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Four Notions of Fault for Program Specifications

Jan A. BERGSTRA!

Abstract

Four notions of fault are proposed for program specifications each
inspired by notions of fault for programs: symptomatic failure reso-
lution fault, Laski fault, MFJ fault and regression test justification
of change fault (RTJoC fault). Examples are provided in terms of
the PGA style theory of instruction sequences. Each of the notions
of fault is based on the contrast between technical specification and
requirements specification. The latter contrast is discussed in detail.

Keywords: technical specification, requirements specification, Laski
fault, MFJ fault.

1 Introduction

The notion of a program fault has until now received far less attention from
theorists than the somehow related notion of program correctness. The
relation between faults and correctness is non-obvious, however, and both
notions are quite sensitive to particularities of the respective definitions. It is
plausible to assume that the definitions of correctness and fault guarantee
that a correct program contains no faults. Conversely, however, there is
no basis for the assumption that a defective (i.e. incorrect) program will
contain one or more faults.

Following [1, 2, 16] a fault in a program is a static property of it which
qualifies as a cause of a failure. In the terminology of [5] an ALR fault in
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a program X consists of (i) a failure for X, (ii) a program fragment of X
combined with (iii) a change for said fragment, so that when the change is
effectuated (iv) the particular failure will not occur anymore, and (v) the
change can be understood as an improvement of the program. It is left
unspecified when a change may be considered an improvement.

Laski [17] made a first proposal on how to formalise a notion of im-
provement that underlies ALR faults, thereby giving rise to a reasonably
well-defined notion of fault, missing some quantitive information only, which
is referred to as a Laski fault in [5]. Subsequently in [18] one finds a different
formalisation of program faults (see also [13]), which, again following [5] is
best understood as a second type of fault in a typology of faults. In [5]
a third type of fault is described which is cast in terms of testing and re-
gression testing only. The three forms of faults just mentioned differ in the
form of justification which is given for a change, and in particular in the
conceptualisation of a notion of the improvement brought upon by effecting
a change.

A change is supposed to prevent a certain failure from taking place,
while at the same time a change must preferably not introduce new failures,
that is failures on inputs different from the input on which a failure was
resolved by the program being repaired. The idea for a Laski fault is that a
corresponding change creates a correct program, the idea for an MFJ fault
is that the changed program is still working correctly on inputs where it
was working correctly before the change. The latter idea can be relaxed
by requiring that a given regression test suite which a program passed in
advance of the change is still passed after the change has been made. The
three strands of fault thus obtained merely constitute a selection from a
larger variety of such notions. For a survey of such options I mention [5]
and the follow-up paper [6].

Technical definitions for various kinds of faults depend on actual pro-
gram notations. In [5] I made use of instruction sequences in the notation
of the program algebra PGA of [8]. These notations are highly simplified
and are suitable for theoretical work only. Said notions of fault each depend
on a notion of failure which itself depends on the availability of a technical
specification which determines which behaviours of a program are adequate
and which behaviours fail.
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1.1 Four Notions of Fault in a Technical Specification

The objective of this paper is to discuss notions of fault for (technical)
specifications of programs rather than for programs proper. In fact we will
propose four such notions: (i) symptomatic failure resolution fault as a
simplest notion of specification fault, (ii) Laski fault and (iii) MFJ fault
represent different refinements of the notion of a symptomatic failure reso-
lution fault, and (iv) regression test justification of change fault relaxes the
constraints imposed by the notion of an MJF fault to weaker constraints
which can be checked by means of testing only. We start with a general
discussion of the notion of a specification fault.

1.2 Specification Fault: General Conditions for the
Existence of Such Faults

For a specification to be faulty some external criterion of validity is needed.
If a program specification constitutes the only available knowledge about
what the program must achieve it cannot be defective other than by be-
ing non-implementable, unreadable, too lengthy etc. The computer science
literature provides little or no discussion of specification faults.

I will adopt the idea that besides a technical specification for a program
there may also be a set of requirements (requirements specification) which
provides additional information of what is expected from a program. In the
presence of a perceived mismatch between technical specification and re-
quirements the suggestion that the technical specification is defective rather
than that the requirements specification is defective can only be based on a
conceptual asymmetry which assigns the requirements specification a higher
status than the technical specification.

At the same time it must be explained why the requirements specifica-
tion would not be included as a part of the technical specification because
when doing so a defective specification would simply turn into an inconsis-
tent specification, which is an easy notion to imagine. We are led to the
following thought experiment: a context C'[—] is given which, when provided
with a software component (program) P, which is yet to be designed, will
result in an intended system C[P] for which requirements specification Sy,
is known.

Now a specification Sgpe. is designed with two equally important ob-
jectives in mind:

(i) an implementation P of Sgpe. will be such that C[P] satisfies Syeq;
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(ii) Sspec is so general that its implementations can and might be used in
other contexts just as well, and for that reason specific use cases such
as the requirements S,., on C[P] are to be avoided in the specifica-
tion Sgpec-

1.3 Technical Specifications Versus
Requirements Specifications

I will assume that a program P implements a fairly precise (if not formal)
technical specification Siecn. A technical specification tells what the pro-
gram is supposed to achieve (compute) in a general terms, i.e. without
any particular context or application of the program in mind. In view of
generality a technical specification will not involve so-called use cases. If
a program is supposed to compute a function then a logical description of
the graph of that function may serve as a technical specification for the
program, where it is assumed that the logical specification merely specifies
said graph and is not biased towards any specific application or towards one
or more specific use cases.

We will assume that Si..;, has been designed with a specific application
in mind. More specifically a context C[—] is known such that P will be
used in a system of the form C[P] for which a specification is given. The
latter specification, referred to as Sy¢q explains how C[P] is supposed behave
and, w.r.t. P it has the status of a requirements specification. Typically a
requirements specification may involve use cases, i.e. particular instances of
desired behaviour of C[P]. A requirements specification for P may provide
use cases for a plurality of contexts of use of P: C[P],...,Cy[P].

One may prefer to consider the requirement that C[P] satisfies Sy¢, to
constitute a technical specification of P, therewith removing the distinction
between specifications and requirements in this case. We will not adopt such
a convention with the argument that C[P] sat S,¢, as a property of P is not
sufficiently application independent to qualify as a (technical) specification
of P. Both technical specifications and requirements specifications may
involve functional aspects as well as non-functional aspects.

The contrast between technical specification and requirements specifi-
cation resembles the contrast made between language constraint and appli-
cation constraint in [14]. A similar contrast is mentioned in [15] between
local specification and system specification.
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1.4 Informality for Requirements Specifications

Besides looking at a higher level of aggregation in a system, in comparison to
a technical specification of a system component, a requirements specification
may also sometimes use informal language. Reasons for allowing informality
at the level of requirements may vary. Three main motives for tolerance of
informality may be distinguished in a specific situation. Specifying these
motives necessitates the introduction of a project supervisor who is supposed
to be satisfied in the end with the system as developed.

(i) Informal language is deemed more readable and more concise and for
that reason more effective in transmitting intentions of the project
supervisor to the engineers at work.

(ii) By expecting readers to select most plausible interpretations the plu-
rality of different interpretations of an informal specification may be
limited to a lesser variety and the project supervisor may expect to
be satisfied with (the consequences of) each of those readings.

(iii) The project supervisor has some additional constraints in mind which
have not yet been taken into account in the requirements specification
and informality of the requirements introduces the flexibility to take
said constraints into account during the development of a technical
specification for component P.

Below we will work with the simplifying assumption that the requirements
specification is formal and complete. Whenever the requirements specifica-
tion is met, an unambiguous matter in view of formality of the requirements
specification, the project supervisor is satisfied, a matter of completeness.

1.5 Technical Specification Faults I: The Case of
Retrospective Specifications

We consider the situation that a technical specification Si..p is given for a
given or yet to be developed program P. If P has been developed while
subsequently the specification has been written, we speak of a retrospec-
tive specification. The purpose of a retrospective specification is to clarify
concisely the main properties of P. A retrospective specification may be
used by a programmer who contemplates including P as a component in a
system design.
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A retrospective specification Sie.p, for P is defective if it is not the case
that P sat Sieen. It is hard to imagine that a problem with a retrospec-
tive specification of a program causes a failure of that program proper, as
without the specification being present the same dynamic behaviour would
appear. In the case of retrospective specifications the ALR principle that
a fault constitutes a repairable cause of a failure must be abandoned, so it
seems. What remains is the idea that a fault constitutes a textual change
of a specification which achieves two aspects: to do away with a certain de-
ficiency in the specification while at the same time to lead to an improved
specification. Unlike with program faults, however, the objective of speci-
fication is not so much to find a correct specification (taking the assertion
“true” for a specification suffices for that), but to determine a sufficiently
informative correct specification. The latter notion is rather informal. We
conclude that the idea of a Laski fault, a change of a defective artefact upon
which a correct artefact is obtained, does not generalise in a useful manner
to retrospective specifications. More generally we hold that when contem-
plating notions of fault for retrospective specifications the ALR principle (a
fault being a fragment of an artefact which can be understood as a cause
of a failure) has to be abandoned and another intuition of fault must be
brought to bearing. This argument motivates the following claim:

Claim 1.1 The ALR principle that a fault constitutes a fragment of an
artefact which can be understood as a cause of a failure cannot be used as a
foundation for the development of notions of fault for retrospective program
specifications.

We intend to proceed along the lines of the ALR principle, i.e. to consider
notions of fault which are inspired by the ALR principle. As a consequence
we find that for retrospective specifications said endeavour is vacuous and
our focus must be on prospective specifications instead. Returning to ret-
rospective specifications, we propose as a second claim, that what we will
call inverse ALR faults will play a role when contemplating faults.

Definition 1.1 An inverse ALR fault is present in the retrospective speci-
fication Syetro of an artefact A if

(i) the artefact does not satisfy Syetro (i-€. not A sat Syretro);

(i) a fragment of Syetro may be understood as a cause of the state of affairs
mentioned under (1).
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An inverse ALR fault blames the specification rather than the implementa-
tion for a defect consisting of a mismatch between both.

Claim 1.2 Notions of fault for retrospective specifications of programs can
be based on the idea of an inverse ALR fault.

For the idea of an inverse ALR fault the notion of causation involved is
non-obvious and merits further investigation.

1.6 Technical Specification Faults II: The Case of
Prospective Specifications

It is plausible that Sj..; has been designed with the requirement that upon
developing an implementation P of Sy, it will be the case that C[P] sat-
isfies Syeq in mind. In this scenario S,.q is given in advance as well as the
context C'[—| and subsequently Sie.p is developed on the basis of these data
as a (first) step towards the development of P. Developing P in turn is
a necessary step towards the development of C[P] which is the underlying
engineering objective at hand. A complication which may be taken into ac-
count is that it is plausible for S, to be less formal, i.e. to a lesser extent
sound and complete than Siep,.

Now assuming that the objective of designing Si.., derives from the
intention to develop P so that C[P] sat Sye, while insisting that Sieep is
sufficiently abstract to qualify as a technical specification, a setting emerges
where it makes sense to think in terms of the quality of Siech-

It will be assumed that C[—] works in such a manner that the function-
ality of C[P] depends on the functionality of P and on no non-functional
property of P and that if () has the same functionality as P though with
non-functional properties that improve those of P in some respect, the cor-
responding non-functional properties of C[Q] may improve (in any case not
degrade) on the corresponding non-functional properties of C[P].

The question then arises to what extent the notion of a fault in a spec-
ification Sj..p, makes sense, as well as the related question if specifications
without faults can still be defective. We will propose several notions of fault
for a technical program specification Sie.p, W.r.t. a requirements specifica-
tion of the form C[—] sat Sye, which is required for that same program.

The discussion will be illustrated below a very simple example pre-
sented in terms of the PGA style theory of instruction sequences. Instruction
sequence notations as introduced in [8] are devoid of practical significance.
Nevertheless the example allows illustration in some detail of the various
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notions of fault understood as theoretical concepts rather than as notions
ready made for use in a practical setting.

2 Specification Faults

In this section we will discuss specification faults leading up to the notion
of a Laski fault for specifications.

2.1 Prospective Technical Specification as the Default for
Specification

Unless stated explicitly a specification for a program is assumed to be a
technical specification rather than a requirements specification. This de-
fault convention for the understanding of specification is in line with the
widespread convention not to drop “requirements” from the phrase require-
ments specification. Said default is also in line with the practice to think
in terms of specifications of software components, where a specification is
understood to be independent of any actual or potential use of a software
component. Nevertheless, for the sake of clarity of exposition, I will often
use the phrase “technical specification” and not rely on the suggested de-
fault. In the title of the paper, however, the mentioned default is supposed
to be taken into account.

Moreover, a program specification is supposed to be prospective by
default, i.e. it has an independent status which might serve or have served
as the starting point of program development, rather than that it has come
about by way of reverse engineering from a given software component.

2.2 Quality Assessments for Technical Specifications
Including Laski Faults

Below we list some quality assessment options for a technical specification
Stech, serving as a specification for a program P (yet to be developed) all
w.r.t. a given requirements specification Sy, which expresses behavioural
constraints (on the same program) of the form C[X] sat Syeq:

1. A requirements specification Sy, w.r.t. context C[—] is feasible if for
some program P, C[P] sat Sycq, otherwise the requirements specifica-
tion is infeasible.
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2. implementable <= an implementation exists (alternatives: consis-
tent, not self-contradictory).

More specifically: Sieqp is implementable if there exists a program P
such that P sat Siecp.

Constructing a program that satisfies Sspe. is also called program
synthesis, and (non)synthesizable may be used as an alternative for
(non)implementable. The later terminology can be traced back at
least to Church [12].

3. requirements compatible <= an implementation P of Sj.., exists
such that C[P] sat Sreq-

4. sufficient <= implementable and moreover each implementation
meets the requirements specification.

More specifically: Sieqn is sufficient if Sieqp, is implementable and if for
each program P such that P sat S, it is the case that C[P] sat Syeq.

5. insufficient <= requirements compatible while not sufficient.

More specifically: Sie.p is insufficient if there are programs P and
@ such that P sat Sgpec and @ sat Sgpee while C[P] sat Syeq and

~(C1Q) sat Srey).

6. wrong <= implementable while not requirements compatible.

More specifically: Siecn, is wrong if it is implementable while none of
the implementations P of Siecs, enjoys C[P] sat Syeq-

7. defective <= not sufficient.

8. Specification Siecp is Laski k-faulty <= Sieqn is defective and there
exists a textual change v of S, with edit distance k or less that
produces a specification (St ) which is sufficient w.r.t. the require-
ments specification Sy, and context C[—].

More specifically: given requirements specification S,e4, a context
Cl—], and a specification Sy, a Laski k-fault in Siecp, relative to Syeq
and C[—] is a change v (with edit length k or less), which, when ap-
plied to Siecp, produces an implementable specification 7(Stecp) such
that all implementations P of v(Siecn) enjoy C[P] sat Syeq.
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The idea of a Laski fault is simple: the specification is defective (either not
implementable or one of its implementations fails to meet the given require-
ments specification), and by applying a limited textual change a sufficient
specification is obtained. We make use of the eponym Laski because it con-
forms the approach of Laski [17] to speak of a fault of a program in case of
a failing program in combination with a corresponding change leading to a
correct program. We notice that the notion of a Laski fault may apply just
as well if the specification at hand has no implementation.

However an important distinction with the case of program faults
arises. If a (deterministic) program contains a Laski fault it must fail on
some input, and it will fail always on that same input, while upon the cor-
responding change having been applied failure on the same input will not
take place. This state of affairs warrants viewing the fault as a cause of
the failure.

In the case of a specification S,., with a Laski fault, however, the speci-
fication may well have one or more implementations P such that C[P] sat Syeq.
Thus viewing the Laski fault in the specification Sy, as a cause of failure
is unwarranted. Rather the fault may be understood as an explanation of
a failure of C[P] on some input s for some implementation P of Sy, which
happens to feature such a failure. Stated mor formally:

Proposition 2.1 If a specification Siech, (relative to requirements Syeq and
context C[—]) is faulty and contains a Laski k-fault -y then either

(i) the specification Siecn, is wrong and v may be understood as a cause
of the presence of failures in C[P] for whatever implementation P of
Stech, or otherwise

(ii) the specification Siecn, is insufficient and v may be understood as an
explanation of the presence of one or more failures in the behaviour
of C[P] for one or more implementations P of Stech-

The idea of an ALR fault as a fragment of a (program) text which causes
a failure is replaced by what we call an E/C-ALR fault: a fragment of a
(specification) text which for some of its implementations P explains the
presence of a failure in the target system C[P]. The explanation indicates
that Siecn allows too much freedom of implementation thereby introducing
the risk of certain failures in the target system.

Definition 2.1 An E/C-ALR fault (“explain instead of cause” ALR fault)
i an artefact is present if the artefact contains a fragment which can be
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understood as the explanation of a failure which may arise but which need
not arise (thereby not qualifying as a cause).

Claim 2.1 A plurality of plausible notions of fault for prospective specifi-
cations of programs can be obtained as detailed instances the notion of an
E/C-ALR fault.

The notion of a Laski fault for a technical specification seems to be the
first and most plausible idea on the matter of specification faults. A compli-
cation with the notion of a Laski fault is that spotting a Laski fault involves
a mathematical proof that allows to take into account all implementations
of the modified specification.

2.3 Generalising Laski Faults: MFJ Faults and RTJoC Faults

In the case of program faults two generalisations of Laski faults have been
elaborated: an MJF fault is present if a so-called symptomatic failure can
be removed (repaired) by applying a change which in addition is supposed
to provide valid results whenever the original program did so. This gener-
alisation of the notion of a Laski fault stems from [18] and has been named
an MJF (for Mili, Frias and Jaoua) fault in [5].

A generalisation of the notion of an MJF fault has been outlined in [5]
where instead of asking for an improvement of the modified program it is
required that the modified program, besides performing better on the input
for the symptomatic failure complies with a given regression test suite. The
latter generalisation is referred to as a regression test justification of change
fault (RTJoC fault) in [5].

Below we will define counterparts for MFJ faults and for RTJoC faults
for technical specifications.

2.4 Proposal for the Notion of an MFJ Fault in a Technical
Specification

We start with an auxiliary type of fault which is then modified into the
definition of an MFJ fault for a technical specification.

Definition 2.2 (Symptomatic failure resolution k-fault.) Given:

e a requirements specification Syeq concerning a system C[X] with pro-
gram parameter X, and
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e an implementable specification Siecp, for programs X,
a symptomatic failure resolution k-fault in Siecn, relative to Speq, consists of

e a change 7y (with edit length k or less), which is applicable to Stech
(then obtaining vy(Stecr)), and

e an element s (symptomatic failure case) of the input domain of sys-
tems of the form C[X],

where the following conditions are satisfied:
(i) v(Stecn) is implementable,

(ii) for some program P that satisfies (implements) Siecn, C[P] fails on s
w.r.t. Sreq,

(i1i) for no program Q) that implements vy(Stecn), C[Q)] fails on s w.r.t. Syeq.

If a coherent specification Sj.., contains a symptomatic failure resolution
k-fault then Si., is either wrong or insufficient. Moreover the following
observation is immediate:

Proposition 2.2 Given a symptomatic failure resolution k-fault, with symp-
tomatic failure on s and with change v and an implementation P of Siech
for which C[P] fails to comply with Syeq on a particular input s then it
must be the case that the computation of C[P] on s makes use of one or
more computation(s) of P (on various inputs say ti,...,t,) which are not
in conformance with v(Stech)-

Thus, the upgrade of Siecp, t0 Y(Stecn) may be understood as a modification
of the specification which blocks, and thereby removes as a cause of, the
failing computation (of C[P]) on s, and ensures that a failure on the same
input s will not occur for any implementation of v(Stech)-

The notion of a symptomatic failure resolution fault allows a different
wording of the definition of Laski faults for specifications.

Definition 2.3 (Laski k-fault.) Given the setting of Definition 2.2 an ad-
ditional (iv)-th condition is required besides (i), (ii), and (iii):

(v) (sufficiency obtained) each implementation Q of ~y(Siecn) it is the case
that C[P] sat Syeq.
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Although the notion of a symptomatic failure resolution fault may seem
convincing there is a serious problem with this notion: successive failure
removals may undo the guarantees obtained before. This difficulty is not
present in the case of Laski faults because upon having resolved a Laski
fault no other faults remain by definition. In the latter observation also lies
a weakness of the notion of a Laski fault: it is implausible to assume that an
artefact (in this case a specification) involves a single fault only. In the case
of programs MFJ faults were introduced to take the presence of a plurality
of faults into account.

The idea of an MFJ fault involves two aspects: (a) symptom resolution:
a change leading to a local improvement combined with (b) preservation of
what works well already. We propose the following generalization of MFJ
faults for programs to specifications.

Definition 2.4 (MFJ k-fault.) Given the setting of Definition 2.2 an ad-
ditional (iv)-th condition is required besides (i), (ii), and (iii):

(iv) (preservation) for all inputs t for systems of the form of C[X]: if for
each implementation Q of Siecn, the computation of C[Q] on t proceeds
in conformance with Syeq, then for each implementation Q" of v(Stecn)
the computation of C[Q'] proceeds in conformance with Syeq.

A difficulty of both notions Laski fault and MFJ fault is the use of quanti-
fiers over implementations of Sspe. in the respective definitions. A similar
difficulty arises with the definition of an MFJ program fault which involves
quantification over all inputs.

2.5 Specification Faults Justified on the Basis of Regression
Testing

For practical application such quantifiers pose a problem. In [5] a testing
based alternative for the notion of an MFJ program fault is proposed which
avoids such quantifiers. Describing a testing based alternative for the notion
of an MJF fault in the case of specifications is more involved and allows a
plurality of alternatives. Our proposal for a testing based notion of fault
reads thus:

Definition 2.5 (Regression test justification of change specification k-fault.)
Given a requirements specification Syeq concerning a generic program C[X],
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with program parameter X, and an implementable but insufficient specifi-
cation Siecn, for the program parameter X, a change v (with edit length k
or less) is an RTJoC k-fault in Siecp, relative to Syeq if the conditions of a
symptomatic failure resolution fault (see Definition 2.2) are met (with in-
put s) and in addition the following items (iv),..,(x) with the listed properties
are available:

(iv) a sequence ty, ..., t, of test cases for programs X (i.e. that satisfy the
static constraints of Siecn), such that for all cases the computation of
P on t; satisfies the specification Siech, (these observations are under-
stood as a justification of viewing P as a candidate implementation

Of Stech);

(v) a sequence si,...,Sy (serving as a regression test suite), of test cases
for systems of the form C[X], such that (a) the computations of C[P]
on s; (1 <i<m)make use of subcomputations for P exclusively with
inputs from ti,...,t,, and (b) such that each of these computations
(of C[P]) complies with Sreq,

(vi) a test case s (the symptomatic fault case) for systems of the form C[X]
such that the computation of C[P] on s fails to comply with Sycq, while
each of the subcomputations of P of that computation has an input in

(t1. .t}

(vii) a program P’ serving as a candidate implementation of y(Stecn ), where
P’ has been developed from ~y(Sieen) by a team of software engineers
who were not involved in designing P from Sieen, and who are unaware
of Sreq and of the context C[—],

(viii) a set{ri,...,rn} of test cases for programs X which extends {t1,...,t,}
such that each of the computations of P on r; (1 <i <n') complies
with V(Stech%

(ix) so that each of the computations of C[P'] on {s1,..., Sm, s} makes use
of subcomputations of P' on inputs in {r1,...,ry} only,

(z) and so that each of the computations of C[P'] on s1,...,8m is in con-
formance with Syeq (the regression test is passed) and in addition the
computation of C[P'] on s is in conformance with Syeq (i.e. the failure
of C|P] on s, serving as the symptom of fault, has been repaired).

This regrettably elaborate definition merits various explanatory comments.
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. It is an implicit assumption that programs P and P’ have a rea-
sonable length. Given a specification Si..;, and a set of test cases
T = Tietstrorx it will be doable to design Pr in such a manner that it
complies with all test cases. However, the size of Ppr will be propor-
tional to the number of test cases in T" and that is implausible. Thus
P and P’ are supposed to be “plausible” implementations of S..; and
¥(Stecr) which work for all relevant inputs and not just for inputs for
P resp. P’ which occur when computing C[P] resp. C[P’] on the test
set {s1,...,Sn} and the primary symptom case s where C[P)] fails.

. It is by C[P’] passing the regression test in addition to it working in
conformance with S,.., that justification is claimed for referring to ~y
as a fault in Sgep, with a repair into v (Stech,)-

. With the notations of Definition 2.5 we may replace Siecr, by ¥(Stech)
and replace P by P’ write $,,41 = s, thus obtaining n + 1 test cases
S1y.-.,8nt1 for the generic program C[X] and take rq,...,r, for the
sequence as in item (now for P’) (ii), thus obtaining a setting from
which another specification fault can be looked for and possibly be
repaired by way of a change with k or less symbol changes. In this
manner Definition 2.5 allows for the definition of a chain of successive
faults with repairing changes.

. Remarkably, defining a specification fault in the context where testing
is the only way of obtaining information about program behaviour,
and only such information may play a role in the definition, turns out
to be significantly more involved than providing such a definition in
case one is able to speak in term of programs semantics in a mathe-
matical fashion as e.g. in Definition 2.3.

. An advantage of Definition 2.5 over say Definition 2.4 comes from the
observation that, assuming the availability of oracles for Siecn, 7(Stech)
and Syeq, all conditions and assertions that occur in the definition
admit straightforward checks.

. It is implicitly assumed that testing is done on the basis of test cases
that constitute a single input (or input stream) for a program. This
rules out metamorphic testing where two or more related inputs are
considered and a certain relation between the corresponding outputs is
checked. In principle Definition 2.5 can be adapted in such a manner
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as to admit metamorphic testing as well. We will not discuss the
details of the latter.

3 Theory of Instruction Sequences

I will use inSeq as an abbreviation of instruction sequence, with the con-
notation of the instruction sequences occurring in the theory of Instruction
sequences (also referred to as inSeq theory) as put forward in [8] and subse-
quent work. The series of examples in the next Section is phrased in terms
of inSeq theory. The above descriptions of notions of specification fault
involve both existential and universal quantifiers over programs. For these
descriptions to be watertight in al cases it ought to be stated which classes
of programs are meant when performing such quantification. Each of the
inSeq notations from inSeq theory can be used for that purpose, and so can
many other program notations.

3.1 Data and Control

The examples below make use of so-called single bit services (also called
Boolean services) which were introduced in full detail in [10]. A brief intro-
duction from first principles to the use of Booelan services in inSeq theory is
provided in [11]. Simple examples of use of single bit services can be found
in [4]. The application of an inSeq to inputs as contained in a service family
is given by the apply operator from [9],

InSeq theory involves the following key elements:

(i) PGA style program algebra, with various inSeq notations including
PGLC, as defined in [8], and instructions for structured programming
(conditionals and a while loop). In the example the program P is
assumed to be written in PGLC.

(ii) Threads, thread algebra, thread extraction, strategic interleaving.

(iii) Services, service families; instruction sequence processing operators
which determine the interaction between inSeq’s and services or ser-
vice families.

(iv) Required interfaces of inSeq’s and threads; provided interface for ser-
vices and for service families.
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3.2

Disclaimer

All developments of this paper are to be understood relative to inSeq the-
ory, rather than to be claimed for programming in general. For instance the
distinction made between technical specification and requirements specifica-
tion as made above is preferably understood as being specific for the setting
of inSeq theory.

In this manner a seemingly unnecessary limitation of the scope of con-

ceptual development is introduced. For doing so we have the following
reasons/arguments:

(a)

(b)

by having the various concepts defined relative to inSeq theory con-
tradictions with other literature (not based on inSeq theory) about
(literally) the same notations are (trivially) avoided,

making too broad claims, and untenable claims for that reason, is
avoided,

contrasts between related but different notions can be made sharper
by providing additional emphasis or detail to some aspects of the
definition of a concept while relaxing demands w.r.t. other aspects
(both in comparison with the software engineering literature at large),

if in later work a need arises to modify the definition of a notion it is
easy to grasp how that might impact on preceding work, which then is
limited to work that has been explicitly based on the theory of inSeq’s
setting,

whenever a reader considers it useful to adopt certain definitions in
a different setting, e.g. involving other program notations and pro-
gramming styles and methods, then importing one or more of the
definitions while claiming adapted generality is always an option.

An additional justification of the limitation of the scope of conceptual
development in the paper to a fairly narrow setting lies in the idea that
the difficulty of concept development lies not so much in providing
the definition of a single concept but rather in developing a useful
framework of mutually related and dependent notions. By looking
at a framework of related notions complications and distinctions may
arise which remain hidden otherwise. An example of such a distinction
in the context of the paper at hand is that we will be able to introduce
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various types of technical specification faults, while at the same time
we will not find any basis for discussing requirements specification
faults, and we must keep open the option that a meaningful notation
of a requirements specification fault cannot be found.

4 Example: Specifying a Component for a
Program for Adding 5-bit Numbers

We look for an inSeq X with a parameter o that acts as a part of the
focus for various basic actions which satisfies the following requirements
specification Sreq:

Sreq requires first of all that for k € N, [k/aJX (the result of substitut-
ing k for «v in X) exclusively applies methods for single bit registers (Boolean
registers) with the following foci: aux, inl:k, in2:k, out:k. In other words
the foci for methods occurring in X are in {aux, inl:«, in2:«, out:ac}.

In terms of functionality Sreq requires that the inSeq Ys[X] (as given
below) performs addition of 5 bit binary numbers a and b where a is stored
in single bit registers (SBR’s, each with a method interface providing 16
methods, as defined in [11]) with focus in1:1,...,in1:5 and b is stored in
in2:1,...,in2:5. Qutputs are to be delivered in SBR’s out:1,...,out:5.
The initial value of register aux, meant to contain a carry bit, is arbitrary.

Ys[X] = aux.0/0;
;Lsizl,stepzl

(+inl:k.i/i{; [k/a]X; }H;
+in2:k.i/i{;
+aux.i/i{;out:k.0/0; }{; out:k.0/1; };
H;
+aux.1/0{; out:k.0/1; }{; out:k.0/0; };
};
}
);!
This description of a generic inSeq requires some explanation. We notice
that when X has n instructions then Ys[X] has (n+16)-5+2 instructions. The
carry bit placed in the single bit register under focus aux is first initialised
to 0, then subsequently for each k € [1, 5] for the pair of inputs inl:k, in2:k
a sequence of n + 16 instructions is included which works thus: if reading
inl:k results in value 1 then [a/k|X is performed, and otherwise



Four Notions of Fault for Program Specifications 201

gt
+aux.i/i{; out:k.0/0; }{; out:k.0/1; };
H;
~+aux.i/0{; out:k.0/1; }{; out:k.0/0; };

}

is performed. The latter instruction sequence achieves the following: having
checked that inl1:k contains 0 the contents of the carry bit and of in2:k are
added (in binary arithmetic) and the least significant bit is placed in out:k
while the most significant resulting bit is placed in the SBR with focus aux.

4.1 Further Clarification of S,

The description of Sreq is to some extent informal. By adding some clarifying
remarks more precision is obtained. These remarks may be thought of as
replies given by the project supervisor to the designer of Siech-

1. (Initialisation of output registers.) No assumptions on initial values
of output SBR’s are made, and that Ys[X] must work in all cases.

2. (Details of addition w.r.t. most significant bits.) If the sum exceeds 2°
so that 5 output bits don’t suffice it is required requiring that just
before termination aux is set to value 1).

3. (Specification of single bit registers.) Implicitly true is identified
with 1 and false is identified with 0, that may be made explicit.

4. (Choice of inSeq notation.) A plausible inSeq notation is PGLC (ter-
mination does not require ! and takes) place once the position after
the last instruction is reached). Moreover it is plausible to state ex-
plicitly that « can occur as a parameter only in the following foci:
inl:q, in:2a, aux:a, and in no other manner,

With these clarifications we hold that the relation Ys[X] sat Sreq is Tigorously
defined as a property of X.
4.2 8%, a Plausible Technical Specification

Carrying on with the example a plausible technical specification S2,, of X
is thus:
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Sgech = S(:i).nterface& Sgunctional with
S¢ntertace = (Irequirea(X) = aux.Inetnoa(SBR)
U{inl:v.i/i, in2:v.i/i, out:.0/0, out:a.0/1}, and
SO nctional = (Post(out:a) = (pre(in2:a) + pre(aux) + 1) mod 2 A
((pre(aux)) = 1 A pre(in2:a) = 1) — post(aux) = 1) A
((pre(aux)) = 1 A pre(in2:a) = 0) — post(aux) = 1) A
((pre(aux)) = 0 A pre(in2:a) = 1) — post(aux) = 1) A
((pre(aux)) = 0 A pre(in2:a) = 0) — post(aux) = 0) A
post(inl:) = pre(inl:a) A post(in2:a) = pre(in2:q)).
Here pre(f) equals the content of the service (SBR) in focus f just before
performing X and post(f) is the content of the service (SBR) in focus f just
after performing X.

Proposition 4.1 SO, is implementable and allows the following imple-
mentation in the inSeq notation PGLC extended with instructions for the
conditional construct, as outlined in [8]:
P=
+in2:a.i/i{;
+aux.i/1{;out:.0/1; }{; out:a.0/0; };
H;
+aux.i/i{;out:.0/0; }{; out:a.0/1; };

}

Proposition 4.2 With P as in Proposition 4.1 it is the case that Ys[P| sat Sreq-

Proposition 4.3 Sgpec is sufficient w.r.l. Syeq and Ys[—|.

4.3 Weakening 8., (e.g. to S, Below) May Introduce a
Laski Fault

In S, below it is possible that the carry is set to 1 in case it ought to be
set to (or kept at) O.
S%ech = Sgnterface& S%unctional with
Stimctional = (post(out:a) = (pre(in2:a) + pre(aux) + 1) mod 2 A
((pre(aux)) = 1 A pre(in2:«a) = 1) — post(aux) = 1) A
((pre(aux)) = 1 A pre(in2:a) = 0) — post(aux) = 1) A
((pre(aux)) = 0 A pre(in2:) = 1) — post(aux) = 1) A
((pre(aux)) = OApre(in2:a) = 0) — post(aux) = post(aux)) A
post(inl:a) = pre(inl:a) A post(in2:a)) = pre(in2:a)).
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It is easy to imagine an implementation Q of 8}, such that =(Ys[Q] sat Sreq),
for instance if the carry aux is always set to 1 by Q. It follows that

Proposition 4.4 (i) Si.., is implementable. (Any implementation of
SO ., also implements S, ),

(ii) Sieen is mot wrong (same argument),

(iii) Si..n is insufficient. (One may imagine an implementation P of
SO . where the carry is always set to 1) in that case the addition
of (1,0,0,0,0) and (0,0,0,0,0) produces: (1,1,0,0,0,) which consti-
tutes a failure for Ys[P]),

(iv) St.., has a 9—Laski fault. (Indeed by changing post(aux) = post(aux))
to post(auzx) = 0 one may transform S tiona1 M0 Stunctional @ SUf-
ficient specification is obtained.)

(v) Sty has a 2—Laski fault (assuming that multiplication is allowed in
the specification notation). (Indeed by changing post(aux) = post(aux))
to post(aux) = 0 - post(aux) one may transform S tionar L0 @
specification which logically equivalent to S}ycvionar @nd therefore is
a sufficient specification. It also follows that the presence and size of
specification faults depends on the specification notation.)

4.4 Modifying S, to S!°, Renders it Wrong

In S, below the carry is set to 1 in case it ought to be set to (or kept at)
0.

S111ech - S:Lnterface& S%Enctional with

Shoressoms = (post(outia) = (pre(in2:a)
(pre(aux)) = 1 A pre(in2:a) = 1)
(pre(aux)) = 1 A pre(in2:a) = 0) — post(aux) = 1) A
(pre(aux)) = 0 A pre(in2:a) = 1) — post(aux) = 1) A
(pre(aux)) = 0 A pre(in2:a) = 0) — post(aux) = 1) A
post(inl:a) = pre(inl:a) A post(in2:a) = pre(in2:a)).

+ pre(aux) + 1) mod 2 A
=1) — post(aux) = 1) A

(
(
(
(

Proposition 4.5 (i) Sit_ is implementable,
(i1) Sit. is wrong (adding (1,0,0,0,0) and (0,0,0,0,0) will fail),

(iii) Sib., has a 1—Laski fault. (Indeed by changing a single 1 to O the
sufficient specification S8, is regained.)
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4.5 Another Wrong Specification

In SIS, the arithmetic of addition is mistaken (+1 is missing) with the con-
sequence that each implementation of 8¢, fails to satisfy (Ys[Q] sat Sreq)-

1c
Stech - Slnterface& Sfunctlonal Wlth

SE ctiona1 = (post(out:a) = (pre(in2:a) + pre(aux)) mod 2 A
((pre(aux)) = 1V pre(in2:a) = 1) — post(aux) = 1) A
((pre(aux)) = 0 A pre(in2:a) = 0) — post(aux) = 1) A
((pre(aux)) = 0 A pre(in2:a) = 1) — post(aux) = 1) A
((pre(aux)) = 0 A pre(in2:a) = 0) — post(aux) = 0) A

post(inl:) = pre(inl:a) A post(in2:a) = pre(in2:q)).

Proposition 4.6 SIS involves a 2— Laski fault. (By adding a summand +1
an implementable and sufficient specification (i.e. S°)ieen) is obtained).

4.6 Further Weakening S!., May Introduce One or More
MFJ Faults

In 82, below it both possible that the carry is set to 1 in case it ought to
be set to (or kept at) 0 and the other way around.
S’%ech - Slnterface& S%unctional with
SZimctional = (post(out:a) = (pre(in2:a) + pre(aux) + 1) mod 2 A
((pre(aux)) = 1 A pre(in2:a) = 1) — post(aux) = 1) A
((pre(aux)) = 1 A pre(in2:a) = 0) — post(aux) = 1) A
((pre(aux)) = OApre(in2:a) = 1) — post(aux) = post(aux)) A
((pre(aux)) = OApre(in2:a) = 0) — post(aux) = post(aux)) A
post(inl:a) = pre(inl:a) A post(in2:a)) = pre(in2:a)).

Proposition 4.7 (i) S2.., is implementable. (Any implementation of
Si.cn also implements S2,., ),

(i1) S2.., is mot wrong (same argument),
(iii) S2,., is insufficient. (Immediate because Slyecn is insufficient),

(iv) S2,., has a 1—MFJ fault. (Indeed by changing a single 1 to O the
specification Sio., can be regained.),

Proof:  Ounly (iv) requires attention. Consider an implementation P of
the following specification

2b 2b .
Stech - Slnterface& Sfunctional Wlth
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S ional = (post(out:a) = (pre(in2:a) + pre(aux) + 1) mod 2 A
pre(aux)) = 1 A pre

= (
(( ( 1) — post(aux) = 1) A
((pre(aux)) = 1 A pre( 0) — post(aux) =1) A
((pre(aux)) = 0 A pre(in2:a) = 1) — post(aux) = 0) A

((pre(aux)) = 0 A pre(in2:a) = 0) — post(aux) = 1) A
post(inl:a) = pre(inl:a) A post(in2:a) = pre(in2:a)).

)
in2:a) =
in2:a) =

Now P is an implementation of S2,., as well because S2_, refines S2_,.
Consider input s = (a,b) with a = (1,0,0,0,0) and b = (1,0,0,0,0) for
Ys[P]. On this input pair s the result of the computation of Ys[P] will be
(0,0,0,0,0) which is not in conformance with Sreq. We find that s is a
symptomatic failure case for P. Moreover by changing (with an appropri-
ate v with edit distance 1) post(aux) = 0 to post(aux) = 1 that par-
ticular failure is resolved, though the resulting specification specification
Y(SZpec) = Stpec, Say with implementation Q, is still wrong, according to
Proposition 4.5. Now 7(SZ,..) has a 1-Laski fault which can be repaired by
changing the last instance of post(aux) = 1 into post(aux) = 0 thereby
regaining S, g

4.7 A Connection With Regression Testing

The specification $2,, and its implementation P with change v(SZ,..) and
symptomatic failure s and a regression test suite consisting of a single test s’
for adding &’ = (0,0,0,0,0) and b = (0,0,0,0,0) with result (0,0,0,0,0)

provides an example of a 1—RTJoC fault for 82, .

5 Concluding Remarks

For the notion of a program specification we may make use of classical lit-
erature such as [3, 15, 14]. Although less common such specifications may
involve performance characteristics as well. In more than mere functional
properties are specified from a program we may speak of an extended func-
tional (EF) specification.

Some authors, however, claim that a specification determines for a
software component X “how it works”, and might prefer to refer to an
EF-specification as a requirements specification instead. Understanding of
specification as being about the how rather than the what is mentioned as
the second option in [19], and is also mentioned as an existing viewpoint
n [15]. If, however, one understands a specification as a description of how
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a program works, the notion of a failure of compliance with the specifica-
tion acquires a different meaning and the notion of a fault becomes quite
detached from observable program behaviour.

Therefore in the paper it is assumed that a specification P is in fact
a functional specification or more generally an EF-specification. Having
looked into the details of program faults, cast in the setting of instruction
sequences, it seems plausible to contemplate the notion of a specification
fault. As it turns out, however, unlike with the case of program faults we
were unable to find any existing work on specification faults, apart from
the idea that if a specification has no implementation something must be
wrong. In [7] the notion of an algorithm fault is defined, a definition which
is indirectly based on the notion of a program fault.

For a specification to be considered faulty some reference to another
description of constraints for a program is needed, and in fact the other
description must be attributed a higher status. We have chosen to speak
of technical specifications and to introduce requirements specifications as
the label for the background against which a claim that a specification is
faulty is to be justified. Moreover we have chosen to assign requirements
specifications the role of use case descriptions which for that reason are too
specific for a certain application to be included as a part of a program spec-
ification. Under these assumptions we find that the theoretical framework
for defining and analysing program faults as pioneered by [17] and [18] can
be generalised to the case of program specifications.

An obvious question, which we have not attempted to solve is to find
out whether in the existing body of practical software specifications the
different notions of fault as identified in the paper can be recognised. An-
other topic for future work is to investigate to what extent notions of fault
for technical specifications can be maintained once requirements specifica-
tions are allowed to be informal rather than formal. A further question
might be to investigate to what extent is makes sense to speak of faults
in a requirements specification. The current paper gives no clue on how
to conceptualise faults in a requirements specification. Intuitively however,
one may easily imagine a failure taking place during the phase of require-
ments capture which then becomes inadvertedly codified in a requirements
specification document.
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