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Abstract

This paper presents an algebraic theory of instruction sequences
with instructions for a random access machine (RAM) as basic instruc-
tions, the behaviours produced by the instruction sequences concerned
under execution, and the interaction between such behaviours and
RAM memories. This theory provides a setting for the development
of theory in areas such as computational complexity and analysis of
algorithms that distinguishes itself by offering the possibility of equa-
tional reasoning to establish whether an instruction sequence computes
a given function and being more general than the setting provided
by any known version of the RAM model of computation. In this
setting, a semi-realistic version of the RAM model of computation and
a bit-oriented time complexity measure for this version are introduced.
Under the time measure concerned, semi-realistic RAMs can be sim-
ulated by multi-tape Turing machines with quadratic time overhead.
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1 Introduction

This paper introduces an algebraic theory which provides a setting for
the development of theory in areas such as computational complexity and
analysis of algorithms that elaborates on a version of the random access
machine (RAM) model of computation. The setting in question distinguishes
itself by offering the possibility of equational reasoning to establish whether
an instruction sequence computes a given function, and by being more
general than the setting provided by any known version of the RAM model
of computation. Many known and unknown versions of this model of
computation can be dealt with by imposing apposite restrictions. We expect
that the generality is conducive to the investigation of novel issues in the areas
of computational complexity and analysis of algorithms. This expectation is
based on our experience with a comparable algebraic theory of instruction
sequences, where instructions operate on Boolean registers, in previous work
(see [8, 9, 10, 11, 12, 15]).

This paper belongs to a line of research that started with [4], and of
which an enumeration is available at [25]. The first objective of this line
of research is to understand the concept of a program. The notion of an
instruction sequence appears in the work in question as a mathematical
abstraction for which the rationale is based on this objective. The structure
of the mathematical abstraction at issue has been determined in advance
with the hope of applying it in diverse circumstances where in each case the
fit may be less than perfect. Until now, this work has, among other things,
yielded an approach to computational complexity where program size is
used as complexity measure, a contribution to the conceptual analysis of
the notion of an algorithm, and new insights into such diverse issues as the
halting problem, garbage collection, program parallelization for the purpose
of explicit multi-threading, and virus detection.

The basis of all the work in question (see [25]) is the combination of an
algebraic theory of single-pass instruction sequences, called program algebra,
and an algebraic theory of mathematical objects that represent the behaviours
produced by such instruction sequences under execution, called basic thread
algebra, extended to deal with the interaction between such behaviours and
components of an execution environment for instruction sequences. This
combination is parameterized by a set of basic instructions and a set of
mathematical objects that represent the execution environment components.

The current paper contains a simplified presentation of the instantiation
of this combination in which RAM memories are taken as the components
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of an execution environment, instructions for a RAM are taken as basic
instructions, and an execution environment consists of only one component.
Because we opt for the most general instantiation, all instructions that do
not read out or alter more than one register from the RAM memory are
taken as basic instructions. Both known and unknown versions of the RAM
model of computation can be dealt with by restriction on the set of basic
instructions. We expect that by this set-up the presented instantiation can
be useful to rigorous investigations of novel issues relating to computational
complexity and analysis of algorithms.

Program algebra and basic thread algebra were first presented in [4].2

The extension of basic thread algebra referred to above, an extension to
deal with the interaction between the behaviours produced by instruction
sequences under execution and components of an execution environment,
was first presented in [6]. The presentation of the extension is rather in-
volved because it is parameterized and owing to this covers a generic set
of basic instructions and a generic set of objects that represent execution
environment components. In the current paper, a much less involved presen-
tation is obtained by considering only the case where execution environment
components are RAM memories, basic instructions are instructions for a
RAM, and an execution environment consists of only one component.

After the presentation in question, we make precise in the setting of the
presented theory what it means that a given instruction sequence computes
a given partial function on bit strings, show that a relatively unknown, but
more or less realistic, version of the RAM model of computation can be
dealt with in this setting by imposing apposite restrictions, and introduce
for this model an alternative to the usual time measures for versions of
the RAM model. Under the alternative time measure, RAMs from the
version of the RAM model concerned can be simulated by multi-tape Turing
machines with quadratic time overhead. Moreover, under a usual space
measure for versions of the RAM model, RAMs from this version of the
RAM model can be simulated by multi-tape Turing machines with constant-
factor space overhead.

With the instruction set of the version of the RAMmodel of computation
dealt with in this paper, a fairly realistic idealization of a real computer is
obtained. The introduced alternative to the usual time measures for versions
of the RAM model has its origin in the simple idea that the time that it takes

2In that paper and the first subsequent papers, basic thread algebra was introduced
under the name basic polarized process algebra.
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to execute an instruction from this instruction set should be based on the
number of steps that a multi-tape Turing machine with input alphabet {0, 1}
needs to simulate the instruction. It is to be expected that its instruction set
makes the version of the RAM model dealt with in this paper very practical
to the expression and analysis of many algorithms.

This paper is organized as follows. First, a survey is given of program
algebra, basic thread algebra, and an extension of their combination that
makes precise which behaviours are produced by instruction sequences under
execution (Sections 2, 3, and 4). Next, the surveyed theory is instantiated
and extended to handle interaction between instruction sequences (with
instructions for a RAM) under execution and the memory of a RAM (Sec-
tions 5 and 6). Then, in the setting of the resulting theory, it is made
precise what it means that a given instruction sequence computes a given
partial function (Section 7) and a more or less realistic version of the RAM
model of computation is described (Sections 8, 9, and 10). After that, a new
time measure and a known space measure for this model of computation
are introduced (Sections 11 and 12) and the former measure is discussed
(Section 13). Finally, some concluding remarks are made (Section 14).

In this paper, some familiarity with algebraic specification, computabil-
ity, and computational complexity is assumed. The relevant notions are
explained in many handbook chapters and textbooks, e.g. [21, 29, 33] for
the relevant notions concerning algebraic specification and [1, 26, 28] for the
relevant notions concerning computability and computational complexity.

Sections 2–4, i.e. the preliminary sections of this paper, are largely
shortened versions of Sections 2–4 of [13], which, in turn, draw from the
preliminary sections of several earlier papers.

2 Program Algebra

This section presents a survey of program algebra (PGA). A program is
perceived in PGA as a single-pass instruction sequence, i.e. a possibly infinite
sequence of instructions of which each instruction is executed at most once
and can be dropped after it has been executed or jumped over.

It is assumed that a fixed but arbitrary set A of basic instructions
has been given. A is the basis for the set of instructions that may occur
in instruction sequences. The intuition is that the execution of a basic
instruction may modify a state and must produce the value 0 or 1 as reply at
its completion. The produced reply may be state-dependent. In applications
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of PGA, the instructions taken as basic instructions vary from instructions
relating to Boolean registers to machine language instructions of actual
computers.

The set of instructions of which the instruction sequences are composed
is the set that consists of the following elements:

• for each a ∈ A, a plain basic instruction a;

• for each a ∈ A, a positive test instruction +a;

• for each a ∈ A, a negative test instruction −a;

• for each l ∈ N, a forward jump instruction #l;

• a termination instruction !.

We write I for this set. The elements from this set are called primitive
instructions.

On execution of an instruction sequence, the primitive instructions of
which it is composed have the following effects:

• the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if
the produced reply is 1 and otherwise the next primitive instruction is
skipped and execution proceeds with the primitive instruction following
the skipped one — inaction occurs if there is no primitive instruction
to proceed with;

• the effect of a negative test instruction −a is the same as the effect of
+a, but with the role of the produced reply reversed;

• the effect of a plain basic instruction a is the same as the effect of +a,
but execution always proceeds as if the produced reply is 1;

• the effect of a forward jump instruction #l is that execution proceeds
with the lth next primitive instruction — inaction occurs if l equals 0
or there is no primitive instruction to proceed with;

• the effect of the termination instruction ! is that execution terminates.

The phrase “inaction occurs” indicates that no more basic instructions are
executed, but execution does not terminate.

PGA has one sort: the sort IS of instruction sequences. To build terms
of sort IS, PGA has the following constants and operators:
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• for each u ∈ I, the instruction constant u :→ IS ;

• the binary concatenation operator ; : IS× IS → IS ;

• the unary repetition operator ω : IS → IS .

Terms of sort IS are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort IS, including X,Y, Z. We use infix
notation for concatenation and postfix notation for repetition.

A PGA term in which the repetition operator does not occur is called
a repetition-free PGA term.

One way of thinking about closed PGA terms is that they represent
non-empty, possibly infinite sequences of primitive instructions with finitely
many distinct suffixes. Let t and t′ be closed PGA terms representing
instruction sequences s and s′. Then the operators of PGA can be explained
as follows:

• t ; t′ represents the concatenation of s and s′;

• tω represents s concatenated infinitely many times with itself.

The axioms of PGA are given in Table 1. In this table, u, u1, . . . , uk and
v1, . . . , vk′+1 stand for arbitrary primitive instructions from I, k, k′, and l
stand for arbitrary natural numbers from N, and n stands for an arbitrary
natural number from N1.

3 For each n ∈ N1, the term tn, where t is a PGA
term, is defined by induction on n as follows: t1 = t, and tn+1 = t ; tn.

Table 1: Axioms of PGA
(X ; Y ) ; Z = X ; (Y ; Z) PGA1

(Xn)ω = Xω PGA2

Xω ; Y = Xω PGA3

(X ; Y )ω = X ; (Y ;X)ω PGA4

#k+1 ; u1 ; . . . ; uk ; #0 = #0 ; u1 ; . . . ; uk ; #0 PGA5

#k+1 ; u1 ; . . . ; uk ; #l = #l+k+1 ; u1 ; . . . ; uk ; #l PGA6

(#l+k+1 ; u1 ; . . . ; uk)
ω = (#l ; u1 ; . . . ; uk)

ω PGA7

#l+k+k′+2 ; u1 ; . . . ; uk ; (v1 ; . . . ; vk′+1)
ω =

#l+k+1 ; u1 ; . . . ; uk ; (v1 ; . . . ; vk′+1)
ω PGA8

3We write N1 for the set {n ∈ N | n ≥ 1} of positive natural numbers.
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Let t and t′ be closed PGA terms. Then t = t′ is derivable from the
axioms of PGA iff t and t′ represent the same instruction sequence after
changing all chained jumps into single jumps (which corresponds to applying
axioms PGA5 and PGA6) and making all jumps as short as possible (which
corresponds to applying axioms PGA7 and PGA8). Moreover, t = t′ is deriv-
able from PGA1–PGA4 iff t and t′ represent the same instruction sequence.

The informal explanation of closed PGA terms as sequences of primitive
instructions given above can be looked upon as a sketch of the intended
model of axioms PGA1–PGA4. This model, which is described in detail in,
for example, [7], is an initial model of axioms PGA1–PGA4. Henceforth,
the instruction sequences of the kind considered in PGA are called PGA
instruction sequences.

3 Basic Thread Algebra for
Finite and Infinite Threads

In this section, we introduce basic thread algebra (BTA) and an extension
of BTA that reflects the idea that infinite threads are identical if their
approximations up to any finite depth are identical.

BTA is concerned with mathematical objects that model in a direct
way the behaviours produced by PGA instruction sequences under execution.
The objects in question are called threads. A thread models a behaviour that
consists of performing basic actions in a sequential fashion. Upon performing
a basic action, a reply from an execution environment determines how the
behaviour proceeds subsequently. The possible replies are the values 0 and 1.

The basic instructions from A are taken as basic actions. Besides, tau
is taken as a special basic action. It is assumed that tau /∈ A. We write Atau

for A ∪ {tau}.
BTA has one sort: the sort T of threads. To build terms of sort T, BTA

has the following constants and operators:

• the inaction constant D :→T;

• the termination constant S :→T;

• for each α ∈ Atau, the binary postconditional composition operator
�α� :T×T → T.

Terms of sort T are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort T, including x, y, z. We use infix
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notation for postconditional composition. We introduce basic action prefixing
as an abbreviation: α ◦ t, where α ∈ Atau and t is a BTA term, abbreviates
t�α� t. We treat an expression of the form α ◦ t and the BTA term that it
abbreviates as syntactically the same.

Closed BTA terms are considered to represent threads. The constants
of BTA can be explained as follows:

• D represents the thread that models inactive behaviour, i.e. the be-
haviour that performs no more basic actions and does not terminate
either;

• S represents the thread that models the behaviour that does nothing
else but terminate.

Let t and t′ be closed BTA terms representing threads r and r′. Then the
operators of PGA can be explained as follows:

• t�α� t′ represents the thread that models the behaviour that first
performs α and then proceeds as the behaviour modeled by r if the
reply from the execution environment is 1 and otherwise proceeds as
the behaviour modeled by r′.

BTA has only one axiom. This axiom is given in Table 2. It tells us that
performing tau, which is considered performing an internal action, always
leads to the reply 1.

Table 2: Axiom of BTA
x� tau� y = tau ◦ x T1

Each closed BTA term represents a finite thread, i.e. a thread with
a finite upper bound to the number of basic actions that it can perform.
Infinite threads, i.e. threads without such a finite upper bound, can be
defined by means of a set of recursion equations, i.e. a set {xi = ti | i ∈ I},
where I is an index set, each xi is a variable of sort T, each ti is a BTA term
in which only variables from {xi | i ∈ I} occur, and xi ̸= xj for all i, j ∈ I
with i ̸= j. A regular thread is a finite or infinite thread that can be defined
by means of a finite set of recursion equations. The behaviours produced
by PGA instruction sequences under execution are exactly the behaviours
modeled by regular threads.

Two infinite threads are considered identical if their approximations
up to any finite depth are identical. The approximation up to depth n of a



Program Algebra for Random Access Machine Programs 293

thread models the behaviour that differs from the behaviour modeled by the
thread in that it will become inactive after it has performed n actions unless
it would terminate at this point. The approximation induction principle
(AIP) is a conditional equation that formalizes the above-mentioned view
on infinite threads. In AIP, the approximation up to depth n is phrased in
terms of the unary projection operator πn :T → T.

The axioms for the projection operators and AIP are given in Table 3. In
this table, α stands for an arbitrary basic action from Atau and n stands for
an arbitrary natural number from N. We write BTA∞ for BTA extended with
the projection operators, the axioms for the projection operators, and AIP.

Table 3: Axioms for the projection operators and AIP
π0(x) = D PR1

πn+1(D) = D PR2

πn+1(S) = S PR3

πn+1(x�α� y) = πn(x)�α� πn(y) PR4∧
n≥0 πn(x) = πn(y) ⇒ x = y AIP

Because we have to deal with conditional equational formulas with
a countably infinite number of premises in BTA∞, it is understood that
infinitary conditional equational logic is used in deriving equations from the
axioms of BTA∞. A complete inference system for infinitary conditional
equational logic can be found in [3, 32, 22].

The depth of a finite thread is the maximum number of basic actions
that it can perform before it terminates or becomes inactive. We define the
function depth that assigns to each closed BTA term the depth of the finite
thread that it represents recursively as follows:

depth(S) = 0 ,

depth(D) = 0 ,

depth(t�α� t′) = max{depth(t), depth(t′)}+ 1 .

4 Thread Extraction from Instruction Sequences

In this section, we make precise in the setting of BTA∞ which behaviours
are produced by PGA instruction sequences under execution.
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To make precise which behaviours are produced by PGA instruction
sequences under execution, we introduce an operator | |. For each closed
PGA term t, |t| represents the thread that models the behaviour produced
by the instruction sequence represented by t under execution.

Formally, we combine PGA with BTA∞ and extend the combination
with the thread extraction operator | | : IS → T and the axioms given in
Table 4. In this table, a stands for an arbitrary basic instruction from A, u
stands for an arbitrary primitive instruction from I, and l stands for an
arbitrary natural number from N. We write PGA/BTA∞ for the combination
of PGA and BTA∞ extended with the thread extraction operator and the
axioms for the thread extraction operator.

Table 4: Axioms for the thread extraction operator
|a| = a ◦ D TE1

|a ;X| = a ◦ |X| TE2

|+a| = a ◦ D TE3

|+a ;X| = |X|�a� |#2 ;X| TE4

|−a| = a ◦ D TE5

|−a ;X| = |#2 ;X|�a� |X| TE6

|#l| = D TE7

|#0 ;X| = D TE8

|#1 ;X| = |X| TE9

|#l + 2 ; u| = D TE10

|#l + 2 ; u ;X| = |#l + 1 ;X| TE11

|!| = S TE12

|! ;X| = S TE13

As mentioned in Section 2, on execution of an instruction sequence,
inaction occurs if there is no primitive instruction to proceed with. That is
why D occurs in axioms TE1, TE3, TE5, TE7, and TE10.

If a closed PGA term t represents an infinite instruction sequence, then
we can extract the approximations of the thread modeling the behaviour
produced by that instruction sequence under execution up to every finite
depth: for each n∈N, there exists a closed BTA term t′′ such that πn(|t|) = t′′

is derivable from axioms PGA1–PGA8, PR1–PR4, and TE1–TE13. If closed
PGA terms t and t′ represent infinite instruction sequences that produce the
same behaviour under execution, then this can be proved using the following
instance of AIP:

∧
n≥0 πn(|t|) = πn(|t′|) ⇒ |t| = |t′|.

If a closed PGA term t represents an instruction sequence that starts
with an infinite chain of forward jumps, then TE9 and TE11 can be applied
to |t| infinitely often without ever showing that a basic action is performed.
In this case, we have to do with inaction and, being consistent with that,
|t| = D is derivable from axioms PGA1–PGA8, PR1–PR4, AIP, and TE1–
TE13. By contrast, |t| = D is not derivable from axioms PGA1–PGA4,
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PR1–PR4, AIP, and TE1–TE13. However, if closed PGA terms t and t′

represent instruction sequences in which no infinite chains of forward jumps
occur, then t = t′ is derivable from the axioms of PGA only if |t| = |t′| is
derivable from PGA1–PGA4, PR1–PR4, AIP, and TE1–TE13.

The following proposition, proved in [7], puts the expressiveness of PGA
in terms of producible behaviours.

Proposition 1 Let M be a model of PGA/BTA∞. Then, for each element r
from the domain associated with the sort T in M, there exists a closed PGA
term t such that the interpretation of |t| in M is r iff r can be defined by
means of a finite set of recursion equations.

PGA instruction sequences are behaviourally equivalent if they produce
the same behaviour under execution. Instruction sequences are behaviourally
congruent if they produce the same behaviour irrespective of the way they
are entered and the way they are left during execution (see also [4, 7]).

5 Basic Instructions for Random Access Machines

PGA instruction sequences under execution may interact with components
of their execution environment. The execution environment components
vary from one application of PGA to another. In this section, we consider
basic instruction for the case where the execution environment components
are memories of RAMs.

The memory of a RAM consists of a countably infinite number of
registers which are numbered by natural numbers. Each register is capable
of containing a bit string of arbitrary length. The contents of the registers
constitute the state of the memory.

A RAM memory state is a function σ : N → {0, 1}∗ that satisfies the
condition that there exists a i ∈ N such that, for all j ∈ N, σ(i+ j) = ϵ.4

We write Σrm for the set of all RAM memory states, and we write σϵ for the
unique σ ∈ Σrm such that σ(i) = ϵ for all i ∈ N.

Let σ be a RAM memory state. Then, for all i ∈ N, σ(i) is the content
of the register with number i in memory state σ. The condition expresses
that the part of the memory that is actually in use remains finite.

Henceforth, we will use the notation (σ : i1 7→w1, . . . , in 7→wn). For each
σ:N→{0, 1}∗, i1, . . . , in∈N, and w1, . . . , wn∈{0, 1}∗, (σ:i1 7→w1, . . . , in 7→wn)

4We write ϵ for the empty bit string.
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is the function σ′:N→{0, 1}∗ defined as follows: σ′(i1) = w1, . . . , σ
′(in) = wn,

and, for all j ∈ N with j /∈ {i1, . . . , in}, σ′(j) = σ(j).
The execution of an instruction by a RAM may change the memory

state of the RAM and must produce the value 0 or 1 as reply.
The set of basic instructions used in this case consists of a basic RAM

instruction p/q for each p : Σrm → {0, 1} and q : Σrm → Σrm that satisfy the
following conditions (which are explained below) for all σ ∈ Σrm:

(a) there exists at most one i ∈ N for which there exists a w ∈ {0, 1}∗ such
that σ(i) ̸= w and p(σ) ̸= p((σ : i 7→ w)),

(b) there exists at most one i ∈ N for which σ(i) ̸= q(σ)(i),

(c) if there exists an i ∈ N for which there exists a w ∈ {0, 1}∗ such
that σ(i) ̸= w and p(σ) ̸= p((σ : i 7→ w)) and there exists an i ∈ N
for which σ(i) ̸= q(σ)(i), then there exists an i ∈ N for which there
exists a w ∈ {0, 1}∗ such that σ(i) ̸= w and p(σ) ̸= p((σ : i 7→ w)) and
σ(i) ̸= q(σ)(i).

We write Aram for this set.
Each basic RAM instruction leads to carrying out an operation on a

RAM memory when the instruction is executed. The intuition is basically
that carrying out the operation modifies the content of a single register of
the RAM memory and produces the value 0 or 1 as reply depending on
the content of this register. More precisely, the execution of a basic RAM
instruction p/q has the following effects:

• if the RAM memory state is σ when the execution of p/q starts, then
the reply produced on termination of the execution of p/q is p(σ);

• if the RAM memory state is σ when the execution of p/q starts, then
the RAM memory state is q(σ) when the execution of p/q terminates.

Condition (a) expresses that a basic RAM instruction does not produce a
reply that depends on the content of more than one register. Condition (b)
expresses that a basic RAM instruction does not modify the content of more
than one register. Condition (c) expresses that a basic RAM instruction
produces a reply that depends on the content of a register and modifies
the content of a register only if the former register is the same as the
latter register.

A function from Σrm to {0, 1} for which condition (a) trivially holds
is the function 1 defined by 1(σ) = 1. A function from Σrm to Σrm for
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which condition (b) trivially holds is the function i defined by i(σ) = σ.
From Section 9, only basic RAM instruction of the forms 1/q and p/ i
are considered.

We write [PGA/BTA∞](Aram) for PGA/BTA∞ with A instantiated
by Aram.

6 Interaction of Threads with RAM Memories

If instructions from Aram are taken as basic instructions, a PGA instruction
sequence under execution may interact with the memory of a RAM. In line
with this kind of interaction, a thread may perform a basic action basically
for the purpose of changing the memory state of a RAM or receiving a reply
that depends on the memory state of a RAM. In this section, we introduce
related constants and operators.

We extend PGA/BTA∞(Aram) with the sort RM of RAM memories,
the following operators:

• for each σ ∈ Σrm ∪ {∗}, the RAM memory constant rm(σ) :→RM;

• the binary use operator / :T×RM → T;

• the binary apply operator • :T×RM → RM;

and the axioms given in Tables 5.5 In these tables, p stands for an arbi-
trary function from Σrm to {0, 1}, q stands for an arbitrary function from
Σrm to Σrm, σ stands for an arbitrary RAM memory state from Σrm, n
stands for an arbitrary natural number from N, and t and t′ stand for
arbitrary terms of sort RM. Moreover, u is assumed to be a variable of
sort RM. We use infix notation for the use and apply operators. We write
PGA/BTA∞/RAM for [PGA/BTA∞](Aram) extended with the sort RM,
the RAM memory constants, the use operator, the apply operator, and the
axioms for these operators.

Axioms U1–U6 and A1–A6 formalize the informal explanation of the
use operator and the apply operator given below and in addition stipulate
what is the result of use and apply if an inoperative RAM memory is involved
(U6 and A6). Axioms U7 and A7 allow for reasoning about infinite threads,
and therefore about the behaviour produced by infinite instruction sequences
under execution, in the context of use and apply, respectively.

5We write t[t′/x] for the result of substituting term t′ for variable x in term t.
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Table 5: Axioms for the use and apply operator
S / u = S U1

D / u = D U2

(tau ◦ x) / u = tau ◦ (x / u) U3

(x�p/q� y) / rm(σ) = tau ◦ (x / rm(q(σ))) if p(σ) = 1 U4

(x�p/q� y) / rm(σ) = tau ◦ (y / rm(q(σ))) if p(σ) = 0 U5

(x�p/q� y) / rm(∗) = tau ◦ D U6

πn(x / u) = πn(x) / u U7

S • u = u A1

D • u = rm(∗) A2

(tau ◦ x) • u = tau ◦ (x • u) A3

(x�p/q� y) • rm(σ) = x • rm(q(σ)) if p(σ) = 1 A4

(x�p/q� y) • rm(σ) = y • rm(q(σ)) if p(σ) = 0 A5

(x�p/q� y) • rm(∗) = rm(∗) A6∧
k≥n t[πk(x)/z] = t′[πk(y)/z] ⇒ t[x/z] = t′[y/z] A7

The RAM memory denoted by a closed term of the form rm(σ), where
σ ∈ Σrm, is an operative RAM memory whose state is σ. The RAM memory
denoted by a closed term of the form rm(∗) is an inoperative RAM memory.
An inoperative RAM memory can be viewed as a RAM memory whose state
is unavailable. Carrying out an operation on an inoperative RAM memory
is impossible.

On interaction between a thread and a RAM memory, the thread
affects the RAM memory and the RAM memory affects the thread. The
use operator concerns the effects of a RAM memory on a thread and the
apply operator concerns the effects of a thread on a RAM memory. The
thread denoted by a closed term of the form t / t′ and the RAM memory
denoted by a closed term of the form t • t′ are the thread and RAM memory,
respectively, that result from carrying out the operations that go with the
basic actions performed by the thread denoted by t on the RAM memory
denoted by t′. When the operation that goes with a basic action performed
by a thread is carried out on a RAM memory, the state of the RAM memory
is changed according to the operation concerned and the thread is affected as
follows: the basic action turns into the internal action tau and the two ways
to proceed reduce to one on the basis of the reply produced according to the
operation concerned. Thus, the internal action tau is left as a trace of each
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basic action that has led to carrying out an operation on the RAM memory.

The following two elimination results for closed PGA/BTA∞/RAM
terms are proved similarly to Theorems 1 and 2 from [14].

Proposition 2 For all closed PGA/BTA∞/RAM terms t of sort T in
which all subterms of sort IS are repetition-free, there exists a closed
[PGA/BTA∞](Aram) term t′ of sort T such that t = t′ is derivable from the
axioms of PGA/BTA∞/RAM.

Proposition 3 For all closed PGA/BTA∞/RAM terms t of sort RM
in which all subterms of sort IS are repetition-free, there exists a closed
[PGA/BTA∞](Aram) term t′ of sort RM such that t = t′ is derivable from
the axioms of PGA/BTA∞/RAM.

7 Computing Partial Functions
from ({0, 1}∗)n to {0, 1}∗

In this section, we make precise in the setting of the algebraic theory
PGA/BTA∞/RAM what it means that a given instruction sequence com-
putes a given partial function from ({0, 1}∗)n to {0, 1}∗ (n ∈ N).

We use the notation f :A 7→ B to indicate that f is a partial function
from A to B. We write ℓ(w), where w ∈ {0, 1}∗, for the length of w.

Let t be a closed PGA/BTA∞/RAM term of sort IS, let n ∈ N, let
F : ({0, 1}∗)n 7→ {0, 1}∗, and let T : N → N. Then t computes F in time T
under the uniform time measure if:

• for all w1, . . . , wn ∈ {0, 1}∗ such that F (w1, . . . , wn) is defined, there
exists a σ ∈ Σrm such that:

|t| • rm((σϵ : 1 7→ w1, . . . , n 7→ wn)) = rm((σ : 0 7→ F (w1, . . . , wn))) ,

depth(|t| / rm((σϵ : 1 7→ w1, . . . , n 7→ wn))) ≤ T (ℓ(w1) + . . .+ ℓ(wn)) ;

• for all w1, . . . , wn ∈ {0, 1}∗ such that F (w1, . . . , wn) is undefined:

|t| • rm((σϵ : 1 7→ w1, . . . , n 7→ wn)) = rm(∗) .

We say that t computes F if there exists a T :N → N such that t computes F
in time T under the uniform time measure.
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With the above definition, we can establish whether an instruction
sequence of the kind considered in PGA/BTA∞/RAM computes a given
partial function from ({0, 1}∗)n to {0, 1}∗ (n ∈ N) mainly by equational
reasoning using the axioms of PGA/BTA∞/RAM. The axioms for the apply
operator given in Table 5, i.e. axioms A1–A7, are instrumental in that.

The setting provided by PGA/BTA∞/RAM is more general than the
setting provided by any known version of the RAM model of computation.
PGA/BTA∞/RAM is not suitable as a model of computation itself, but
virtually all known versions of the RAM model of computation can be
dealt with by imposing restrictions on the set of basic RAM instructions
(Aram). Investigations of issues in areas such as computational complexity
and analysis of algorithms require restriction to instructions that are found
to be sufficiently primitive. Without any restriction on Aram, we even have
that, for each computable F : ({0, 1}∗)n 7→ {0, 1}∗, there exists a closed
PGA/BTA∞/RAM term t of sort IS such that t computes F in one step.

Restriction of the set of basic RAM instructions to instructions, with
both direct and indirect addressing of registers, to carry out addition by one
on natural numbers, to carry out comparisons of natural numbers on equal
to and greater than, and to copy natural numbers (identifying bit strings
with the natural numbers that they represent) gives rise to the version of
the RAM model of computation known as the successor RAM model. The
basic instructions of a successor RAM are clearly very primitive, but as a
consequence of that a successor RAM is not a very realistic idealization of
a real computer. In Section 8, we present a set of basic RAM instructions
that yields a much more realistic idealization of a real computer.

Whatever version of the RAM model of computation is obtained
by restriction of the set of basic RAM instructions considered in
PGA/BTA∞/RAM, it is an idealization of a real computer in the sense
that its memory offers an unbounded number of registers that can contain a
bit string of arbitrary length instead of a bounded number of registers that
can only contain a bit string of a fixed length.

8 Basic Instructions for
More or Less Realistic RAMs

In this section, we introduce a set of basic RAM instructions that give rise
to a version of the RAM model of computation that is a fairly realistic
idealization of a real computer.
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In general, the execution of an instruction by a real computer changes
the memory state of the computer by carrying out a certain operation on the
contents of certain registers and changing the content of a certain register into
the result of this. We use a special notation reflecting this for the restricted
set of basic RAM instructions with which a fairly realistic idealization of a
real computer is obtained. This restricted set of basic RAM instructions
consists of all basic RAM instructions that have one of the following forms
in the special notation:

binop:s1:s2:d or unop:s1:d or cmpop:s1:s2 ,

where
binop ∈ {add, sub,mul, div, and, or, xor} ,

unop ∈ {not, shl, shr, rol, ror,mov} ,

cmpop ∈ {eq, gt} .

and

s1 has one of the following forms: #i or i or @i, where i ∈ N,
s2 has one of the following forms: #i or i or @i, where i ∈ N,
d has one of the following forms: i or @i, where i ∈ N,

We write Asr
ram for this set of basic RAM instructions. Moreover, we write

Src for the set {#i | i ∈ N}∪N∪{@i | i ∈ N}, Dst for the set N∪{@i | i ∈ N},
and Csr

ram for the set {cmpop:s1:s2 | cmpop ∈ {eq, gt} ∧ s1, s2 ∈ Src}.
The following is a preliminary explanation of basic RAM instructions

of the different forms:

• on execution of an instruction of the form binop:s1:s2:d , the binary
operation named binop is carried out on the values given by s1 and s2
and the content of the register given by d is changed into the result of
this;

• on execution of an instruction of the form unop:s1:d , the unary op-
eration named unop is carried out on the value given by s1 and the
content of the register given by d is changed into the result of this;

• on execution of an instruction of the form cmpop:s1:s2, the comparison
operation named cmpop is carried out on the values given by s1 and
s2 and the result of this is produced as reply.
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For each of the basic RAM instructions from Asr
ram, each operand of the

operation to be carried out on its execution is given in one the following
three ways:

• immediate: it is the shortest bit string representing the natural number
i if s is of the form #i;

• direct addressing : it is the content of the register with number i if s is
of the form i;

• indirect addressing : it is the content of the register whose number is
represented by the content of the register with number i if s is of the
form @i.

Except for the comparison instructions, the result of the operation concerned
becomes the content of a register in one the following two ways:

• direct addressing : it becomes the content of the register with number
i if d is of the form i;

• indirect addressing : it becomes the content of the register whose
number is represented by the content of the register with number i if
d is of the form @i.

As mentioned above, in the case of comparison instructions, the result of
the operation concerned becomes the reply produced.

The following kinds of instructions are included in Asr
ram:

• arithmetic instructions (add, sub,mul, div) for carrying out operations
that model arithmetic operations on natural numbers with respect to
their binary representation by bit strings;

• logical instructions (and, or, xor, not) for carrying out bitwise logical
operations on bit strings;

• shift/rotate instructions (shl, shr, rol, ror) for carrying out bit shift and
rotate operations on bit strings;

• data transfer instructions (mov) for copying bit strings;

• comparison instructions (eq, gt) for carrying out comparison operations
on bit strings.
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Data transfer instructions can be interpreted as instructions for carrying out
the identity operation on bit strings.

Virtually all common general-purpose instructions of real computers
are essentially variants of the basic RAM instructions from Asr

ram. Therefore,
we believe that Asr

ram yields a version of the RAM model of computation
that is a fairly realistic idealization of a real computer.

Above, a special notation is used for the basic RAM instructions from
the set Asr

ram. In order to use the version of the RAM model of computation
with this set of basic RAM instructions in the setting of PGA/BTA∞/RAM,
the special notation must be related to the notation used in that setting.

9 More or Less Realistic RAM Instructions and
PGA/BTA∞/RAM

In this section, we relate the special notation for basic RAM instructions
used in Section 8 to the notation used in the setting of PGA/BTA∞/RAM.

We start with defining auxiliary functions for conversion between natural
numbers and bit strings and evaluation of the elements of Src and Dst .

We write ·− for proper subtraction of natural numbers. We write ÷ for
zero-totalized Euclidean division of natural numbers, i.e. Euclidean division
made total by imposing that division by zero yields zero (like in meadows,
see e.g. [16, 5]). We use juxtaposition for concatenation of bit strings.

The natural to bit string function b : N → {0, 1}∗ is recursively defined
as follows:

b(b) = b and b(n) = (n mod 2)b(n÷ 2) if n > 1

and the bit string to natural function n : {0, 1}∗ → N is recursively defined
as follows:

n(ϵ) = 0 and n(bw) = 2 · n(w) + b.

These definitions tell us that, when viewed as the binary representation of a
natural number, the first bit of a bit string is considered the least significant
bit. Results of applying b have no leading zeros, but the operand of n may
have leading zeros. Thus, we have that n(b(n)) = n and b(n(w)) = w′,
where w′ is w without leading zeros.

For each σ ∈ Σrm, the src-valuation in σ function vσ : Src → {0, 1}∗ is
defined as follows:
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vσ(#i) = b(i), vσ(i) = σ(i), and vσ(@i) = σ(n(σ(i)))

and, for each σ ∈ Σrm, the dst-valuation in σ function rσ :Dst → N is defined
as follows:

rσ(i) = i and rσ(@i) = n(σ(i)).

We define the operations on bit strings that the operation names add,
sub, mul, and div refer to as follows:

+ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗: w1 + w2 = b(n(w1) + n(w2));

·− : {0, 1}∗ × {0, 1}∗ → {0, 1}∗: w1
·− w2 = b(n(w1) ·− n(w2));

· : {0, 1}∗ × {0, 1}∗ → {0, 1}∗: w1 · w2 = b(n(w1) · n(w2));

÷ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗: w1 ÷ w2 = b(n(w1)÷ n(w2)).

These definitions tell us that, although the operands of the operations +, ·−,
·, and ÷ may have leading zeros, results of applying these operations have
no leading zeros.

We define the operations on bit strings that the operation names and,
or, xor, and not refer to recursively as follows:

∧ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗: ϵ ∧ ϵ = ϵ, ϵ ∧ (bw) = 0(ϵ ∧ w),

(bw) ∧ ϵ = 0(w ∧ ϵ), (b1w1) ∧ (b2w2) = (b1 ∧ b2)(w1 ∧ w2);

∨ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗: ϵ ∨ ϵ = ϵ, ϵ ∨ (bw) = b(ϵ ∨ w),

(bw) ∨ ϵ = b(w ∨ ϵ), (b1w1) ∨ (b2w2) = (b1 ∨ b2)(w1 ∨ w2);

⊕ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗: ϵ⊕ ϵ = ϵ, ϵ⊕ (bw) = b(ϵ⊕ w),

(bw)⊕ ϵ = b(w ⊕ ϵ), (b1w1)⊕ (b2w2) = (b1 ⊕ b2)(w1 ⊕ w2);

¬ : {0, 1}∗ → {0, 1}∗: ¬ϵ = ϵ, ¬(bw) = (¬b)(¬w).

These definitions tell us that, if the operands of the operations ∧, ∨, and ⊕
do not have the same length, sufficient leading zeros are assumed to exist.
Moreover, results of applying these operations and results of applying ¬ can
have leading zeros.

We define the operations on bit strings that the operation names shl,
shr, rol, and ror refer to as follows:

≪ : {0, 1}∗ → {0, 1}∗: ≪ϵ = ϵ, ≪(bw) = 0bw;

≫ : {0, 1}∗ → {0, 1}∗: ≫ϵ = ϵ, ≫(bw) = w;

<◦ : {0, 1}∗ → {0, 1}∗: <◦ϵ = ϵ, <◦(wb) = bw;

◦> : {0, 1}∗ → {0, 1}∗: ◦>ϵ = ϵ, ◦>(bw) = wb.
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These definitions tell us that results of applying the operations ≪ , ≫ ,
<◦ , and ◦> can have leading zeros. We have that n(≪w) = n(w) · 2 and
n(≫w) = n(w)÷ 2.

Now, we are ready to relate the special notation for basic RAM
instructions used in Section 8 to the notation used in the setting of
PGA/BTA∞/RAM:

add:s1:s2:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ vσ(s1) + vσ(s2));

sub:s1:s2:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ vσ(s1) ·− vσ(s2));

mul:s1:s2:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ vσ(s1) · vσ(s2));
div:s1:s2:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ vσ(s1)÷ vσ(s2));

and:s1:s2:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ vσ(s1) ∧ vσ(s2));

or:s1:s2:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ vσ(s1) ∨ vσ(s2));

xor:s1:s2:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ vσ(s1)⊕ vσ(s2));

not:s1:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ ¬vσ(s1));

shl:s1:d stands for 1/q where q(σ) = (σ : rσ(d) 7→≪vσ(s1));

shr:s1:d stands for 1/q where q(σ) = (σ : rσ(d) 7→≫vσ(s1));

rol:s1:d stands for 1/q where q(σ) = (σ : rσ(d) 7→<◦vσ(s1));
ror:s1:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ ◦>vσ(s1));

mov:s1:d stands for 1/q where q(σ) = (σ : rσ(d) 7→ vσ(s1));

eq:s1:s2 stands for p/ i where p(σ) = 1 iff n(vσ(s1)) = n(vσ(s2));

gt:s1:s2 stands for p/ i where p(σ) = 1 iff n(vσ(s1)) > n(vσ(s2)).

10 Semi-Realistic RAM Programs

In this section, we introduce a version of the RAM model of computation
that is intended to be a more or less realistic idealization of a real computer.
This version is obtained by restriction of the set of basic RAM instructions
considered in PGA/BTA∞/RAM.

A semi-realistic RAM program, called an SRRAM program for short, is
a closed PGA/BTA∞/RAM term of sort IS that is of the form (t1 ; . . . ; tn)

ω,
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where each ti has one of the following forms:

a where a ∈ Asr
ram \ Csr

ram;

+a ; #l where a ∈ Csr
ram and l ∈ N;

#l where l ∈ N;
!.

In the SRRAM model of computation, machines, called SRRAMs, consist of
an SRRAM program together with a RAM memory on which it operates
during execution.

A standard RAM program is an SRRAM program in which only addition
instructions, subtraction instructions, data transfer instructions, and compar-
ison instructions occur (cf. [19]). A successor RAM program is an SRRAM
program in which only addition instructions of the form add:s1:#1:d, data
transfer instructions, and comparison instructions occur (cf. [30]).

The following theorem is a result concerning the computational power
of SRRAM programs.

Theorem 1 For each F : ({0, 1}∗)n 7→ {0, 1}∗, there exists an SRRAM
program P such that P computes F iff F is Turing-computable.

Proof: The SRRAM model of computation is essentially the same as
the MBRAM model of computation from [31] extended with shift/rotate
instructions. It follows directly from simulation results mentioned in [31]
(part (5) of Theorem 2.4, part (1) of Theorem 2.5, and part (3) of Theo-
rem 2.6) that each MBRAM can be simulated by a Turing machine and vice
versa. Because each Turing machine can be simulated by a MBRAM, we
immediate have that each Turing machine can be simulated by an SRRAM.
It is easy to see that the shift/rotate instructions can be simulated by a
Turing machine. From this and the fact that each MBRAM can be simulated
by a Turing machine, it follows that each SRRAM can be simulated by
a Turing machine as well. Hence, each SRRAM is Turing equivalent to a
Turing machine. From this, the theorem follows immediately. 2

Below, we write POLY for {T | T :N → N∧T is a polynomial function}.
The following theorem is a result relating the complexity classPSPACE

to the functions from {0, 1}∗ to {0, 1} that can be computed by an SRRAM
program in polynomial time.
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Theorem 2 For each F :{0, 1}∗ → {0, 1}, there exist an SRRAM program P
and a T ∈ POLY such that P computes F in time T under the uniform
time measure iff F ∈ PSPACE.

Proof: The SRRAM model of computation is essentially the same as
the MRAM model of computation from [24] extended with division and
shift/rotate instructions. We know from the main result of that paper that,
for each F : {0, 1}∗ → {0, 1}, there even exists an SRRAM program P in
which division and shift/rotate instructions do not occur and a T ∈ POLY
such that P computes F in time T under the uniform time measure iff
F ∈ PSPACE. 2

Theorem 2 tell us that all decision problems that belong to PSPACE can
be solved by means of a SRRAM program in polynomial time. This means
that it is highly questionable whether the SRRAM model of computation is
a reasonable model of computation. However, it can be made a reasonable
model by switching from the uniform time measure to another time measure.
Such a time measure is introduced in Section 11.

The proof of Theorem 2 reveals that the theorem still holds if division
and shift/rotate instructions are excluded from the SRRAM programs. It
turns out that we get another result if multiplication instructions are excluded
as well.

Theorem 3 For each F :{0, 1}∗ → {0, 1}, there exist an SRRAM program P
in which multiplication, division, and shift/rotate instructions do not occur
and a T ∈ POLY such that P computes F in time T under the uniform
time measure iff F ∈ P.

Proof: The model of computation obtained by excluding multiplication,
division, and shift/rotate instructions from the SRRAM programs is the
standard RAM model of computation extended with logical instructions.
From Theorem 2 in [19], we know that time complexity on standard RAMs
under the uniform time measure and time complexity on multi-tape Tur-
ing machines are polynomially related. It is easy to see that the logical
instructions can be simulated by a multi-tape Turing machine in linear time.
Hence, the time complexities remain polynomially related if the standard
RAM model is extended with logical instructions. From this, the theorem
follows immediately. 2
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11 A Bit-Oriented Time Measure
for SRRAM Programs

In this section, we introduce a time measure for the SRRAM model of
computation that has it origin in the idea that the time that it takes to
execute an instruction on an SRRAM should be based on the number of
steps that a multi-tape Turing machine with input alphabet {0, 1} needs to
simulate the instruction. The choice have been made to make use of well-
known upper bounds, but lesser upper bounds could have been used instead.

We write CT for the set of all closed PGA/BTA∞/RAM terms of sort T.
We define a family c of partial non-uniform cost functions cσ : CT 7→ N,

one for each σ ∈ Σrm, recursively as follows:

cσ(S) = 0 ,

cσ(t�p/q� t′) = cσ(p/q) + cq(σ)(t) if p(σ) = 1 ,

cσ(t�p/q� t′) = cσ(p/q) + cq(σ)(t
′) if p(σ) = 0 ,

where the family of partial functions cσ : Aram 7→ N (defined for all basic
RAM instructions from Asr

ram), one for each σ ∈ Σrm, is defined as follows:

cσ(binop:s1:s2:d) = max{cσ(s1), cσ(s2)}+ c′σ(d) if binop /∈ {mul, div} ,

cσ(binop:s1:s2:d) = cσ(s1) · cσ(s2) + c′σ(d) if binop ∈ {mul, div} ,

cσ(unop:s1:d) = cσ(s1) + c′σ(d) ,

cσ(cmpop:s1:s2) = max{cσ(s1), cσ(s2)} ,

where the family of total functions cσ : Src → N, one for each σ ∈ Σrm, is
defined as follows:6

cσ(#i) = ℓ(b(i)) ,

cσ(i) = ℓ(b(i)) + ℓ(vσ(i)) ,

cσ(@i) = ℓ(b(i)) + ℓ(vσ(i)) + ℓ(vσ(n(vσ(i))))

and the family of total functions c′σ : Dst → N, one for each σ ∈ Σrm, is
defined as follows:

c′σ(i) = ℓ(b(i)) ,

c′σ(@i) = ℓ(b(i)) + ℓ(vσ(i)) .

6Recall that ℓ(w), where w ∈ {0, 1}∗, stands for the length of w.
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Let t be a closed PGA/BTA∞/RAM term of sort IS, let n ∈ N, let
F : ({0, 1}∗)n 7→ {0, 1}∗, and let T : N → N. Then t computes F in time T
under the bit-oriented time measure if:

• for all w1, . . . , wn ∈ {0, 1}∗ such that F (w1, . . . , wn) is defined, there
exist a σ ∈ Σrm such that:

|t| • rm((σϵ : 1 7→ w1, . . . , n 7→ wn)) = rm((σ : 0 7→ F (w1, . . . , wn))) ,

c(σϵ:1 7→w1,...,n 7→wn)(|t|) ≤ T (ℓ(w1) + . . .+ ℓ(wn)) ;

• for all w1, . . . , wn ∈ {0, 1}∗ such that F (w1, . . . , wn) is undefined:

|t| • rm((σϵ : 1 7→ w1, . . . , n 7→ wn)) = rm(∗) .

Fine-tuning this definition boils down to adapting the definition of the family
of partial functions cσ :Aram 7→ N.

The parts of Theorem 2 from [19] that concern standard RAMs under
the logarithmic time measure hold also for SRRAMs under the bit-oriented
time measure.

Theorem 4 For each F : ({0, 1}∗)n 7→ {0, 1}∗:

(a) if there exist an SRRAM program P and a T : N → N such that P
computes F in time T under the bit-oriented time measure, then there
exists a multi-tape Turing machine M such that M computes F in
time O(T 2);

(b) if there exist a multi-tape Turing machine M and a T :N → N such that
M computes F in time T , then there exists an SRRAM program P
such that P computes F in time O(T · log2(T )) under the bit-oriented
time measure.

Proof: In the proof of (a), one of the working tapes of M is considered to
hold a representation of the state of the RAM memory on which P operates
during execution. A RAM memory state is represented on this working tape
by a string over the alphabet {0, 1,⊔} that belongs to the set defined by the
regular expression (⊔⊔(0 + 1)(0 + 1)∗⊔(0 + 1)(0 + 1)∗)∗. The working tape
content ⊔⊔w1⊔w

′
1 . . .⊔⊔wn⊔w

′
n⊔⊔⊔ . . . represents the RAM memory state

(σϵ : n(w1) 7→ w′
1, . . . , n(wn) 7→ w′

n).
Take arbitrary σ ∈ Σrm and i ∈ N, and let w = b(i) and w′ = vσ(i).

Then ⊔⊔w⊔w′ occurs in the representation of σ iff σ(i) ̸= ϵ. Moreover,
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ℓ(⊔⊔w⊔w′) = ℓ(b(i)) + ℓ(vσ(i)). From this and the definition of the function
cσ : Aram 7→ N, it follows readily that, if u ∈ Asr

ram and u is of the form
binop:s1:s2:i, unop:s1:i, binop:s1:s2:@j or unop:s1:@j, where vσ(j) = i, then
ℓ(⊔⊔w⊔w′) is bounded by a constant times cσ(u). From this and the fact
that P computes F in time T under the bit-oriented time measure, it follows
immediately that the length of the representation of σ on the work tape is
bounded by O(T ). This means that searching the working tape for the entry
of a register takes at most O(T ) steps. Since cσ(u) ≥ 1 for all instructions
u ∈ Asr

ram, at most O(T ) instructions are executed. Because each instruction
u ∈ Asr

ram involves a constant number of searches for register entries on the
working tape, this means that the total number of steps spent on searching
the working tape for the entries of registers is bounded by O(T 2).

The functions cσ :Aram 7→ N are defined such that, in the case that P
computes F in time T under the bit-oriented time measure, the total number
of steps that a multi-tape Turing machine needs to compute F , not counting
the steps spent on searching the working tape for the entries of registers, is
bounded by O(T ). Because the total number of steps spent on searching the
working tape for the entries of registers is bounded by O(T 2), this means
that the total number of steps that a multi-tape Turing machine needs to
compute F is bounded by O(T 2).

In the proof of (b), M is assumed to have k tapes. The state of the RAM
memory on which P operates during execution is considered to represent the
contents of the k tapes of M as follows: the content of the ith cell on the
jth tape is the content of the register with number k · i+ j + c, where c is
the number of auxiliary registers that P needs to simulate Turing machine
steps. The auxiliary registers include k registers for the positions of the k
tape heads. P can read out or alter the cells under the k tape heads by
means of indirect addressing through these position-holding registers.

It follows immediately from the definition of the functions cσ :Aram 7→ N
that, under the bit oriented time measure, the time that an SRRAM program
needs per Turing machine step is a constant plus the time spent on accessing
the registers that contain the contents of the cells under the tape heads. In
the case that M computes F in time T , the number of cells M can move
tape heads away from the starting position is bounded by T . From this, the
fact that an SRRAM program uses indirect addressing to access the registers
that contain the contents of the cells under the tape heads, and the fact
that ℓ(b(i)) = ⌊log2(i)⌋+ 1 if i > 0, it follows immediately that the time it
takes an SRRAM program computing F to access these farthest tape cells
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is bounded by O(log2(T )). Because each step of M involves accessing the
cells under its tape heads, this means that the time that a SRRAM program
needs to compute F is bounded by O(T · log2(T )). 2

The approaches to the proofs of the two parts of Theorem 4 have been
inspired by the proofs of the corresponding parts of Theorem 2 from [19].

The following corollary of Theorem 4 is a counterpart of Theorem 3.

Corollary 1 For each F : ({0, 1}∗)n → {0, 1}, there exist an SRRAM pro-
gram P and a T ∈ POLY such that P computes F in time T under the
bit-oriented time measure iff F ∈ P.

12 A Bit-Oriented Space Measure
for SRRAM Programs

In this section, we introduce for the sake of completeness a bit-oriented
space measure for the SRRAM model of computation. This space measure
originates from [31].

Let t be a closed PGA/BTA∞/RAM term of sort IS, let n ∈ N, let
F : ({0, 1}∗)n 7→ {0, 1}∗, and let S : N → N. Then t computes F in space S
if t computes F and, for all w1, . . . , wn ∈ {0, 1}∗ such that F (w1, . . . , wn)
is defined, for some m ∈ N1, there exist closed PGA/BTA∞/RAM terms
t1, . . . , tm of sort T and RAM memory states σ1, . . . , σm such that:

• t1 = |t|;

• tm = S;

• σ1(i) = ϵ for all i ∈ N with i /∈ {1, . . . , n};

• σj(i) = wi for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m};

• σm(0) = F (w1, . . . , wn);

• for all j ∈ {1, . . . ,m}, tj • rm(σj) = tj+1 • rm(σj+1) is a closed substi-
tution instance of an instance of axiom schema A4 or A5;

• max{
∑

i∈N\{1,...,n}(ℓ(i) + ℓ(σj(i))) | j ∈ {1, . . . ,m}} ≤ S(ℓ(w1) + . . .+
ℓ(wn)).
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The pairs (tj , σj), for j ∈ {1, . . . ,m}, can be looked upon as SRRAM
configurations and the sequence (t1, σ1) . . . (tm, σm) can be looked upon
as a SRRAM computation. Instead of introducing off-line SRRAMs, we
require that during computations the contents of the input registers are
never changed.

In the above definition space is essentially measured following the third
method mentioned in [31], using the function sizeb from that paper as size
function. By this space measure, it is guaranteed that space complexity on
SRRAMs and space complexity on multi-tape Turing machines are related
by a constant factor.

13 Discussion on the Bit-Oriented Time Measure

In the field of computational complexity, a model of computation is con-
sidered a reasonable sequential model of computation if time complexity
on its machines and time complexity on multi-tape Turing machines are
polynomially related and space complexity on its machines and space com-
plexity on multi-tape Turing machines are related by a constant factor
(cf. the Invariance Thesis in [31]). This makes the complexity classes that
represent the fundamental concepts of computational complexity, i.e. L,
NL, P, NP, PSPACE, NPSPACE, EXP, NEXP, EXPSPACE, NEXPSPACE,
machine-independent insofar as reasonable sequential models of computation
are concerned.

The logarithmic time measure has been introduced in all but the simplest
known versions of the RAM model of computation to obtain a reasonable
model. However, it is questionable whether the logarithmic time measure is
the most natural time measure. It takes the lengths of the bit strings involved
in the execution of an instruction into account, but not the operation involved.
The logarithmic time measure works in the case of the known versions of
the RAM model of computation only because the operations involved can
always be simulated by a multi-tape Turing machine in polynomial time.

The bit-oriented time measure introduced in this paper takes both the
operation and the lengths of the bit strings involved in the execution of an
instruction into account. Thereby, the bit-oriented time measure actually
takes the total number of operations on bits involved in the execution of an
instruction into account. This property is arguably the best justification of
a time measure intended to make the time measures of different models of
computation comparable.
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With {0, 1} as input alphabet, a version of the Turing machine model
of computation supports operations on bits more directly than most other
well-known models of computation. This has been an important reason to
consider in this paper the times that it takes to carry out the operations
on bits in the setting of a version of the Turing machine model. Another
important reason has been that the complexity classes that represent the
fundamental concepts of computational complexity were initially introduced
and studied in the setting of the multi-tape Turing machine model.

The extended logarithmic time measure introduced in [20] also takes the
total number of operations on bits involved in the execution of an instruction
into account, but, there, the choice is made to consider the times that it
takes to carry out the operations on bits in the setting of the successor RAM
model. This is the most primitive version of the RAM model and supports
operations on bits equally directly as multi-tape Turing machine model.
The approach of [20] may be advantageous if one is interested in relating
complexity results based on other versions of the RAM model to complexity
results based on the successor RAM model, but is disadvantageous if one
is interested in relating complexity results based on versions of the RAM
model to complexity results based on the multi-tape Turing machine model.

The idea behind the bit-oriented time measure from this paper is that
the time that it takes to execute an instruction on an SRRAM should be
based on the number of steps that a multi-tape Turing machine with input
alphabet {0, 1} needs to simulate the instruction. Moreover, the choice has
been made to use well-known polynomial upper bounds. By producing the
bit-oriented measure in this way for programs of RAMs of a kind obtained
by restricting the set of basic RAM instructions of PGA/BTA∞/RAM in
another way than for SRRAM programs, it is guaranteed that Theorem 4
holds for these programs as well. Examination of the proof of that theorem
teaches us that it depends only on the use of upper bounds for the number
of steps that a multi-tape Turing machine with input alphabet {0, 1} needs
to simulate the instructions that may occur in the programs.

14 Concluding Remarks

We have presented an instantiation of a parameterized algebraic theory of
single-pass instruction sequences, the behaviours produced by such instruc-
tion sequences under execution, and the interaction between such behaviours
and components of an execution environment for instruction sequences. In
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the instantiation concerned, RAM memories are taken as the components
of an execution environment, instructions for a RAM are taken as basic
instructions, and an execution environment consists of only one component.
Because we have opted for the most general instantiation, all instructions
that do not read out or alter more than one register from the RAM memory
are taken as basic instructions.

The presentation of the instantiation has been set up in such a way
that the introduction of services, the generic kind of execution-environment
components from the parameterized theory, is circumvented. In [13], the
presentation of another instantiation of the same parameterized theory has
been set up in the same way. The distinguishing feature of this way of
presenting an instantiation of the parameterized theory is that it yields a
less involved presentation than the way adopted in earlier work based on an
instantiation of this parameterized theory.

We have provided evidence for the claim that the presented algebraic
theory provides a setting for the development of theory in areas such as
computational complexity and analysis of algorithms that is more general
than the setting provided by some known version of the RAM model of
computation. We have among other things shown that a relatively unknown,
but realistic, version of the RAM model can be dealt with in the setting
concerned by imposing apposite restrictions. For this model, an alternative
to the usual time measures for versions of the RAM model, called the
bit-oriented time measure has been introduced.

Related to the introduction of the bit-oriented time measure is the
choice for registers that contain bit strings instead of natural numbers.
Whereas it is usual in versions of the RAM model of computation that
bit strings are represented by natural numbers, here natural numbers are
represented by bit strings. Moreover, the choice has been made to represent
the natural number 0 by the bit string 0 and to adopt the empty bit string
as the register content that indicates that a register is (as yet) unused.
Therefore, we have, as in most other versions of the RAM model, ℓ(0) = 1
and ℓ(i+ 1) = ⌊log2(i+ 1)⌋+ 1 if ℓ on natural numbers is simply defined by
ℓ(i) = ℓ(b(i)) (as before ℓ(w), where w ∈ {0, 1}∗, stands for the length of w).

The closed terms of the presented algebraic theory that are used as
RAM programs can be considered to constitute a programming language of
which the syntax and semantics is defined following an algebraic approach.
However, this approach is more operational than the usual algebraic approach,
which is among other things followed in [17, 18, 23]. The more operational
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approach is advantageous in the case of a language that is used to investigate
issues in the areas of computational complexity and analysis of algorithms.

The work presented in this paper is among other things concerned
with formalization in the areas of computational complexity and analysis of
algorithms. To the best of my knowledge, very little work has been done in
this area. Three notable exceptions are [27, 34, 2]. However, those papers
are concerned with formalization in a theorem prover (HOL4, Isabelle/HOL,
Matita) and focussed on some version of the Turing machine model of
computation. This makes it impracticable to compare the work presented in
those papers with the work presented here.

The contributions of this paper to the work on models of computation
rely heavily on [19, 24]. A variant of the bit-oriented time measure has been
proposed in [20].

This paper introduces a setting for the development of theory in areas
such as computational complexity and analysis of algorithms using virtually
any version of the RAM model of computation. This setting is an instantia-
tion of a parametrized algebraic theory. Several other models of computation
can be covered by other instantiations of this theory. The instantiation for
the Turing machine model of computation is described in [14]. However,
the theory concerned is not general enough to cover parallel models of com-
putation. An interesting option for future work is to study how it can be
extended to a theory that covers parallel models of computation.
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