convolutional neural networks. (2016). arXiv:arXiv:1603.05279

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, and Michael Bernstein. 2014. ImageNet large scale visual recognition challenge. (2014). arXiv:
arXiv:1409.0575

Pierre Sermanet, David Eigen, Xiang Zhang, Michaél Mathieu, Rob Fergus, and Yann LeCun. 2013. Overfeat: Integrated
recognition, localization and detection using convolutional networks. (2013). arXiv:arXiv:1312.6229

Thomas Serre, Aude Oliva, and Tomaso Poggio. 2007. A feedforward architecture accounts for rapid categorization. In Proc.
Natl. Acad. Sci. US.A. 104, 15 (2007), 6424-6429.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning structured sparsity in deep neural networks.
In Advances in Neural Information Processing Systems (2016), 2074-2082.

Sebastien C. Wong, Victor Stamatescu, Adam Gatt, David Kearney, Ivan Lee, and Mark D. McDonnell. 2017. Track every-
thing: Limiting prior knowledge in online multi-object recognition. (2017). arXiv:arXiv:1704.06415

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. 2016. Training low bitwidth convolutional
neural networks with low bitwidth gradients. (2016). arXiv:arXiv:1606.06160

Received July 2018; revised November 2018; accepted January 2019

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 20. Pub. date: March 2019.



