Scientific Annals of Computer Science vol. 32 (1), 2022, pp. 5-86
doi: 10.7561/SACS.2022.1.5

A Survey of Testing for
Instruction Sequence Theory

Jan A. BERGSTRA!

Abstract

Using the conceptual analysis of instruction sequence faults, fail-
ures, and defects as developed by the author in [10] and [12], a survey
of testing is developed as an extension of a theory of instruction se-
quences. An attempt is made to develop a consistent terminology
regarding instruction sequence testing while taking into account the
literature on software testing at large.

Keywords: program algebra, instruction sequence, service, test, bug,
specification, fault

1 Introduction

I will use instruction sequences based on the notations of PGA style pro-
gram algebra (as outlined in [16]) as the starting point for collecting a
coherent sample of concepts as well as technical definitions and additional
information on testing. I will refer to the theory of instruction sequences
that is being developed in said paradigm as inSeqTh. 1 will often abbre-
viate instruction sequence to inSeq. Referring to inSeqTh as “the theory
of instruction sequences” is unwarranted, however, as inSeqTh is just one
particular form of a theory of instruction sequences.

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0
International License

nformatics Institute, University of Amsterdam, Science Park 904, 1098 XH, Amster-
dam, The Netherlands, Email: j.a.bergstra@uva.nl

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

6 Jan A. Bergstra

The objective of this paper is to extend inSeqTh with a chapter on
testing. Given the vast literature on program testing this objective suggests
an open ended endeavour without a well-demarcated outcome. An account
of testing will be obtained, which might be developed into a more systematic
and comprehensive form in due time. I will denote the resulting account
of testing with testing4inSeqTh. The paper contains an attempt to provide
an admittedly incomplete survey of testing which is cast in the terminology
and the conceptual framework of inSeqTh. In addition several notions are
either provided with more precise definitions than commonly done in papers
on testing, or choices are made between different options that can be found
in the literature on testing.

The paper contains no theorems and proofs, a novelty lies, hoever, in
the collection (as well as design) of formal as well as informal definitions
pertaining to the area of testing. I hope to contribute to the “philosophical
logic for computer science”, i.e. logic for computer science with the style of
philosophical logic.

1.1 Motivating “testing4inSeqTh”

The introduction and use of the label testing4dinSeqTh is motivated on two
disparate grounds:

(i) (facilitating eclectic configuration:) development of testingdinSeqTh
involves a significant number of design decisions each of which might
be altered, and upon taking different choices substantially different ac-
counts of testing for inSeqTh can be imagined, say testingB4inSeqTh,
and testingC4inSeqTh. The label testingdinSeqTh supposedly does
not suggest that “the” (unique) theory of testing for inSeqTh is being
configured, and

(ii) (maintaining compatibility with existing literature on testing:) the
literature on testing is quite inconsistent in terms of the meanings
that different authors assign to various terms and therefore making
choices is unavoidable when setting up testing4inSeqTh. Using the
header testing4inSeqTh, instead of say testingdprograms (which would
express a more universal ambition), allows me to make choices without
literally contradicting parts of the literature on software testing with
each design decision that is being taken.

Given an extensive literature on different forms of software testing three

A Survey of Testing for Instruction Sequence Theory 7

aspects require systematic attention for in relation to a development of
testing4inSeqTh:

selection of topics: which methods, techniques and principles to dis-
cuss and include,

how to arrive at a consistent and coherent whole, and

to what extent to allow the peculiarities of inSeqTh to determine the
resulting account of testing.

In summary the objectives of this project are these: A (collection of themes),
B (working towards a consistent terminology) and C (if possible: harvesting,
i.e. drawing conclusions the relevance of which may extend beyond test-
ing4inSeqTh). Regarding A, B, and C the paper involves making choices
from a plurality of options. The main choices which are proposed for adop-
tion in testingdinSeqTh are as follows:

A (collection): to create (under the label of testing4inSeqTh) an infor-

mative and simplified outline of software testing at large and casting
this outline in a setting of instruction sequences. Unavoidably, many
themes were left out, for instance testability analysis (following [83])
and non-testability (following [87]),

B (streamlining): to present an account of “testing for PGA style in-

struction sequences” in a coherent and consistent manner, by making
design choices which might be problematic when writing a survey on
program testing.

(1) to view testing as being included in verification rather than the
other way around,

(2) not to include formal verification in testing, while formal veri-
fication is included in verification,

(3) not to include code walk-through and related static methods in
testing,

(4) to use test case (w.r.t. a given instruction sequence) for the
inputs of a test; to use test sample for the pair of inputs and
outputs of a test run complemented with a flag signalling how
the test run was ended; to use verdicted test sample (or ver-
dicted test case, or completed test case) for the combination of

Jan A. Bergstra

a test sample with a verdict about it; to use test battery for a
set of test cases meant for being applied to the same program;
to use (verdicted) test suite for a collection of (verdicted) test
cases that have been applied to the same inSeq; to view various
coverage metrics as [0, 1] valued meta-verdicts on test suites,

(5) to take fail, pass, none and error as the four possible verdicts
(following TTCN-3),

(6) to take an act of testing as a physical process (computation)
starting with a test case (and an ISuT i.e. instruction sequence
under test) and ending with a test sample, (issuing the verdict
is not included in said act of testing, however),

(7) to assume that acts of testing are performed within a test config-
uration (i.e. a testing context for the ISuT) under the guidance
(i.e. control) of a test agent and to make the test agent respon-
sible for providing a termination flag which is to be included
in the test sample and which is chosen from these four options:
termination-ok, termination-nok, interrupted, aborted.

(8) not to provide “test” or “testing” with a technical definition.
Within testingdinSeqTh “test” is intentionally ambiguous, and
it may refer to test case, test sample, completed test sample, but
also, as is the case in the social sciences to a particular method
and protocol for testing, i.e. investigating a certain class of
subjects by applying various tests (i.e. means of investigation)
to these subjects,

(9) to consider a fault as static phenomenon which (by definition)
is a cause of a failure (a dynamic phenomenon); not to assume
that all failures are caused by faults,

(10) to speak of a learnt instruction sequence rather than a model
or an ML program in the context of machine learning,

C (harvesting): to improve the understanding of various concepts in the
area of testing by making use of the simplification which comes about
from a restriction to program algebra style instruction sequences. For
instance:

(1) an attempt to clarify the notions of a bug, a bug report, and a
dormant bug,

A Survey of Testing for Instruction Sequence Theory 9

(2) viewing testing as a notion which features partisan ambiguity,
and in fact intentional ambiguity (these refinements of ambigu-
ity are discussed in detail in Paragraph 2.1 below),

(3) working with informal but rigorous definitions of: test case,
test sample, verdicted test sample, test suite (both verdicted
and non-verdicted),

(4) viewing testing as being included in verification, though not in
formal verification.

1.2 Taking into Account the Diverse Literature on Testing

There is a multitude of survey papers and books on software testing. What
these works seem to have in common, however, is that authors pay little
attention to work by other authors which they disagree with or do not
approve of. I consider each definition of testing, and of related notion, that
is presented in a book or a survey paper on software testing to some extent
problematic if no attention is paid to alternative definitions that have been
proposed in earlier work. By not paying attention to other perspectives a
degree of topical unity and coherence is suggested which is in fact largely
absent in the area of program testing.

For configuring testing4inSeqTh the entire literature on software test-
ing matters, at least in principle, including various manifest disagreements
(such as about the relative status of verification and testing). When adopt-
ing a certain point of view or notation (that means to adopt for inclusion
in testing4inSeqTh), it is not implied that I consider authors maintaining
different views to be misguided.

1.3 The Point of Departure, and How to Proceed

An outline of inSeqTh can be found in the following papers: [16], [24], [20],
and [13].

A chapter on faults, failures, bugs and flaws for inSeqTh (referred to
as FFBF4inSeqTh) has been outlined in [15], [10] and [12]. These papers
primarily describe the following notions: (ALR) failure, ALR fault, Laski
fault, MFJ fault, RTJoC fault, and dormant failure. FFBF4inSeqTh is a
theme of ongoing research.

For the development of testingdinSeqTh I will adopt the conventions
and definitions on faults and failures as discussed /proposed in FFBF4inSeqTh.
In particular this choice implies the notion that a fault is a fragment of an

10 Jan A. Bergstra

instruction sequence which causes a failure where causation must be justi-
fied by means of knowing in which way the replacement by way of a known
change of said fragment remedies the occurrence of said failure.

A chapter on deterministic multi-threading for inSeqTh (that may be
referred to as DMT4inSeqTh) has been developed in [17], [18] and [19].

1.4 A Conclusion Turned into an Assumption

The remarkable diversity in the literature cannot be accommodated by sim-
ply choosing the best available option in each case. For instance the dis-
tinction between black-box testing and white-box testing appear very often,
but in the well-known monograph [2] one finds that this very distinction
is considered obsolete, and in [80] the black-box/white-box terminology is
not used. In agile testing according to [85], however there is a role for
black-box testing as well as for white-box testing. Concerning the question
whether testing is a quest for failures or a quest for confidence, various au-
thors disagree while [7] notices that this kind of judgement, as made by a
programmer or by a programming team, is an indication concerning a level
of testing maturity, where viewing testing as quest for confidence indicates
the higher level of the two, though not the highest level available. For an
account from industrial practice regarding the succession of trends about
testing I refer to [6]. I have developed the following working hypothesis as
a conclusion, which retrospectively has functioned as structuring principle
for this work.

Working hypothesis on inSeq testing. The working hypothesis I wish
to advance has four parts: WH1, WH2, WH3, and WH4:

WHI1: Program testing occupies a niche between four related themes, and
testindinSeqTh will reflect the influence of the four sides involved:

(i) Formal verification. In formal the context of verification where
the coexistence of a specification (to be implemented) and a
system (prospective implementation) under verification (SuV)
is taken for granted, and testing invariably seems to be a sec-
ond best option, especially when portrayed exclusively as be-
ing about the relation between a specification and a system
(prospective implementation) under test (SuT). The classical
theory of testing (as in e.g. [49]) fits in this compartment but
plays no significant role.

A Survey of Testing for Instruction Sequence Theory 11

WH2:

WHa3:

WHA4:

(ii) Debugging. Debugging has not become a theme in theoreti-
cal computer science, though its methods and techniques (e.g.
slicing) have. In the area of debugging the contrast between
specification and implementation is less prominent than in for-
mal verification. Debugging is very much a theme in the psy-
chology or programming. Testing, however, seems to be remote
from programmer experience and programming psychology, two
core themes concerning debugging.

(iii) Software process modelling and organisation. Viewed from the
perspective of software process modelling and various forms of
team activity, program testing misses the spirit of engineering
on a grand scale, and it primarily represents an unfortunate
cost factor which must be contained.

(iv) Automaton theory. Finally seen from automaton theory, pro-
gram testing is remarkably informal and non-mathematical, in
spite of various attempts to provide program testing with a ded-
icated mathematical foundation. Automaton theory, however,
allows to provide a comprehensive theoretical background for
testing various kinds of systems, a capability which seems not
always to reach practitioners in an adequate and timely manner.

In each of the four areas just mentioned in WHI testing has a sec-
ondary status only. Turning testing into a topic with a core that
serves the interaction with each of these neighbouring themes is still
a meaningful challenge.

Only by taking the experimental character of testing as the basis of
its theoretical development, a core account of testing meaningful to
each of these four areas can emerge (a view implicitly present in [67]).

in due time, the emergence of quantum computing will turn attention
of testing theory to proper experimentation. Quantum programs will
be tested at a large scale and performance assessment will become
central to testing of such programs.

In [34] the argument is made the other way around: quantum programs
will defeat testing and render formal verification more important because
of the intrinsic difficulty and counterintuitive mechanics of quantum com-
puting. In [66] it is argued that even for classical probabilistic programs,

12 Jan A. Bergstra

i.e. deterministic inSeq’s with various options for tossing a coin, testing is
quite problematic because a (single) test run cannot disclose a failure, and
for that reason cannot suggest the presence of a fault. The latter argument,
however, disappears upon understanding testing broadly as the application
of experimental methods for analysing program quality. Nevertheless a sig-
nificant literature on testing quantum programs is emerging, mainly since

2020, e.g. [55, 71].)

I intend to set up testing4inSeqTh in such a way that it is not overly
biased in either of these four directions. Unavoidably a discrepancy with
established literature results. If I would replace inSeq testing by soft-
ware testing, or by program testing, for instance the choices made for
testing4inSeqTh (now read as a theory of program testing) would be in
disagreement with [80] on at least the following terms and phrases: mis-
take, verification (versus testing), test, test case, while the would be partial
agreement on fault, bug, and error. The thought experiment of synthesising
testingdinSeqTh eliminates the risk of prematurely contradicting existing
literature on program testing such as [80].

1.5 Other Chapters of Instruction Sequence Theory

Before taking testing in focus it is informative to imagine which other themes
might lead to chapters for a theory of instruction sequences. Some chapters
have, in fact been developed in ample detail already; I will only list the
themes, proper references can be found elsewhere.

o CC&MM4inSeqTh on control codes and machine modelling. Control
code is low level in the sense that it is directly linked to a processing
mechanism for a hardware model. The CC&MM chapter which has
been developed for inSeqTh thus far is based on Maurer machines.

e GCS4inSeqTh on garbage collection and shedding: Molecular pro-
gramming, data linkages, garbage collection, shedding.

e RP4inSeqTh on reflexive programming: variations of the halting prob-
lem, including variants of Cohen impossibility for virus detection,

Some options for further chapters for extending inSeqTh can be mentioned:

(i) Software metrics. Here a useful starting point is the question to find a
metrics for various instruction sequence notations which satisfy the 9
criteria on metrics as collected and proposed in [88],

A Survey of Testing for Instruction Sequence Theory 13

(ii) definitions of the notion of program and algorithm,

(iii) code compactness: minimisation of the number of instructions needed
for various tasks, and

(iv) quantum computing from a perspective of inSeqTh.

Certain themes, however important, are out of the reach of an approach
based on PGA instruction sequences. For instance topics in the area of
programmer productivity can hardly be studied from the perspective of
program notations which are not used in practice or which, like the PGA
inSeq notations, have not been designed with practical use in mind.

2 Terminology for Ambiguous Concepts

For software testing just as for many other topics the ambiguity of termi-
nology, as it occurs in the literature, may stand in the way of achieving a
unified exposition. For instance some authors include software verification
in software testing, and other authors do not, while yet other authors in-
clude software testing in software verification. 1 take this state of affairs
as an indication that software testing is an ambiguous concept. However,
more can be said about this particular instance of ambiguity: (i) I prefer not
to include formal software verification in software testing and to consider
testing as being included in verification, but (ii) different choices can work
and there are no compelling grounds for said preference.

Not all instances of ambiguity must be resolved by way of rigorous
definitions, however, as ambiguity may be intentional. In this section I will
introduce some terminology about concepts in relation to (un)ambiguity,
(in)formality, and rigour. This terminology will be used below. The pro-
posed terminology for ambiguity is unspecific for testing and might be in-
cluded as well in other efforts of theory design. Below, in Paragraph 9.11, I
will illustrate the various forms of ambiguity with an example from elemen-
tary arithmetic.

2.1 Refinements of Notions of Ambiguity

I will assume that a concept C' comes with a term (also referred to as C')
which serves as a name for it. I will speak of a concept/term, where term
may also be phrase. I mention some 50 concept/terms that occur in the
area of testing where I restrict focus to deterministic systems exclusively:

14 Jan A. Bergstra

test, testing, test case, test suite, regression test, mutation test,
metamorphic test, random test, structural-test, black-box test-
ing, white-box testing, grey-box testing, observation, verdict,
oracle, automated oracle, fault, bug, failure, error, mistake, bug
report, log file, fault localisation, fault repair, dormant fault,
dormant failure, dormant bug, bug finding, verification, formal
verification, proof checking, validation, quality control, specifi-
cation, requirements document, requirements capture, compli-
ance, confidence, trust, risk, confidence level, release, mainte-
nance, patch, security vulnerability, security fault, consistency
with specification, implementation, instruction, branch, line, ex-
ercising, execution, running.

Each of these concept/terms may feature ambiguity (it seems to me that
most do) and making “best choices” in each case is unattractive because of
the risk to end up with an account that deviates from (and thereby disagrees
with) virtually every existing account of testing regarding the interpretation
of one or more concept/terms.

Definition 2.1 A concept C is subject to accidental lexical ambiguity (or
accidental ambiguity for short) if the term (phrase) C refers to another
concept in a quite different context.

For instance: black-box, the box one does not, can not, or will not look
into, versus Black’s box (sometimes also referred to as black-box) which
one can look into even after a crash; in both cases the color black is not
involved; or as another example: bat as an animal and bat as used in
baseball. Accidental lexical ambiguity seems not to be a significant issue
in the area of program testing. The concept/term effective (“computable”
versus “having become materialised”) serves as an example of accidental
lexical ambiguity that features in the testing literature.

Definition 2.2 A concept/term C' is subject to systematic ambiguity if the
term (phrase) C refers to a plurality of related concepts

For instance: number may stand for natural number, integral number (in-
teger), rational number, algebraic number, real number, complex number,
non-standard number, surreal number etc. I hold that as a concept/term
“number” is subject to systematic ambiguity.

A Survey of Testing for Instruction Sequence Theory 15

Definition 2.3 A concept/term is C relatively unambiguous if it is defined
n a way which narrows down its possible meanings quite significantly, al-
though further ramification may be possible, mainly by making one or more
parameters to the definition more explicit.

I consider “formal verification” to be relatively unambiguous (though one
might disagree as to whether formal verification requires in excess of a formal
approach to program semantics also a formal approach to the construction
and checking of the parts of a proof that are exclusively dealing with the
underlying mathematics).

Definition 2.4 A concept/term C' is subject to partisan ambiguity if dif-
ferent (groups of) human agents assign different though related meanings
to 1.

Partisan ambiguity concerning C' may be present in cases where agents
are not even aware of alternative (though related) interpretations for C.
Occurrence of partisan ambiguity is plausible only in cases which feature
systematic ambiguity. While accidental ambiguity is easily resolved by clar-
ification of the context at hand, dealing with partisan ambiguity may be
more challenging. For an author A who approaches a topic involving C' and
who notices the presence of partisan ambiguity concerning C' in the litera-
ture, an obvious option is to choose between different options as provided
in the literature. I will refer to making such a choice as partisan disam-
biguation. A first advantage of partisan disambiguation is that there will
be ample examples of use of the chosen option which A can follow, and as
second advantage is that there is an audience used to the chosen under-
standing of C'. A disadvantage of partisan disambiguation lies in the risk of
entering into a disagreement with authors who prefer other interpretations
of C i.e. who performed partisan disambiguation as well but who made a
choice for a different interpretation of C.

Definition 2.5 When choosing for a concept C' which is subject to partisan
ambiguity one of the known meanings for it, an author applies partisan
disambiguation to it.

I prefer to write about testing while not engaging in partisan disambigua-
tion to terms relating to program testing. Precisely this is achieved by
writing about testing in the admittedly artificial context of instruction se-
quence theory.

16 Jan A. Bergstra

Definition 2.6 A concept/term C is subject to disputed ambiguity if the
concept is subject to partisan ambiguity and if moreover different (groups
of) users of C explicitly disagree about the proper meaning of the concept

Definition 2.7 A concept/term C is understood by one or more agents as
being intentionally ambiguous if:

(i) C features systematic ambiguity,

(ii) its use (by said agents) combines different meanings for each of which
also more specific terminology is available (to these agents), and

(iii) said agents acknowledge the plurality of meanings of C involved.

It follows from this definition that intentional ambiguity of concept/term
may be a judgement which is not universally shared. For instance if an au-
thor A applies partisan disambiguation to a concept/term C' while another
author B declares to acknowledge (and use) intentional ambiguity of the
same concept C then A and B are in disagreement on that matter.

2.2 Examples from Programming and Program Testing

Below I will assume the ALR concepts for failure, fault, error, and mistake as
known (see [10, 12] for more detail, which is based on [3, 4], [61], and [69]). I
do not, however assume that the ALR definitions of the respective concepts
would be widely accepted in the world of program testing. In these cases
by adopting said interpretation I engage in partisan disambiguation. By
providing an account of testingdinSeqTh partisan disambiguation will be
avoided (in this paper anyhow).

1. Software testing:

(i) not subject to accidental ambiguity,

(ii) subject to systematic ambiguity according to some but not ac-
cording to others,

(iii) subject to partisan ambiguity (some authors include one or more
of: code walk through, formal verification, model checking in
software testing, while other authors view testing as a part of
verification, and yet other authors take verification for a part of
testing, and finally testing and verification may also be consid-
ered disjoint and complementary in a useful manner),

A Survey of Testing for Instruction Sequence Theory 17

(iv) not subject to disputed ambiguity (authors are hardly ever ex-
plicit about the difference of their interpretation of software test-
ing with the interpretation favoured by other authors, though
there are explicit differences regarding the objectives of software
testing).

2. Failure:

(i) not subject to accidental ambiguity,

(ii) relatively unambiguous (fairly general agreement that a failure
is a dynamic phenomenon which takes place if a run proceeds in
such a way as to be not in conformance with the specification
and/or requirements at hand, which is the ALR interpretation of
failure.)

3. Fault:

(i) subject to accidental ambiguity (also a notion in geophysics),

(ii) subject to partisan ambiguity (the ALR definition of fault is more
narrow than other interpretations of fault which may include
failure, bug, and defect),

(iii) ALR fault provides a relatively unambiguous definition of fault
(Laski fault specialises ALR fault by being explicit about the
justification of causality at hand, and so do the notions of MFJ-
fault and RTJoC-fault as discussed in [10]),

(iv) I see no indication of disputed ambiguity of the notion of fault
in informatics.

4. Bug:

(i) is accidentally ambiguous (the first computer bug as found by
Grace Hopper is claimed to have been the remains of an insect
at the same time),

(ii) bug is subject to partisan ambiguity (some authors assume that
bugs occur in programs other authors include failures i.e. dy-
namic violations of the specification in the notion of bug, while
other authors take all bug reports for bugs, and yet others do so
sometimes but not always),

(iii) bug is not subject to disputed ambiguity,

18 Jan A. Bergstra

(iv) “bug” seems to be intentionally ambiguous for many authors on
the subject.

5. Error:

(i) not accidentally ambiguous,

(ii) subject to partisan ambiguity (some authors include ALR fail-
ures, other authors do not),

(iii) does not feature disputed ambiguity,
(iv) the ALR concept of error is too vague to be relatively unambigu-
ous, although it was probably meant to be.

6. Dormant failure:

(i) not accidentally ambiguous,

(i) relatively unambiguous.
7. Test case:

(i) not accidentally ambiguous,

(ii) subject to partisan ambiguity (one may identify test case with
test input, or with test input plus an abstraction of the corre-
sponding run, or one may (additionally) include the resulting
verdict in the test case),

(iii) no sign of disputed ambiguity,

(iv) intentional ambiguity is plausible.

2.3 Residual Informality

Sometimes a notion has been informally defined to such a degree that an
attempt to qualify the amount of ambiguity is implausible.

Definition 2.8 A concept/term C is residually informal if its various def-
mitions are informal, and no strong incentives seem to be in place to arrive
at a rigorous or formal definition.

I consider the following concept/term’s to be essentially informal: computer,
software, software engineering, software quality, problem, defect, testing, re-
quirements capture, team, teamwork, machine, hardware, execution (of a

A Survey of Testing for Instruction Sequence Theory 19

program on a machine), interpretation (of a program on a machine), de-
sign, module, modularity, comprehensibility, structured programming, agile
programming, causality, practice, research, development (as in R & D).

Definition 2.9 A concept is rigorously defined if it has a definition on the
basis of which it need not be qualified as essentially informal.

I consider failure (understood as ALR failure) and ALR fault to be key
examples of rigorously defined concept/term’s. The same holds for verdict,
and to a lesser extent for oracle. A concept/term may be considered prob-
lematic under some conditions. That is a subjective notion for which the
following definition may be helpful.

2.4 Problematic Concept/Term’s

Beyond intentional ambiguity, the ambiguity of a concept/term may in some
case be considered problematic by some users of the concept/term at hand.

Definition 2.10 A concept/term (given a definition for it) is problematic
if it meets one or more of the following criteria:

(i) the concept/term has a rigorous definition, which, however is not taken
as authoritative by the creators of the definition, and this situation has
not been changed in subsequent literature,

(ii) the concept/term features an unexpected level of ambiguity (unneces-
sary intentional ambiguity, unnecessary partisan ambiguity, unneces-
sary disputed ambiguity),

(iii) the concept/term lacks a rigorous definition while it might profitably
be given a rigorous definition.

I consider the concept/term fault to be problematic. The wide-spread use
of fault in the testing literature taken in combination with the equally wide-
spread lack of clarity about what constitutes a fault renders much of the
testing literature unrigorous to an unnecessary extent.

2.5 Examples of Concept/Term Qualifications

e Testability: in [43] over 30 definitions of testability are listed. An
ambiguity arises from the fact that (i) some definitions take testa-
bility for a property/virtue of requirements and (ii) some definitions

20 Jan A. Bergstra

take testability for a property of programs or software components,
(iii) yet other definitions take both the program and its requirements
into account. Nevertheless each of the definitions is informal which
is witnessed by the occurrence of the words “ease”, “effectiveness”,
“degree to which”, and “facilitate”. I conclude that for some authors
testability is essentially informal, while for other authors testability
admits a rigorous definition.

e Untestability is an informal notion. The seemingly obvious conclusion
that formal verification (including model checking) is the only remain-
ing option available for gaining confidence in an untestable program
is never drawn as far as I know.

e Dormant fault: as argued in [12] dormant failure is an unproblematic
concept with a rigorous definition, whereas dormant fault seems not
to have a convincing definition; dormant fault is problematic in view
of case (iii) of the definition.

o At first sight the definition of a dormant bug in [35] is unproblematic
as long as one refers to bugs that have been reported already, but
then there are never any yet unknown dormant bugs, which deviates
from what the authors have in mind. I conclude that [35] does not
comply with the definition of a dormant bug given in the same paper.
Dormant bug is a problematic concept/term for that reason.

e The notion of a fault (as specific as an ALR fault) features resid-
ual informality which can be avoided by means of being specific about
change justification, a view adopted in [10], on the basis of [61] and [69]).

3 Subjective Aspects of Programming and
Testing: A Rudimentary Agent Model

Some accounts of testing introduce a historic development of testing with
subsequent phases, for instance [46] suggests the following phases:

e up to 1976: debugging oriented (becoming aware of the ubiquity and
impact of bugs),

e 1957-1978: demonstration oriented (checkout oriented),

A Survey of Testing for Instruction Sequence Theory 21

e 1979-1982: destruction oriented (fault detection as the primary ob-
jective of testing),

e 1983-1987: evaluation oriented (quality assurance oriented),

e from 1988: prevention oriented (systematically working towards the
absence of faults).

I will now focus on the notion of a checkout (the programmer’s assertion
that the inSeq works) which plays a central role in these matters. However
naive the idea of a checkout may be, the intuition of that notion is so
obvious that it deserves a place in testing4inSeqTh. For this purpose I will
introduce the programmer as an agent and use the language of promise
theory (see [11, 14]).

Testing theory is often discussed in the context of a software process
model, such as e.g. the famous waterfall model. Instead I will work with
a rudimentary agent model: a programmer, say A, produces a program for
a user, say B (representing a user community), and some agents in scope
of the process, (e.g. a common manager My, of A and B, and/or some
certification authority C', or a representative member of the user community
other than B, or a lawyer known to A and B, to mention some possibilities).

InSeq checkout promise: (programmer) A promises to (cus-
tomer/user) B (with scope U) that inSeq X provides a satisfac-
tory solution for the problem captured in requirements S,

Acceptance is primarily a matter for the customer/user of an inSeq. In [70]
it is made explicit that acceptance comes with a customer side perspec-
tive and it is also emphasised that the notions involved are quite informal.
Acceptance is complementary to checkout.

InSeq acceptance promise: (customer/user) B promises to
(programmer) A (with scope U) that inSeq X provides a satis-
factory solution for the problem captured in requirements spec-
ification Syeq.

The inSeq checkout promise does not require a specific methodological un-
derpinning. I will use delivery if some model for software quality assurance
is available and is being followed.

22 Jan A. Bergstra

InSeq delivery promise: (programmer) A promises to (cus-
tomer/user) B (with scope S) that inSeq X provides a satisfac-
tory solution for the problem captured in requirements specifica-
tion Sy¢q and that its delivery in the given state is in accordance
with specified guidelines G to that extent.

Prior to an exchange of X the programmer and the customer/user are
likely to exchange a requirements specification S,.; and a technical spec-
ification Sieep,.

Requirements proposal promise: (customer/user) B promises
to (programmer) A (with scope U) that their (i.e. B’s) needs
have been adequately captured in requirements specification Sy.q.

Requirements acceptance promise: (programmer) A promises
to (customer/user) B (with scope U) that their needs as cap-
tured in requirements specification Sy, constitute an adequate
starting point for designing a corresponding technical specifica-
tion Sieep-

Technical specification checkout promise: (programmer)
A promises to (customer/user) B (with scope U) that their needs
as captured in requirements specification S,., are adequately
dealt with in technical specification Siecp.

Technical specification acceptance promise: (customer/user)
B promises to (programmer) B (with scope U) that their needs
as captured in requirements specification S,., are adequately
dealt with in technical specification Sy as proposed by A.

More likely than not the requirements specification and the technical spec-
ification will evolve during an inSeq development process. It is implicit in
Promise Theory (following [14]) that no obligations emerge from promises
and that upon having made a promise the promiser may still change their
position.

3.1 Testing, Validation, Verification, Informal Verification,
Formal Verification

I will use verification as the most general category of inSeq quality assurance.
Under informal verification I include informal approaches as well as formal

A Survey of Testing for Instruction Sequence Theory 23

approaches. Informal approaches include for instance code walkthrough and
informal correctness proof.

Now various terms can be linked to the promises the making of which
involves the corresponding activities:

e inSeq checkout promise: verification (no particular emphasis on any
particular style of verification),

e inSeq acceptance promise: testing against Sy, [optional: testing
against Sgpec),

e inSeq delivery promise: testing against Sy, [optional: formal verifi-
cation against Sspec),

e Requirements proposal promise: informal verification (in this phase
often called validation) [optional: rapid prototyping/testing],

e Requirements acceptance promise: informal verification [optional: pro-
totyping/testing],

e Technical specification checkout promise: informal verification [op-
tional: formal verification, automated prototyping/testing],

e Technical specification acceptance promise: informal verification [op-
tional: automated prototyping/testing],

Here it is assumed that prototyping turns a requirements specification into a
working system (the prototype), which then can be investigated via testing.
If a technical specification is available it may be possible to generate a
prototype automatically (that is at low cost).

3.2 From Claiming a Simultaneous Evolution of Testing to
Claiming Concurrent Evolutions of Testing

The perspective that world-wide testing (as an activity taking place during
and after software development process) moves through a series of phases as
outlined above in this Section has been amended in [7] as follows: instead
of perceiving a collective evolution of testing one focuses on an evolution
of testing that takes place many times in various organisations that pro-
duce computer programs. Such organisations then, according to [7] evolve
through a succession of testing maturity levels.

24 Jan A. Bergstra

For testing4dinSeqTh I prefer not to think in terms of the history or
histories of testing process evolution and have a simple agent based model
in mind where agents may freely choose from actions (promises) of each
maturity level.

4 Security Testing

Avoiding security problems plays a central role in testing. If anywhere it is
in the area of security that testing stands out as a necessity which will not
easily become obsolete.

Security testing is often presented as a coherent subarea of software
and system testing. It has its own terminology including these phrases:
vulnerability scanning, security scanning, intrusion detection, penetration
testing, SQL injection, ethical hacking, DevSecOps (DevOps integrating
security testing and protection, while like in DevOps replacing the waterfall
style development by a more gradual transition to usage), left shifting and
right shifting. In [40] the following informative classification of security
testing is presented and used:

(1) model-based security testing is grounded on requirements and design
models created during the analysis and design phase,

(2) code-based testing and static analysis on source and byte code created
during development,

(3) penetration testing and dynamic analysis on running systems, either
in a test or production environment, as well as

(4) security regression testing performed during maintenance.

Explanations of security testing of programs and/or systems are conven-
tionally not stated in terms of the intended functionality of said programs
and/or systems.

4.1 Security Testing in the Absence of a Positive Notion of
Security

Traditional program testing comprises a collection of methods and tech-
niques/technologies that support the development of correct programs, where
correctness is a concept that can be defined in theory and that has an intu-
itive appeal. In contrast security testing is not a toolkit helpful for obtaining

A Survey of Testing for Instruction Sequence Theory 25

secure programs. There is no notion of a secure program in theory and se-
curity is a systemic notion to such an extent that understanding security at
a component level and thinking of secure systems as secure compositions of
secure components is too simple. Security of a system is about being well-
protected against known threats and about being easily adaptable to incor-
porate protection when new security threats have been identified. Just as a
person cannot (at a given moment) be protected simultaneously against all
conceivable viruses, while a healthy person is protected against the viruses
the circulate in their context of life, a programmed computing system can-
not at any stage in its life-cycle be protected against all conceivable attacks.
The concept of a secure system rests on a survey of known and unknown
but readily imaginable threats and attacks against all of which protection
is either in place or achievable with relative ease.

4.2 Security testing4inSeqTh

Work on testingdinSeqTh may at best follow developments in security ori-
ented testing with significant delay. I will describe some initial steps along
that path where I will follow a line of historical development in the following
account of this theme, while commenting on relations (or possible relations)
with instruction sequences. In [60] the following is written on the question
“what is a security flaw”.

This question is akin to“what is a bug?”. In fact, an inadver-
tently introduced security flaw in a program is a bug. Generally,
a security flaw is a part of a program that can cause the system
to violate its security requirements.

Besides security flaw the phrase security bug is frequently used. It seems to
have the same meaning. According to [60] a security flaw in a program is a
bug and more specifically it is an ALR fault.

I am not sure that it is plausible to expect a security failure to be
caused by a Laski-fault, an MJF-fault or an RTJoC-fault. A security flaw
is plausibly the cause of a security failure, but attribution of the failure
to a fault in such a manner that an appropriate change on a single loca-
tion makes the security flaw disappear may be asking too much. Instead
a more significant program redesign may be needed which goes beyond the
limitations of Laski-faults, MJF-faults and RTJoC-faults as instantiations
of ALR faults.

26 Jan A. Bergstra

4.3 Working With Simple Security Models

Security models range from early and simple, e.g. Lampson’s notion of con-
finement in [59] to recent and complex, as e.g. in [25]. With instruction
sequences as a point of departure it is plausible to start with early secu-
rity models and to see to what extent such models may be understood as
requirements on architectures which are expressed in terms of instruction
sequences and to see to what extent notions of testing apply in such cases.

4.4 Lampson Confinement

It seems that translating the notion of confinement as informally proposed
by Lampson in [59] into the notations of program algebra is not straightfor-
ward. In particular the guidelines on how to guarantee proper confinement
are not easily translated. Confinement, however, may be understood with
different objectives in mind, for instance to guarantee confidentiality or to
guarantee integrity. Both these refinements of confinement have led to very
well-known security models.

4.5 Bell LaPadula Security Model for Confidentiality

In connection with the Bell-LaPadula security model (BLP model, i.e. the
model as proposed in [8]), it is plausible to assume that levels of confiden-
tiality have been assigned to programs (threads) as well as to services (or
rather to foci). Now the two key principles “no read up” (i.e. a thread
must not read from an object with higher level of confidentiality than the
thread has itself) and “no write down” (i.e. a thread must not write to an
object with lower level of confidentiality than the thread has itself) may be
translated as follows:

(i) if a thread P has been assigned level k and a focus f has been assigned
level [with k < [then there may be only a single method m for which
a call of the form f.m occurs in P. The idea is that when different
methods of the service (say H) in focus f can be called it becomes
possible for P to communicate inputs to H. A call f.m may always be
used by P to receive information from H by way of the reply it returns.

(ii) if a thread P has been assigned level k and a focus f has been assigned
level | with k& > [then every call of the form f.m which occurs in P
must occur in a subprocess of the form f.mo@. Recall that f.moQ =

A Survey of Testing for Instruction Sequence Theory 27

Q < f.m > Q. The idea is that by choosing which method to call P
may transmit information to H via focus f while the reply value as
produced by H will be ignored by P.

Now if the BLP model is imposed on a possibly multi-threaded configuration
by providing an assignment of levels of confidentiality to threads and to foci,
then it may be assessed whether or not said configuration is in compliance
with the BLP model. Doing so, however, can easily be done my means of a
syntactic check of the programs X; for the given threads F;: for each pair X;
and f.H with k the confidentiality level of P; = | X;| and [the confidentiality
level of f:

(i) (case k < I) amounts to finding all calls f.u that occur in X; and
confirming that at most a single method, say m is used.

(ii) (case k > I) amounts to checking that each method call of the form
f.u occurs in a void instruction (that is not in a test 4+ f.p or in a test
—f-).

At first sight BLP assessment of compliance involves a syntactic check only
and testing plays no role. Now this is not fully precise as the program Xy
may contain violations of these requirements (in case (i) say occurrences
of foml and f.m2) and in case (ii) e.g. a test instruction +f.m) whiles
these violations are in fact unreachable so that the BLP is not violated
after all during a run of the system. Nevertheless, testing is hardly justified
in this matter.

4.6 Biba Security Model for Integrity

The Biba security model (i.e. the model proposed in [27]) complements
the BLP model with mechanisms/protocols for the protection of integrity.
Instead of confidentiality levels the Biba model makes use of integrity levels
(though called security levels in [27]). This model advances a setting allow-
ing for a plurality of security policies. Leaving out invocation for reasons of
simplicity one of these policies can be formulated thus:

(i) (no write down after read up) a thread must not write into an (an
object with) a certain integrity level after having read from a (an
object with) a higher integrity level, (or otherwise the integrity level
of that object is temporarily decreased to the lowest level of integrity of
the objects from which the thread has been reading in the computation
before performing the write),

28 Jan A. Bergstra

(ii) (no write up) a thread must not write into (an object with) higher
integrity level than the thread has itself (or otherwise the integrity
level of that object is temporarily decreased to the level of the writing
thread).

Using strategic interleaving with locking and blocking (see [17]) these con-
straints lead to assertions for which tests can readily be designed.

4.7 Non-interference

Goguen & Meseguer proposed in [47] to view non-interference as a mech-
anism for formulating criteria for security mechanisms that are amenable
to testing and formalisation. In [84] and related work one may find a pro-
posal on how to model non-interference in the setting of instruction se-
quence theory.

4.8 Recent Models

The classic models involving confidentiality levels, security levels and non-
interference are very simple in comparison with what is needed to under-
stand system security, say some 40-50 years later (as e.g. pursued in [25]).
However, when preparing for testing, even without the ambition to advance
towards formal verification, a significant modelling effort is needed. The lat-
ter modelling effort is needed just as well in advance of formal verification.
I draw the following conclusions from this observation:

(i) At least in the context of security flaws, program testing constitutes
a plausible activity which may well precede efforts towards formal
verification, because both activities depend on modelling the system,
while formal verification imposes higher demands on the model.

(ii) In the context of security flaws, when a system has been modelled and
tests are being designed, the corresponding oracle problem may well
be tractable because security flaws are likely to allow quite manifest
problems to happen (such as e.g. a system crash).

(iii) Given a program/system P/S and its intended security model, es-
tablishing confidence in compliance of the system with its intended
security model and establishing the security of P/S are quite differ-
ent matters.

A Survey of Testing for Instruction Sequence Theory 29

(iv) Formal verification of security of a program P is likely to take the fol-
lowing form: some pattern puiqack Of attack is proposed, and a security
model mgzznaiir is proposed which supposedly guarantees that attacks
following pattern puiqck Will not be successful. Establishing the guar-
antee requires first of all a formal analysis of the model, which may
be done in advance and be applied in a variety of cases. Subsequently
it must be formally verified that the program P complies with model

g‘;ﬁ‘t’i‘]’;’" At least initially, so it seems, a testing approach can avoid
the development and use of security models like mgzmiir,

ders security testing attractive in comparison to formal verification.

which ren-

5 Tensions and Choices for testing4inSeqTh

A tension occurs if the focus on instruction sequence theory is difficult to
align with principles and objectives of software testing.

5.1 Program Notation Diversity

Work on program testing often makes use of some specific program nota-
tion, either for providing examples and explanation or as the basis of data
extracted from various repositories containing data of production processes
for programs in the notation at hand. At the same time most qualitative
insights on program testing are independent of any specific program nota-
tion.

Design choice: 1 will make use of instruction sequence notation as pro-
posed in [16] and as surveyed in [23] and for used for instance in [68].
These notations provide cornerstones of the PGA family of program al-
gebras from [16].

Implication(s): An implication of this choice is that examples and coun-
terexamples have to be provided in these notations. More importantly the
chapter on testing for instruction sequences will not produce or import
and use statistical results on testing in practice. Moreover by adopting
instruction sequences as a point of departure a focus on deterministic
systems comes about. Concurrency can take a deterministic form via
strategic interleaving. However, if nondeterministic systems are to be
tested a different theoretical background is required. A variety of pro-
posals to that extent have been published to date. If timing is relevant,

30 Jan A. Bergstra

then discrete timing (see e.g. [5]) can be used in combination with multi-
threading as captured by way of strategic interleaving.

5.2 Model to Reality Gap (for Software Testing)

Under the assumption that testing is a real world activity it is real pro-
grams running on real computers which yield observable outcomes that are
subject to verdicts made by real agents. But a theoretical account will
unavoidably substitute models and formal entities for “real” components,
thereby introducing a model to reality gap.

Theories of testing may fully ignore that gap or may go into consid-
erable detail about it. In [82] the general introduction to testing makes a
difference between modelled components and their real counterpart. So [82]
makes an explicit attempt to bridge the to model to reality gap for soft-
ware/systems testing.

Design choice: 1 will work under the assumption that bridging the model
to reality gap is left entirely to the reader.

Implication(s): Given a piece of theoretical work on testing the simplest
way to bridge the model to reality gap will usually consist of constructing
(hypothetical as well as practical) realities for which the claim that these
are properly modelled by the theory at hand makes sense. Doing so is
unlikely to result in practical conclusions, however, but it may help to
understand what is needed for bridging the model to reality gap in other
circumstances.

5.3 Industry to (Academic) Research Gap

In [41] one may find an extensive statement concerning the self-perceived
needs of industrial software testers and the current (academic/fundamental)
research on software testing. The authors claim the existence of a significant
gap between these these two practices.

Design choice: Working towards testingdinSeqTh is not informed by any
known needs of industry.

Now the literature on software testing, both in practice and in much of
the research on testing, is by and large devoid of any theoretical account
of what software testing is about, as if this were an obvious matter. That
situation complicates the task for development of testing theories. The

A Survey of Testing for Instruction Sequence Theory 31

situation is in sharp contrast with quantum computing where academics
as well as workers from industry seem to be in full agreement that a sig-
nificant amount of theory constitutes a crucially important shared basis.

Implication(s): applications of the work on testingdinSeqTh are not easily
imagined or obtained. Nevertheless, from an industrial perspective, it
may be informative to experiment with the design of a comprehensive
account of program testing in the presence of ample freedom to reconsider
key definitions in order to work towards a systematic terminology.

5.4 Theory to Theory Gap

The interconnection between theoretical work on software testing and other
work in theoretical computer science is not so clear. For instance in [64] one
finds a recent proposal extending Kleene algebra with parallel composition.
The proposal is subsequently illustrated with the design and analysis of
tests for realistic example programs. The resulting extension of Kleene
algebra is quite close to the process algebra ACP, though with parallel
composition using action sharing in the style of TCSP. However, neither
ACP nor (T)CSP nor CCS, a common ancestor of both, are mentioned in
this paper.

I speak of a theory to theory gap to indicate that the selection of a
theoretical framework for dealing with a certain issue in testing is quite
often than not rather arbitrary.

Design choice: 1 will write about testing from my own background in the-
oretical computer science (TCS). My background comprises: A-calculus,
(conditional/prioritised) term rewriting, (formal) verification of sequen-
tial programs, computability theory in finite types, (abstract datatypes)
and algebraic specifications thereof, process algebra (ACP style), program
algebra (PGA style), proposition algebra (logic of sequential connectives
with potential side effects).

Implication(s): while when writing the paper I made an attempt to cover
the notion of testing such as to take a significant portion of the testing
literature into account, a corresponding claim cannot be made regarding
the use that is made of results from the theory of computing. For instance
approaches to testing based on the following theoretical frameworks are
not included or taken into account: type theory, category theory, func-

32 Jan A. Bergstra

tional programming, logic programming, temporal logic, and Bayesian
inference.

5.5 Testing Scope Spectrum

Some hold that program walkthrough, formal verification, model checking,
and various forms of static type checking are included in testing. Others
claim that such is not the case and that testing is confined to experiments
with running a program (or minor variations of it) on inputs during a phase
of the software engineering life-cycle which precedes delivery and use. These
observations correspond with the idea that testing is ambiguous, and in
particular that the notion of testing involves partisan ambiguity.

I will assume that knowledge about an instruction sequence and its
behaviour is likely to have three sources: (i) general theoretical assump-
tions including immediate consequences thereof, (ii) experimentation (e.g.
testing, as done by oneself and by others), and (iii) detailed theoretical
analysis.

Consider the situation that a safety critical instruction sequence X is
embedded in a context C[X]. Would anyone trust the proper functioning
of C[X] purely on the basis of knowledge of the forms (i) and (iii) above?
It seems reasonable to expect that some testing will always take place, if
only to verify that the module X indeed fits in context C'[—]. Assumptions
concerning the context C[—] are essential for acquiring confidence that C[X]
works well and is not malfunctioning because of some trivial (or non-trivial)
problem which would come to light with almost every test. These consider-
ations lead to the following assumption:

Assumption 5.1 (Necessity of testing assumption.) Whatever theoretical
framework one chooses, in safety critical circumstances, some form of test-
ing will always be preferable (and if conditions allow, required) in advance
of accepting a new software module (instruction sequence).

In Assumption 5.1 may not hold in each and every case but it holds con-
vincingly in case software is put into effect on bare hardware. In support of
Assumption 5.1 I quote [65]:

Despite advances in formal methods and verification techniques,
a system still needs to be tested before it is used. Testing re-
mains the truly effective means to assure the quality of a software
system of non-trivial complexity [...], as well as one of the most
intricate and least understood areas in software engineering |...].

A Survey of Testing for Instruction Sequence Theory 33

From a practical perspective there may not be much doubt about Assump-
tion 5.1, but its status from a theoretical perspective is questionable never-
theless. Some further comments on this matter are made in Paragraph 9.12
below. The following question is implicit in [67] where it is noticed that
up to 2010 no definite information about this questions was found in the
literature.

Problem 5.1 Is it possible to “prove” the necessity of testing assumption
on theoretical grounds? (Or is this a wrongheaded objective?)

Design choice: (instruction sequence) testing is (theory about) an ex-
perimental process involving actual or symbolic (simulated) runs of an
instruction sequence (or minor validations thereof) on various inputs.

Implication(s): testing includes all knowledge acquisition about an in-
struction sequence which is not purely “static” (types (i) and (iii) above).
Testing, however marginal, is considered essential for any effort of in-
struction sequence construction. But so are forms of static analysis, be it
from first principles, or more sophisticated. Thus testing plays a key role
for bridging the model to reality gap.

5.6 Testing Objectives Spectrum

The objectives of software testing are not easy to determine: at one end of
the spectrum one finds the localisation of faults in a program as the core
testing objective, at the other end of the spectrum one finds improvement
or certification of a software engineering process as mentioned objectives of
testing. In between are experiments which are meant to substantiate the
confidence in a specific software product.

Design choice A: black-box (instruction sequence) testing is about finding
failures, and at the same time about increasing confidence if no or not
many failures are found.

Design choice B: not finding failures during testing creates confidence;
however, not finding faults in the presence of known failures is likely to
decrease confidence.

Design choice C: instruction sequence testing primarily aims (in the con-
text of testing4inSeqTh) at increasing the confidence that an instruction
sequence will work well. Indeed only in the presence of an alternative path

34

Jan A. Bergstra

towards the acquisition of confidence in a program one may discharge the
relevant testing activity from an orientation towards confidence creation
and direct the focus primarily or even exclusively towards the localisation
of faults or the detection of failures.

Design choice D:

D1:

D2:

D3:

D4:

instruction sequence testing is an ordinary component of the design
and construction of instruction sequences. Testing is not a matter
of assessment in hindsight but takes place in parallel with program-
ming. Programming comes with formulating hypotheses about the
program under construction and testing plays an important role in
the assessment of such hypotheses. A relevant hypothesis need not
be framed in terms of correctness or functionality. See e.g. [91].

viewed as a part of professional programming, testing is becoming
increasingly specialised into a plurality of directions. To mention
some: symbolic testing, metamorphic testing, concolic testing, risk
based testing, fuzzing (formerly known as random testing, see [29]),
mutational fuzzing.

the idea that testing is about guarantees that the user will be served
with appreciated (and well-specified) functionality becomes less promi-
nent. Such quality assurances are increasingly amenable to formal
verification, while protection against hostile exploitation of vulner-
abilities (the theme of security testing) has little in common with
contemplation of user requirements.

Confidence in certain programs may have grown too high during
times of positive experiences with it, and systematic ongoing fuzzing
may be meaningful in order to eliminate risks in the form of yet un-
detected (i.e. dormant) failures caused by yet unknown (and for
that reason unlocalised) faults which might otherwise go undetected
for far too long. Testing/fuzzing is as much relevant for creating
confidence in specific software as for undermining confidence in that
same software. It is plausible that a program is tested much more fre-
quently than that it is used, and it is plausible that testing proceeds
as long as a program is being used by any user until the program is
officially withdrawn and declared obsolete.

Implication(s): as an implication from adopting designs choices A, B, C
and D, I mention that each of these “axioms of instruction sequence

A Survey of Testing for Instruction Sequence Theory 35

testing” contributes aspects which, due to its purely theoretical nature,
a theory of instruction sequence testing cannot demonstrate (or refute)
from first principles. In other words, I take these “design decisions” as
having been made very plausible by the practice of software testing, and as
having been made explicit in various forms by corresponding research. At
the same time these “axioms” have the status of additional assumptions
from the perspective of instruction sequence testing. The very practice
which could demonstrate (or refute) the validity of these “axioms” is
missing, and that will not change.

5.7 Oracle Problem

The oracle problem for software testing is a difficult matter. There seems
to be no obvious approach to this issue. How to judge whether or not the
run of a program produces a satisfactory outcome?

However, it is helpful to consider cases where an oracle problem has
simple solutions. A convincing and effective way out in some practical cases
is found via metamorphic testing, see e.g. [77]. Metamorphic testing, as
proposed in [36] is a black-box approach which aims at the detection of
failures.

For instance consider an instruction sequence X which is supposed to
multiply (as binary numbers of length 10.000 bits) two naturals n and m in
order to obtain a third one (denoted P(n,m)). An instruction sequence for
computing X is proposed for instance in [22]. Then a metamorphic test is
to randomly choose inputs n and m and to perform the very straightforward
test that X (n,m) = X (m,n). If this identity is not valid a failure has been
detected: either on input (n, m) or on input (m, m), or perhaps even on both
inputs, X is not producing the right result. In fact all equations true in the
semiring of natural numbers may be used for creating metamorphic tests.

Metamorphic black-box testing may detect failures of (the behaviour
of) X (without assuming that a non-trivial oracle problem has been solved)
and subsequently spectrum based testing (see e.g. [92]) may be used to
locate candidate faults in X.

Mutation based testing (i.e. introducing faults or candidate faults, in
an instruction sequence) can be used to investigate the effectiveness of black-
box metamorphic testing for detecting failures, and of subsequent spectrum
based fault localisation for finding candidate locations for faults.

Design choice: instruction sequence testing can be meaningful in cases

36

Jan A. Bergstra

where the oracle problem is trivially solved. A restriction to such cases
creates room for the application of a range of methods, to mention: (i)
black-box testing against a known oracle (e.g. a trusted program for
multiplication in the example mentioned above), or in a setting of meta-
morphic testing, (ii) spectrum based (candidate) fault localisation, (iii)
mutation testing, (iv) fuzzing, (v) formal program testing, (vi) symbolic
testing, (vii) concolic testing, and finally (viii) coverage directed forms of
testing (which do not require a non-trivial oracle) may uncover inacces-
sible parts of an instruction sequence.

Implication(s): instruction sequence theory is unlikely to provide in-
stances where a human observer can assist in solving the relevant oracle
problem.

5.8 History and State of the Art

In

[42] one may find valuable information regarding the history of software

testing. Notably in [42] the notion of a “bug” is used throughout the paper

as
of

the essence of “what one is looking for” without any conceptualisation
what a bug is. Following the analysis of [61] and lateron [69] “bug” is a

non-trivial notion, I will return to bugs below.

6

In

Design choice: there is no such thing as the history of instruction se-
quence testing. Historical remarks must be drawn from the history of
program testing.

Implication(s): whether or not awareness of the history of program testing
is relevant for the activity of program testing I don’t know. In any case
such influence is not made explicit in the literature on testing, so that for
the time being I see no merit in providing instruction sequence testing
(understood as a model of program testing), with an artificial history of
the field (serving as a model for that history of program testing) in order
to investigate that sort of influence.

Bug: An Intentionally Ambiguous Concept

work on testing it is often written that finding and removing bugs is a

major objective. Bugs are the subject of many papers, many of which do not
mention testing. Awareness of the presence bugs comes from the experience

A Survey of Testing for Instruction Sequence Theory 37

of users as much as from testing and from other forms of verification. I will
adopt the following conclusions regarding the concept/term of a bug.

1. Bug first of all features as the expected content of bug reports (in-
cluded in project log files) which play a role during a software engi-
neering project. In that context a bug is a “perceived problem”. The
first mention of the bug in a log file opens the bug. Subsequently it
can be assigned, reassigned, fixed, closed, reopened. These matters
are connected with version management with the ISuC (inSeq under
construction) at hand.

The distinction between a pre release bug and a post-release bug is
non-obvious. The simplest definition of these notions takes a bug
which was first reported pre-release as a pre-release bug and a bug
which was first mentioned after release as a post release bug. These no-
tions are vague: a pre-release bug may be unfounded and a post-release
bug may have been present in advance of the final acceptance tests.

2. All (instruction sequence) faults are bugs, but not all bugs are faults.

3. Bug is more inclusive than flaw because flaw involves a connotation
of failure (as a dynamic phenomenon), which bug does not.

4. Bug refers to any problem which comes about from the design, produc-
tion, and or maintenance of computer programs. Bug is more specific
than “problem”, however, even in the context of software engineering.
For instance “problem” may also include having bought too expen-
sive software or hardware, an event which would not be labeled as a
bug. However, importing an inadequate module into a programming
project might lead to a bug, and might be qualified as such.

5. Papers with a focus on bugs do not define this notion. Such papers also
do not involve any notion of specification which is used as a yardstick
for the assessment of “buggyness”. Bug is often used as the most
liberal class of software defect.

6. Root cause bug is mentioned in various papers, but I am unable to
provide a definition for that notion. Neither can I provide a definition
for a surprise bug (see [79]). The same holds for the idea of a block-
ing bug (a bug which supposedly hides the visibility of one or more
other bugs).

38

Jan A. Bergstra

10.

11.

12.

Attempt to define a blocking bug: a blocking bug is a fault, say F' in
an inSeq which, upon having been repaired by a change in the most
plausible manner, leads to an inSeq in which a new fault arises which
was not present until said change was applied. The new fault is said
to have been blocked by fault F', which is labelled a blocking bug for
that reason.

The above defnitional attempt is problematic because it suggests that
the notion of a fault has a useful companion where the notion of
a change is uncoupled from the actual improvement it achieves (i.e.
the justification of change, which must take the appearance of the
supposedly blocked bug into account) and where the notion of change
is based instead upon the notion of a plausible change. There is no
theoretical basis for the soundness of that suggestion, however.

Breakage bug (an intentionally introduced “bug” in order to avoid
access to obsolete or otherwise problematic functionality in a system);
a breakage bug is classified as a functional bug in [79]. This notion
is unclear, it seems that because of maintenance the functionality of
a program would be changed by applying a modification which, w.r.t.
the original specification constitutes a bug.

The notion of a performance bug is used (see e.g. [75]) but it is hard to
define. It is left open if the bug symptom consists of slow processing
w.r.t. given requirements on timing, or merely that slow processing
takes place where, upon a fix, faster processing would be possible. A
performance fault can be defined as a fault which causes a performance
failure. Now the notion of a performance failure combines that the
performance is less than required with the existence of a change which
brings performance back into the intended range.

The concept of bug is intentionally ambiguous. It is useful for test-
ingdinSeqTh to avail of such a notion of bug.

In an American History item [58] it is stated as a commentary that
nowadays bugs are an instance of computer malware. I will not adopt
this meaning of bug for testingdinSeqTh.

Given the inclusiveness of the notion of bug, the idea of a bugfree
program (serving as a component in a larger context) is only mean-
ingful upon adopting a restricted interpretation of “bug” for instance
by reading bug as fault.

A Survey of Testing for Instruction Sequence Theory 39

13.

14.

15.

16.

17.

In [78] is is explained that “bug” as used for a minor fault or defect
in a machine or a plan dates back to Thomas Edison at least while
Grace Hopper might be correctly linked to the first use of that term
in connection with computer hardware: spotting and naming the first
computer bug (in fact computer hardware bug). The term “bug” was
used in engineering already for decades, however. That the bug (as
found by Hopper) was actually a moth which had to be removed is
a mere coincidence and plays no role as an origin of the term bug in
computing.

Bugs are sometimes understood as changes (changes making a pro-
gram depart from its ideal form, i.e. not changes that did occur during
the development of the program at hand).

Mistakes are not bugs: mistake (if the word is used at all) refers to a
programmer action which causes a fragment of a software component
to “be buggy”, i.e. to constitute a fault. A fault is often named
bug, and repairing said fault by means of a change constitutes a fix of
the bug.

A dormant bug is defined in [35], as a bug that was introduced in a
certain version, say version n, and persists in a later version, being first
reported in version n + 2 or later. The consequences of this definition
are slightly counterintuitive. For instance:

We find that dormant bugs are fixed faster than non-dormant
bugs: dormant bugs have a median fix time of 5 days and
non-dormant bugs have a median fix time of 8 days. We
also find that dormant bugs have a statistically significant
higher reopen rate than that of non-dormant bugs, even
though both types of bugs are rarely reopened (90% are
never reopened).

Another quote suggests that the authors do not require of a dormant
bug that it has been reported already.

Our experiment results are based only on the fixed bugs,
so there may be more dormant bugs in the systems. This
problem exists in all studies that study bug reports.

The following quote is taken from [51]

40 Jan A. Bergstra

The most common reason bug reports are reassigned is be-
cause people want to find the root cause of the problem
before they are willing to attempt a fix. Bug reports usu-
ally only indicate superficial symptoms, but a high-quality
fix should address the root cause and not merely patch the
reported symptoms. The root cause is often in a completely
different component than symptoms indicate, though.

A survey respondent elaborates on this reason for why bugs
are reassigned multiple times before being resolved:

“Bugs many times are exposed in the UI [user in-
terface], but are not caused by the team writing the
UI code. These bugs can pass down several layers
of components before landing on a lower level com-
ponent owner. As the Ul team gets more familiar
with the component layers they can more directly
assign bugs to the offending component, but that
takes time and knowledge.”

We can quantify the above phenomenon by correlating re-
assignments with changes in the “Component path” field
of bug reports, which indicates in which component people
currently believe a bug originates.

Here “bug” seems to refer to failure, though “the problem” may be not
quite the same as “the bug”. Nevertheless bugs are being caused (as
are failures) rather than being causes (as are faults). Moreover a bug
originates in a component rather than that it is part of the component.
But the idea that a bug trickles down suggests a combination of a
failure and a diagnostic hypothesis.

The anecdote linking Grace Hoper to bugs suggests a technical definition
as follows:

Definition 6.1 A Hopper bug is a bug in hardware or software which, for
any engineer skilled in the art, would be immediately recognisable as a minor
defect once pointed at, to the extent that is it known to them (i) what it
means that the bug would not be present, and (ii) how to remove said bug,
i.e. to perform a change upon which the bug is not anymore present.

It is not necessarily assumed that the presence of a Hopper bug in an
artefact impedes its functionality. In other words a Hopper bug need not

A Survey of Testing for Instruction Sequence Theory 41

constitute a fault (which, by definition, causes some failure). A software
Hopper bug is hard to imagine otherwise than as a syntax error, i.e. a
fragment in a text which locates non-conformance with given syntactic re-
quirements. Some security vulnerabilities may take the form of a Hopper
bug.

6.1 Bugs and Bug Life-cycles

The notion of a bug is independent of a specific software process. The
following may be assumed:

Assumption 6.1 An ISol (instruction sequence of interest) moves through
a series of wversions, say (Xy,,D1),...,(Xu,,Dn). These versions come
along with documentation (D; for version v;). All documentation is stored
for later use. First of all D;y1 includes commits concerning changes which
explain what was changed and why when moving from version v; to ver-
sion v;11. Comments Dijy1 may also contain explanations regarding the
life-cycle of various bugs. Such explanations are termed bug reports.

Assumption 6.2 (At least) the following events may occur in connection
with a bug (i.e. during a bug life-cycle): opened (given a name and a unique
description), assigned to an engineer for initial investigation, assigned to
an engineer to be fized, reassigned to another engineer, fixed per proposal,
upon having been fized per proposal assigned to an engineer for review and
assessment of the proposal, fized by application of a change to the instruction
sequence, closed, and reopened.

Definition 6.2 A bug has been dormant at a version v, if (i) it is opened
at some version vio with k + 2 < n, (ii) it could have been opened at
version vy or before (because the underlying problem is present with that
version already).

A bug which has been dormant is also called initially dormant. Dor-
mancy is first of all a judgement which an external observer may make
for the purpose of case independent research or for case dependent review
and/or assessment.

However, a software engineer may open a bug in version vg4o and then
claim dormancy, i.e. the claim that the same bug could already have been
opened in vy or before. Mistaken bugs may be labeled as dormant. Fake bugs
may only be labeled as dormant by a hostile software engineer.

42 Jan A. Bergstra

An initially dormant bug is called dormant in the terminology of [35].
I consider the terminology of [35] to be unfortunate in this matter and I
prefer to use “initially dormant” for that reason.

7 Testing Instruction Sequences: Terminology and
Definitions

The idea of a testing theory for instruction sequences suggests that by spe-
cialising to a particular format, in this case instruction sequences (in PGA
notation), one may obtain additional insights in testing, which, at least from
a theoretical viewpoint may be relevant.

However, as stated above, obtaining additional insight for special cases
is not my intention with the limitation to instruction sequences. The limi-
tation to instruction sequences is meant to avoid making too large claims.
Testing theory for instruction sequences (leading to testing4inSeqTh) con-
stitutes a thought experiment aiming at developing a coherent framework
with respect to testing which “works” in the case of instruction sequences.

If a design decision is made or proposed regarding testing4dinSeqTh that
state of affairs is not meant to imply that (according to the author) a similar
design decision ought to be taken for software engineering at large. On the
contrary, for software engineering at large additional aspects may need to
be taken into account. By developing testing4inSeqTh no design decision
risks being in flat contradiction with previous work, for the simple reason
that, to the best of my knowledge no effort to design an account of testing
for a theory of instruction sequences has been written and published before.

Assumption 7.1 Failure, fault, error, and causality.

(i) For testinginSeqTh it is assumed that fault is understood as ALR fault
(the cause of a failure, a dynamic phenomenon taking place during
or at the end of a run, which in turn is the visible symptom of an
error(state) that was reached during said run).

(i) Laski-fault, MFJ-fault and RTJoC-fault are special cases of ALR fault,
each more specific regarding the interpretation of causality at hand, as

defined in [10].

(iii) Various qualifications of these notions (in particular: dormant failure)
are as outlined in [12].

A Survey of Testing for Instruction Sequence Theory 43

Assumption 7.2 Testing4InSeqTh has an exclusive focus on deterministic
systems, which includes multi-threading with strategic interleaving.

Definition 7.1 Testing is an experimental process where an instruction se-
quence under test (ISuT) or a system of those, possibly embedded in some
context C[—|, and possibly obtained as a mutant of an ISol (instruction se-
quence of interest) is put into effect with one or more inputs, so that the
resulting computations can be observed and conclusions about these can be
captured via a verdict. The objective of testing is to use the collected verdicts
in order to acquire information about ISol via information about ISuT

Notably Definition 7.1 is far from obvious. To begin with many authors
include code inspection and other static analysis methods in testing and
include all or most activities aiming at the determination of confidence in
a program under the umbrella of testing. Other authors view testing as
a theme within verification. Notably in [52] testing is exclusively used for
activities in search of failures and faults, while verification is exclusively
used for activities meant to create confidence in a program.

Proposition 7.1 (i) Viewed from the perspective of testing4inSeqTh, test-
ing features partisan ambiguity (different groups assign different mean-
ing and scope to it).

(ii) (Relative to testing4inSeqTh) instruction sequence quality assurance
serves as an umbrella for a wide range of activities and objectives
including: testing, wvalidation, verification, formal verification, and
model checking.

(#ii) testing is an intentionally ambiguous notion which refers to an ever
increasing family of specialised approaches to it all in the context of
Definition 7.1, to mention: black-box testing, white-box testing, func-
tional testing, non-functional testing, structural testing, metamorphic
testing, fuzzing (random testing), symbolic testing, concolic testing,
fault directed testing.

Now it is important that Proposition 7.1 must not be read as a claim that for
software testing in general this is the state of affairs. Proposition 7.1 as well
as the definitions below make use of the liberty to depart from conventional
terminology in the design of terminology for testing4inSeqTh.

44 Jan A. Bergstra

Definition 7.2 (Single act of testing X.) An act of testing (of X) consists
of making an instruction sequence X performing a run within a test con-
figuration context TCCy[—] and at the same time collecting data regarding
the run which that may be used as inputs for generating a verdict about the
run. Here a contains various parameters which are instantiated for each
test run.

Thus (an act of) testing amounts to creating a run of TCC,[X]. TCC,[—]
will include data but does not include an operator A who operates the test
environment and who is working concurrently with it. Importantly A may
abort the run in order to obtain an incomplete computation, which may
nevertheless be informative and may admit a verdict.

7.1 Test Case and Test Sample: First Definitions

I will first provide some definitions in style of original work on testing theory
viz. [48] and [49]. In a deterministic setting without any interaction, one
may for simplicity assume that a program X computes a function [X].

Then the first stage of a test ¢ is a potential input for X, say ;. Upon
having performed the test run, and assuming termination of X on 4; an
input-output pair (i;, 0;) results with o, = [X](7;). Assuming an effective
oracle Oy a verdict vy = Ox (i;, 0¢) with value pass or fail may be computed
(or in the absence of an effective oracle a human software engineer may
produce v;. Subsequently the verdict (i.e. pass or fail) may be tagged to
the input output pair resulting in a triple (i;, 0¢, v¢). TTCN-3 (see e.g [50])
also allows the verdict none (for use in case no verdict was obtained) and
the verdict error (for use e.g. in case i; was manifestly outside the range of
relevant inputs for X).

I will refer to i; as a test case, to (i;,0;) as a test sample (which is
non-verdicted by default), to v; as a verdict and to (i;, 0¢, v¢) as a verdicted
test case. A verdicted test case is alternatively referred to as a verdicted
test sample. For a test sample (i;,0;), i; is the corresponding test case.

A test suite is a collection of test cases (meant to be used in connection
with the same program). An effectuated test suite is a collection of test
samples (usually obtained by running an ISuT on the different tets cases
of a given test suite). A verdicted test suite is a collection of verdicted
test samples (usually obtained by issuing verdicts on the test samples of an
effectuated test suite). If an effectuated test suite Vs has been obtained
by running X on the test cases in a test suite, Vs is called an effectuated

A Survey of Testing for Instruction Sequence Theory 45

test suite for X. If a verdicted test suite Vs has been obtained by issuing
verdicts relative to an oracle O on test samples form an effectuated test
suite for X, then Vs is a verdicted test suite for X relative to O.

Suppose V is a verdicted test suite for X. If X has been modified to X’
by way of a local change which (hopefully) repairs a fault then a regression
test on the verdicted test suite V' consists of the set V'’ of verdicted tests
obtained by running X’ on underlying test case for each verdicted test case
in V with verdict pass. A regression test is successful if all verdicted test
cases in V'’ have verdict pass.

If a run involves interaction with the test configuration a trace of the
interaction is plausibly included in the test case, so that such information
can be used for the determination of a verdict.

Unfortunately the definitions as just outlined do not comply with
TTCN-3 (see e.g. [50]). For instance in TTCN-3 a test case includes a
verdict. Extracting from descriptions of TTCN-3 a very simple terminology
which is helpful for theoretical work from first principles is complicated by
the fact that TTCN-3 constitutes a realistic programming environment.

In practice test samples may come with more data than mere input-
output pairs.

Definition 7.3 (Test sample for X.) A test sample for inSeq X comprises
a projection (and for that reason an abstraction) of a run of TTCy[X] un-
derstood in terms of a preferred semantics of X. The projection may ex-
tract from « specific data including identification of the test case input for
the run, and output (if any were produced); moreover said projection may
inwvolve the contents and ordering of one or more intermediate communi-
cations that were exchanged between X and the test configuration context
TCCy[—] during the run of TCCL[X] as well as possibly other data that
were collected during the run of TCC,[X].

7.2 A Programmer Driven Software Process

The terminology has been set up in such a manner that for instance a
programmer (say agent B) may work as follows:

(step 1) create a prospective test suite Vis consisting of test cases only,
(not spending much time on how to arrive at verdicts, or on how
to automate issuing verdicts via a suitable test oracle),

(step 2) B writes an instruction sequence X,

46

Jan A. Bergstra

(step 3)

(step 4)

(step 5)

(step 6)

(step 7)

(step 8)

(step 9)

B puts into effect (i.e. runs) all tests cases in Vi and thereby
creates an effectuated test suite; when doing so B expects to
acquire confidence in the quality of X (as an approximation of
the final product which B has somehow in mind) and at the same
time B expects to detect bugs ready for being resolved,

B tries to issue verdicts for each of the tests samples in the effec-
tuated test suite so obtained; if issuing verdicts for one or more of
the test cases turns out to be problematic, then B writes (parts
of) an informal specification of the intended behaviour of X which
hopefully will suffice (for B) to issue verdicts for the entire effec-
tuated test suite,

B determines if the verdicted test suite gives rise to the suspi-
cion of the presence of faults in X; if so B attempts to localise
candidate faults (thereby performing an act of debugging) and to
determine candidate changes which might substantiate the quali-
fication of candidate faults as faults and the application of which
will remove the various faults.

Preferably this work can be done in such a manner that effectu-
ating those test cases again (now with modified X') the for which
verdict pass had been issued, now lead (when run again on the
underlying test cases) to test samples which deserve the verdict
pass once more, thereby achieving a successful regression test on
the given test suite.

Determine whether or not further steps are needed such as:

(i) ask other programmers for comments and advice,
(ii) let other experts issue the verdicts,

(iii) write a more detailed specification so that an automated test
oracle can be developed which then allows for more extensive
testing, including automated random testing.

(optional) Provide formal specification(s) and design one or more
informal correctness proofs,

(optional) Formalise proofs and perform proof checking.

Declare X ready for use.

A Survey of Testing for Instruction Sequence Theory 47

Remark. It is tempting to reject the listed software process for being
naive. Preferably the work should start with writing a fairly rigorous speci-
fication and preferably the issuing of verdicts must be understood in advance
of doing the programming and running the test cases. In the example above
I allow for the situation that in the eyes of the programmer the program
itself constitutes the best available (though perhaps in need of improve-
ment) expression of its own specification, quite irrespective of whether or
not maintaining such a perspective on the programming task is considered
to be state of the art, to be encouraged, or to be discouraged.

7.3 Black-box Testing Versus White-box Testing (I)

An informal account of black-box testing versus white-box testing, together
with an outline of a combined strategy, can be found in [81]. For test-
ing4inSeqTh the first challenge is to obtain a definition of black-box testing.
In Section 7.5 below a proposal is given to that end.

For testing4inSeqTh I will not adopt the widespread viewpoint that
black-box testing must be based on the availability of a specification of the
behaviour of a program. Following Definition 7.2 the testing process can
go ahead without a specification of behaviour. It is the issuing of verdicts
which requires a behavioural specification of the ISuT. More specifically
issuing verdicts requires a test oracle.

The contrast between black-box testing and white-box testing is geared
towards imperative programming where a computation may be imagined
as a trip through the program text which for that purpose is somehow
understood as a series of instructions.

White-box testing takes different forms, as described in the following
items:

1. White-box design of test castes: in preparation of “testing X” one
may develop a test suite V;s meant specifically for use in connection
with X. The design of Vs can be done with or an awareness of the
text (structure, architecture, design) of X. In that case we speak of
white-box test suite construction.

2. White-box meta-verdicting: the text of X is used to produce
meta-verdicts on the basis of an effectuated test suite, say Ves. Here
the underlying test suite V;; may have been designed in a white-box,
manner, or in a black-box manner (no knowledge of the text of X s
used, or in a grey-box manner, use of partial knowledge of X.

48

Jan A. Bergstra

This meta-verdict will express statistical, probabilistic, or possibilistic
information about the various instructions, branches (test instructions
paired with a specific Boolean reply), and paths through X which have
occurred during the various runs the abstractions of which have been
collected in V.

The meta-verdict may but need not be used for a quality judgement
regarding the underlying test suite V;s. Typically meta-verdicting may
lead to the suspicion that a part of X is unreachable, or to the sug-
gestion that Vis must be extended in order to increase coverage.

. White-box aware effectuation of test cases. A run of X on a

test case may be performed with information about the structure of X
at hand. This may matter for instance if the run gets live-locked into
an unending loop, upon which the run can be aborted. It may also
matter if a run-time error causes a premature abort of the test run and
the ability to track the path of the computation through X allows to
determine the kind of error that was encountered and to report that
fact in the test sample.

. White-box relevant test sampling: in order to make full use of

knowledge of the text of X once it is disclosed (which may be after
effectuation of a test) in order to reconstruct the computational path
of the test run it will suffice to deliver (and include in the resulting
test sample) the sequence of successive replies to test instructions (here
test refers to conditions evaluated during a run) tak were encountered
during the test run.

A test sample provides full path disclosure in hindsight if (given the
text of X) the computation can be reconstructed step by step from the
information that was collected in the test sample. For testing4dinSeqTh
I will assume that by providing the sequence of successive replies to
method calls as made by X during a run, it is possible to reconstruct
a computation path for X which clarifies which instructions were per-
formed in what order and which branches were taken during a run. If
such information is sampled full path disclosure in hindsight is guar-
anteed.

White-box relevant test sampling has following advantages (upon X
becoming known, before or after the test a re run and sampled).

(a) it is possible to determine whether an instruction, a branch, a

A Survey of Testing for Instruction Sequence Theory 49

block or a path was performed during a test run, and in particular
that

(b) no modifications of an instruction sequence need to be made in
advance of the test run in order to guarantee (a),

(c) so that white-box meta-verdicting is possible on the basis of per-
forming black-box tests (i.e. on obtaining a verdicted test suite
from a test suite which was designed without knowledge of (the
text of) X.

7.4 Black-box Testing Versus White-box Testing (II)

Black-box testing and white-box testing are often compared by way of either
contrast or complementarity. I will now survey some of the arguments
concerning these matters.

e An argument about black-box testing versus white-box testing reads
thus: white-box testing allows an assessment of the quality of a test
suite, whereas for black-box testing no such quality assessment exists.

This argument is not obvious, because a black-box test suite may be
considered “better” if it resembles better the expected usage profile
(operational profile) of the ISuT. In the absence of information about
a user profile the latter criterion is of no use. In [53] the distinction
between reliability and dependability is emphasised. Reliability is
about the probability of correct operation relative to a user profile,
whereas dependability is independent of any specific usage profile.
The independence is achieved by making dependability of a program
local, that is a function of its inputs, thereby replicating the idea of
correctness probability of [28].

e White-box testing is at best complementary to black-box testing when
it comes to generating confidence (a notion akin to probable correct-
ness as discussed in [54]) in the ISuT, simply because it is only the
behaviour that really matters. The argument comes in different forms,
for instance in Table 1 of [74] black box testing is mentioned as the
preferred option for acceptance testing.

Once a distinction is made between the confidence that the program
works well (in terms of providing a solution to the problems which the
program is supposed to handle), and the confidence that bugs have

20

Jan A. Bergstra

been found and removed to satisfaction, then the argument is convinc-
ing (upon assuming that primarily black-box testing creates the first
type of confidence). Moreover, as an observation regarding the cur-
rent practice of testing, the complementary role of white-box testing
may be a valid observation. Remarkably both “program confidence”
and “software confidence” are phrases with a minimal presence in the
software engineering literature. “Software confidence level” is used, I
saw no occurrence of “program confidence level”. The literature on
program testing provides no terminology for the positive information
in terms of say confidence which program testing may create. Instead
testing is often considered a verification method and the concept/term
verification has a positive connotation.

Otherwise (if confidence is not split in two parts) the argument (that
white-box testing would be complementary to black-box testing) is
weak, as it misses the point that white-box testing may be necessary
to obtain a sufficient level of the second type of confidence (i.e that
the number of dormant faults is sufficiently low).

For testing4inSeqTh I adopt the notion of functional (instruction se-
quence) confidence (i.e. the confidence that the instruction sequence
can produce helpful solutions as required), as well as the notion of
fault freeness confidence (the confidence that faults are absent or in-
frequent). The competent programmer hypothesis of [38] may then
be rephrased as follows: in the presence of functional confidence it is
reasonable to expect that a failure is caused by a fault.

Black-box testing does not require availability of the source code of X
and can just as well be performed with an executable (a.o. men-
tioned in [74], and mentioned as the key advantage of black-box testing
in [26]).

Black-box test (case) design may be based on additional data that are
unrelated to specifications: (i) a user profile, if available, may provide
indication of what tests to perform, and (ii) an adversary profile may
provide indications of the forms of misuse of the program which may
exploit (and uncover) security problems; an adversary profile may
support large scale automated random testing (fuzzing).

Black-box testing is alternatively referred to as specification based
testing because only a specification is taken as an input to the testing

A Survey of Testing for Instruction Sequence Theory 51

process, an also it is referred to as oracle based testing, following [76].
White-box testing when aiming at line coverage and branch coverage
can do without an oracle.

e White-box testing, on the other hand, may be based on a risk assess-
ment which takes the structure of X into account.

7.5 Test Runs of PGLA Instruction Sequences

I will now revisit the basic definition of inSeq testing, taking more detail
into account than was done above in Paragraph 7.1. Consider the instruc-
tion sequence X = +f.m; #3; +g.m2; #3; h.m2;!; f.m;!. The corresponding
thread |X| is as follows P = |X| = fomo ((fmoS) <gm2> (fmoS I
h.m2 > D)). When testing X in a black-box manner the test environment
CCT,[—] (as in Definition 7.2.) which I will denote with Cies[—] is loaded
with X thus obtaining Cycs[X]. Then the test operator, say agent A, starts
a run of Cpeq[X]: at first the test environment notifies to A the occur-
rence of a call f.m which takes place without significant delay. The test
environment can only notify the call but cannot process it properly, and
therefore expects A to provide a reply which Ces[X] can hand over back
to X so that it can proceed (with the run that was started). If true is
provided as a reply by A the the test run proceeds with the next episode
as Clest[#3; +9.m2; #3; hom2;l; f.m;], while if false is provided by A as a
reply to the call f.m the run proceeds as Ciegst[+9.m2; #3; h.m2;!; f.m;!].

After this brief informal introduction of the mechanics of a test envi-
ronment [will describe in detail how a test environment can be understood
for such instruction sequences, first for black-box testing, and thereafter for
grey-box testing and for white-box testing. Grey-box testing lies in between
black-box testing and white-box testing in that only partial information re-
garding the design and the structure of the ISuT is available to the tester.
I will assume that all data are Booleans (single bits), under the assumption
that many phenomena of relevance for testing can already be observed and
studied in the presence of such trivial data only. For the service carrying
a single bit I refer to [21, 23, 9]. A detailed account of testing ought to
begin with the simplest case: a single instruction sequence is to be tested,
no services are involved, no polyadic feature (multiple instruction sequences
processed sequentially) no multi-threading, no distribution etc.

Arguably the simplest case is black-box testing of a single pass instruc-
tion sequence: no program counter needs to be maintained and no historical

52 Jan A. Bergstra

information needs to be stored and exchanged. Not maintaining a program
counter matters because if a bounded program counter would be provided
that state of affairs by itself uncovers information regarding an upper bound
of the number of instructions of X, a figure named LLOC(X) for logical lines
of code in [9]. As it turns out, making LLOC(X) available to S constitutes
a significant step towards grey-box testing already.

I will first specify in detail a mechanism for testing a single pass in-
struction sequence X. Here X involves no backward jumps, but it may be
finite or infinite, in which case it is repeating the same finite instruction se-
quence indefinitely. In spite of the simple program notation, PGLA of [16],
the notation available in the PGA family, the amount of detail involved in
a precise definition of testing is considerable.

By assumption U is a possibly infinite set of all conceivable method
calls in the program notation at hand. Subsets of U serve as interfaces for
threads and service families. A thread has a required interface, as it expects
its method calls to be processed by an environment, while a service family
has a provided interface as it provides the option for processing method
calls. For more information on interfaces see [9].

A component Cf_,[—] is assumed to be available which allows the fol-
lowing repertoire of actions and observations, given a thread P with required
interface Irequired(P) C U:

e [will assume the presence of an agent A who acts as the operator of a
test. A can perform the following actions in connection with C]
and X.

load X (as an ISuT) in C{,[~], thus obtaining CZ,[X],
start the test run,

)
)

(iii) abort the run when, according to A, it is taking too much time,
)

read off the status terminated—ok,terminated—nok,
waiting— for—reply, aborted, upon termination and,

(v) supply a Boolean reply (by pushing either button riyye or 7 ¢qise) if
CY.,[X] has terminated in a waiting— for—reply condition, and
then restart the test from the state where it has been left starting
to wait for a reply (to be provided by the test environment).

e The testing process may only use information regarding the external
behaviour of X, i.e. about |X|. This restriction excludes informa-
tion about:

A Survey of Testing for Instruction Sequence Theory 53

(i) an upper bound for LLOC(X),

(ii) whether a method call is void, or is included in a positive test or
in a negative test,

(ili) information concerning Irequired(X) which is accessible via static
inspection of S only. It is merely known that Irequired(X) C U.

When started C.,[X] computes and the computation may either go
on forever, or may end in one of the following three states which can
be read off from CY,,[—]
(1) Sterminated—ok indicating that the computation has properly ter-
minated,

(1) Sterminated—nok indicating that the computation has improperly
terminated,

(ili) Swaiting— for—reply indicating that the computation has made a
method call (i.e. not involving a test) say at the n-th instruction
of X (n not known to A), and is then waiting for the test operator
A to provide a reply for that call in order to continue with the
next episode of the test run.

During the run the visible sign (visibility for A is meant) of the status
of the test is “running”.

If a computation takes too long (according to A), A may abort the
computation without any form of proper or improper termination hav-
ing been achieved. Subsequently the instruction sequence is unloaded,
and the same or another instruction sequence can be loaded in order to
proceed with testing (using the same context, i.e. testing equipment).

In case O, [X] is waiting for a reply after having observed the method
call say f.m, either the run is aborted (ending up in state aborted)
because A is unable to provide a reply, or because A considers the test
run taking too many steps, or alternatively one of two buttons may
be applied by: 7¢ye, and 7f,5.. Upon that having been done, the test
run proceeds with the next episode, which works in detail as follows:
let X = u;Y where u € {f.m,+f.m,—f.m} and where Y is a possibly
empty instruction sequence. The instruction v is half-way of being
processed. Now 6 cases are distinguished:

54 Jan A. Bergstra

(i) if Y is empty then the run improperly terminates (i.e. with be-
haviour D) which is made visible to A via the sign terminated—nok,
thereby ending both the test episode and the over-all test run.
Otherwise it may be assumed that Y is nonempty, and that Y =
v; Y’ with v an instruction, and where, if Y’ is non-empty Y’ =
w; YY" with w an instruction.

(ii) if w = f.m (i.e. a void method call), then (irrespective of the
reply that A has provided), the test run proceeds with the next
episode from state CF,[Y].

(iil) in case CZ,[X] is waiting for a reply after having called a pos-

itive test (u = +f.m), and the A has provided reply true (with
button 74), the test continues with the next episode from state
Ctlést [Y]

(iv) in case Cf [X] is waiting for a reply after having called a positive
test (u = +f.m), and A has provided reply false (with button
Tfalse) then: if Y is empty the test ends in state terminated—nok,
while if is non-empty the test resumes with the next episode from
state CH,[Y7].

(v) in case CY[X] is waiting for a reply after having called a neg-
ative test (u = —f.m), and the A has provided reply false, the
test continues with the next episode from state CZ,[Y].

(vi) in case C[X] is waiting for a reply after having called a neg-

ative test (u = —f.m), and A has provided reply true, then:
if Y/ is empty the test ends in state terminated—nok, while if
is non-empty the test resumes with the next episode from state
Ctgst [Y/]

As it turns out it is implausible to assume that the operator will work
under the assumption that (their interaction with) the test environment is
100% deterministic. The very fact that A sometimes needs (or will wish)
to perform a time-out introduces some form of non-determinism. Some
assumptions are needed to clarify what happens in detail when termination
or divergence takes place.

1. C’gst[!; X will end quickly in state Sterminated—ok-
2. Cgst[#o; X will end quickly in state Sterminated—nok-

3. After a jump out of range the run will end quickly in state Sierminated—nok-

A Survey of Testing for Instruction Sequence Theory 55

4. Jump instructions are performed quickly at a predictable pace, and
even (writing X = Y;Z%) performing as many consecutive jumps
as X;Z has instructions (there can be no more consecutive jumps
without ending up in a deadlock) takes so little time that there will
be no incentive for A to abort the ongoing run.

5. An infinite sequence of jumps, which occurs for instance when running
an first episode for (#2;+g.m1)%, will take very long so that A must
eventually abort the run, (the resulting livelock may not be recognised
by the test environment assuming that testing is done in a black-box
manner). In this case, with the help of A, a state Sgporteq is reached
after some time, thereby ending the test run.

Single pass instruction sequences can be transformed to instruction se-
quences which determine the same thread in such a manner that all method
calls are positive tests. If one assumes that void method calls and negative
test method calls do not occur the above definition becomes simpler.

7.6 Test Case Versus Test Sample

The notion of a test case must be adapted to the fact that inputs to the
computation now include the sequence of boolean replies. A difficulty is that
in advance of the run it is not clear how many replies on various method
calls will need to be provided.

Definition 7.4 A test case (in the case of X in PGLA) consists of a finite
or infinite eventually repeating sequence o of Boolean values. The sequence o
contains the successive replies that A is supposed to provide during a test.
If o is too short the test run will end in terminated—nok.

For the special case of single pass instruction sequences the notion of a test
case can now be made more specific.

Definition 7.5 A test sample (for X in PGLA) consists of a sequence of
one more successive episodes, where except for the first and the last episode,
each episode is characterised by the pair of a method call (as issued by X
during its run), and the corresponding reply (as provided by the test oper-
ator A). The operator A provides a Boolean reply and then restarts the
run for the next episode which consists of zero or more jumps followed by
a method call or one of both options for termination. A test sample is -
bounded if at most | episodes occur. The final episode encodes that status
i which the test run has ended.

o6 Jan A. Bergstra

According to these definitions the ISuT behaves like a deterministic reactive
system. Such systems are amply studied in automaton based testing theory.

Remarks. Several remarks are in order:

(i) Testing (i.e. running an inSeq on a test case) already makes sense
without an oracle being available.

(ii) The test environment is not a service as defined in e.g. [20]. The test
environment may have an infinite interface (if U is infinite) and there
is some essential interaction with an operator (named A above).

(iii) It is a matter of taste whether or not the test environment is considered
non-deterministic.

(iv) Providing to A or to the test environment a finite interface J such that
Iequired(X) € J C U already brings one into the realm of grey-box
testing. Indeed it is not possible by merely running a finite number
of tests to rule out the option that some method call may eventually
occur.

This can be seen as follows: suppose J = {f.u, f.w}, and assume that the
property 1(—) of X which is to be confirmed by way of testing is that no
method call f.w will ever take place. Let X = (+fuu;l;#1)% and X, =
(+fu; s #1)™; faw; !, Clearly ¥(X) holds but for arbitrary n, ¥(X,) is
not valid.

Suppose that at most k test runs are admitted each of which are [
bounded (under these conditions I will speak of (k,[)-bounded black-box
testing), then such tests are unable to distinguish X from X;,;. Apparently
using (k, [)-bounded black-box testing it cannot reliably be excluded that a
failure in the form of a call of f.m will occur.

7.7 Completeness of Black-box Testing for Single Pass
Instruction Sequences

In some sense black-box testing is complete, at least in principle. The
following Proposition expresses that fact. I will omit the elementary proof
which is based on (i) the observation that no path between consecutive
method calls involves more than n steps, (ii) all states of |X| are reached
with runs with at most n episodes.

A Survey of Testing for Instruction Sequence Theory 57

Proposition 7.2 (Conditional completeness of black-box testing.) If an
upper bound of the number of states of | X| is known in advance, say n then
(2271 2.0 4 1) bounded testing suffices to determine the thread |X| in all
detail (which includes the exact number of states of | X|).

As an immediate consequence of this observation it follows that:

Proposition 7.3 Presenting the testing agent A with an upper bound n of
LLOC(X) already moves its testing capability outside black-box testing and
into the realm of grey-box testing.

In practice, however, testing will be (k,[)-bounded for some k and ! known
in advance of the first practical use of X and it is a common assumption in
testing that k and [will be small in comparison to 2", with n any known
upper bound for the number of states of | X| so that an application of Propo-
sition 7.2 is not understood as being a part of testing theory. I will make
that assumption for testingdinSeqTh as well.

Related literature. If one conceives of testing as leading to positive con-
clusions, the information theoretic approach of [90] is quite related, to the
above definitions. A principled approach to black-box testing can be found
in [37]. Proposition 7.2 is nothing new in mathematical terms. Propo-
sition 7.2 provides a rephrasing of facts about automaton theory known
since [73], see also [72] for more information in a setting of black-box test-
ing and machine learning. The phenomenon of test cases in a black-box
testing which for some reason do not run to completion (as taken into ac-
count by A’s option to abort an episode of a test run) is investigated in
detail in [30].

8 Auxiliary Data, Input and Output

The definitions about instruction sequence testing give thus far are somehow
complicated by the fact that at the lowest level instruction sequences denote
threads which feature interactive behaviour rather than functions on data
which can be appreciated without taking interaction into account.

8.1 Taking Auxiliary Services into Account

Let H(b) be a single bit service (as detailed in [9]), with memory state
b € {0,1}. An instruction sequence X may produce a behaviour by using

o8 Jan A. Bergstra

a service family say f1.H(0) @ ... ® f,.H(0) as auxiliary services. Now
P = |X|/(fi-H(0) ® ... ® f,.H(0)) denotes the thread produced by X
where all calls f.m with a focus f € {f1,..., fn} are to be processed by
fi.HO)®...® f,.H(0), A method call f.m with f € {f1,..., fn} is not
visible outside the configuration (thread) |X|/(fi.H(0)&...® f,.H(0)) and
therefore it is not a required method P while in case f & {f1,...,fn} &
method call f.m is in the interface of P, so that during a test the operator
A must provide a reply.

Black-box testing of P will make use of a testing environment as before
while only asking the operator for a reply to method calls f.m for f &
{f1,..., fn}. Testing is now taking place in a setup of the form

CrallX|/(f1-HO) ® ... & f,.H(0))]

The given definitions of test case and test sample can be used in this
case as well. There are several differences however: (i) a run can get into a
loop while interacting with the auxiliary services only. To decide whether or
not that will happen is NP-hard (see [13]); it is the task of A to determine
how long to wait before a run is aborted. (ii) Because the system is deter-
ministic once X is known as a text, a test case suffices for computational
path reconstruction.

In these circumstances a straightforward analogue of Proposition 7.2
stated in terms of the size of the state space of | X| fails and the size of the
state space of f1.H(0) & ... f,.H(0) (i.e. 2") enters the picture as well.

8.2 Dealing with Inputs and Outputs

If inputs and outputs are present then these are given as the states of var-
ious services. In the simplest case n input bits are transformed into as
many output bits, represented by the respective states of services upon
termination of the computation. Now it is plausible to assume that J C

Lprovided(f1-H(0) @ ... ® fr.H(0)), i.e. that each method call is of the form
f.m with f c {fl,.. .,fn} and m € Imethod(H(O)) = method(H(l))- An

expression for what is computed during a run now reads as follows:
Cresel| X1 @ (91-H(b1) @ ... @ gi-H (b))

In such computations the operator will not be asked to provide replies for
any method calls. If a run takes too long the operator may have no other
choice than to abort the run.

A Survey of Testing for Instruction Sequence Theory 59

Definition 8.1 A test case for X consists of a sequence (by,...,by) of
initial values for the respective copies of service H(—).

Definition 8.2 (Test sample with input and output.) A test sample for X
consists of:

(i) a sequence (by,...,by) of initial values for the respective services,
(ii) a flag Sterminated—nok N case the run terminates improperly,
(iii) a flag aborted or in case it was aborted by A,

(iv) a flag Sterminated—ok; if valid termination took place, together with final
values (by,...,b.,) of the Boolean services which now contain outputs
rather than inputs.

Test cases according to Definition 8.2 disclose behavioural information only
and allow path reconstruction so that white box verdicting is possible for
an effectuated test suite consisting of such tests.

8.3 Combining Inputs, Outputs and Auxiliaries

Inputs, outputs and auxiliaries can be combined, leading to a configuration
of the following form.

Crest (IX1/(f1-H(O0) @ ... © fn.H(0))) ® (91 H(b1) & ... & gy H (byn))]

Now it is assumed that J C ILyopided(fi-H(0) @ ... & fr.H(0)) U
Iprovided(gl-H(Bl) S... P gmH(bm)) Writing Hyyy = le(O) ®...D

fn-H(0)) and Hyy, /ot (b) = g1.H(b1) @ ... @ gin-H (b)) one finds the config-

uration: B
Cgst[(|X|/(Hawﬁ)) hd Hzn/out(b)]

Apparently the notion of a test run becomes increasingly more complicated
with increasing complexity of the test configuration.

8.4 Taking Multi-threading into Account
The situation becomes more complicated if X is one of a series of threads
which is combined by way of a strategic interleaving operator.

=,

Cgstmcle‘/Haux,l)m S <|Xk’/Hauw,k>m<’X‘/Hau:v>) b Hm/out()]

60 Jan A. Bergstra

Here for simplicity it is assumed that the service families Hgy,, and Hegyg 1,
..o, Hoyz 1, pairwise provide disjoints method interfaces.

There may be various synchronisation primitives involved (I refer to [17]
for options for that) in strategic interleaving operator, which may also be
more sophisticated than mere cyclic interleaving.

Defining a test sample is becoming a challenge. The simplest idea is
as follows:

Definition 8.3 (Test sample with input, output, local auziliaries, and de-
termanistic multi-threading.) A test case for X consists of

(i) a sequence (bi,...,by) of initial values for the respective services
Hin/out<b);
(i) a sequence ri,...,r) of Boolean replies that were returned to all

method calls in the order of occurrence by each of the threads un-
til either proper or improper termination took place, or the run was
aborted by A,

(iii) a flag Sterminated—nok i case the run terminates improperly,

(iv) a flag aborted in case the run was aborted by A, or in case it was
aborted by A,

(v) otherwise a flag Sterminated—ok together with final values (by,...,b.,) of
the services Hip jouy(—) which now contain outputs rather than inputs.

The notion of a test sample according to Definition 8.3 is probably best
characterised as grey-box rather than black box. That all replies to method
calls made to the auxiliary services are logged in a test sample can hardly
be understood as “black-box compliant” : more information about how the
computation of X works is collected than the absolute minimum. However,
it is the case that path reconstruction can be done with this information.
I conclude that for an inSeq that determines a thread in a deterministic
concurrent system it is not obvious what it means (or requires) for a testing
to be qualified as black-box.

8.5 Revisiting General Program Testing Theory

General program testing theory testing is briefly discussed in the concluding
Section. The work of Gourlay, in particular [49], may serve as a point of

A Survey of Testing for Instruction Sequence Theory 61

departure. Although it is stated in [49] that program and specification
stand side by side and that no implicit assumption is made that specification
precedes programming or the design of a test battery (i.e. test case suite),
the separation of concerns which is achieved in the formalisation given by
Gourlay seems to introduce a dependency which I would prefer to avoid.
The approach of [49] rests on the notion of a testing system which takes the
form of a quintuple

(Uprograma Ut68t7 Uspeciﬁcationy corr, Ok)

Here Uprogram is the collection (using U for universe) of programs un-
der consideration, Us.s is the collection of tests under consideration, and
Uspecification 18 the collection of specifications under consideration. Initially
there is no need to be more specific about these three collections, unless
examples are discussed. Further corr C Uprogram X Utest (elsewhere often
written as X sat s) is a relation which determines whether or not pro-
gram X satisfies specification s, and ok C Ujest, Uprogram, Uspecification 15 @
relation (with ok(t, X, s) written as X ok; s). The relation ok represents a
plurality of mechanisms, (i) the issuing of verdicts after a test run on an
individual test case has been competed, (ii) the use of an oracle with or
without a specification as input to generate a verdict, universal quantifica-
tion over the verdicts made for the test cases in a test battery (pass if all
test individual cases were passing). Now by packaging in a single relation
aspects of programs as well as of verdicts the impression arises that verdicts
are somehow related to programs, which in my view is not the case.

Assuming that an oracle produces verdicts, where the oracle may in-
volve, i.e. make use of, computing as well as of human judgement, there is
no need to view the oracle (or the “current verdicting process”) as a stable
and static mathematical entity. The oracle produces additional information
once a program (inSeq) has been run to completion (a non-trivial notion
unfortunately) and has produced one or more successive outputs, while or
after having received one or more successive inputs. The additional infor-
mation is about how the current program X behaves on certain inputs.
Now this idea is consistent with the suggestion that the current program
at the same time embodies the best known written description of its own
specification. New information coming about from the test, however, may
provide an incentive for the programmer to revise their views on the matter
and may for that reason create an incentive to modify the program.

It follows from this idea that neither a concept of a specification S as a
mathematical entity, nor a satisfaction relation X sat S need to be present

62 Jan A. Bergstra

at any stage of the process of program construction (for X), and that some
form of ad hoc and incremental specification by need may suffice. The ver-
dict serves allows to introduce other information, from outside the program
and from outside the programming activity, into the program construction
process and such information does not depend on the program. The ver-
dict may depend on a specification if that is available and has been made
accessible via an oracle, but that need not be so.

8.6 Incorporating General Testing Theory in testing4inSeqTh

The general theory of testing can be instantiated for inSeqTh thereby in-
cluding more detail in order to arrive an a more comprehensive picture. A
testing system (for testingdinSeqTh) consists of the following elements:

1. Uinseq: a collection of inSeq’s which is considered as potential out-
comes of a programming process,

2. optional: Uspecification, & collection of specifications for inSeq’s (which
may contain no more than the empty specification ok which is always
satisfied),

3. a relation _sat - C UinSeq X Uspeciﬁcation7

4. a collection T, of possible inputs for individual test runs (which may

include a succession of messages sent to X (while running) by the test

environment),

5. a collection Ts"g‘ﬁwl . of possible outputs for individual test runs, (which
may include a succession of messages sent by X (while running) to the
environment),

6. T's the test agent, who is in control of the test environment,

7. A set Tyags consisting of {termination—ok,termination—nok,
interrupted, aborted}; alternatively one may write interrupted—ok,
interrupted—nok for the pair interrupted, aborted. Interrupts and
aborts are made by T4 where an interrupt takes place if sufficient
information has been accumulated for delivering a verdict, and an
abort is enacted if the runs seems to have live-locked or to have
deadlocked (though without the certainty needed to raise the flag
termination—nok.

A Survey of Testing for Instruction Sequence Theory 63

10.

11.

12.

13.

14.

15.

16.

17.

Toampte = Tie x TOM x Tfiags, which represents the collection of

conceivable test cases,

a function perform: Uj,seq X Tease — Tsampie; this function formalises
the act of testing in terms of what it produces of relevance for testing
(with more sophistication time, energy, and other resources may be
include as inputs as well),

a collection Tyergict = {pass, fail, none, error} which constitutes pos-
sible verdicts,

Tverdicted T

sample s
cases,

ample X Tyerdict, the collection of possible verdicted test

a (tOtal) function wm"acle: Tease X Tspeciﬁcation — Tverdict; in case no
verdict is made the result is none, (the intuition is that ¥yrqce, may
be just as much, or even more, a moving target as X, if X is in the
role of an ISuC, i.e. an instruction sequence under construction),

Thattery = 2Tcif7~se7 (test battery, often referred to as test or as test suite),

case _ 9Tegse
Tsuite =2 ’

. erdicted
Tverdzcted _ QT;J;,;szfee
suite -

a pointwise extension of the oracle function to test suites

. verdicted
woracle . Tsuite — Tsuite ’

requirement: for all X € U;pgeq and tyy, € Tin

ose and for each s € Uspecs:

X sat s — woracle(perform(X7 tm)) = pass

Having the terminology as listed above available the classical theory of test-
ing can be redesigned in more detail. Whether or making that redesign
will be a fruitful endeavour remains to be seen. Using the terminology just
outlined, several remarks can be made:

(i) Suppose programmer B is developing instruction sequence X with a

possibly incomplete and possibly invalid specification tgpecification at
hand, and at some stage B wishes to perform a test on the basis of
test case t™__ then this can be done, assuming that X has advanced

to the point of being runnable, and while B plays the role of the test

64

Jan A. Bergstra

(i)

agent T4. Then the test sample tsampre = (t7., per form (X, ¢)
will result say with termination flag termination—ok. Next a verdict

can be made resulting in Voracie (tsample, tspecification) With verdict fail.

Now B has two choices: either to modify X, say to X’, so that on
the input for test case t.qse another test case is generated for which
the verdict is pass is obtained, or alternatively to modify ¥,rqcie,

say to ¢/ ., now with the intention to obtain so as to obtain pass

for the same test case i.e. for ¥ . (tsamples tspecification). The test-

ing4inSeqTh account of testing involves no preference on said choice.

In [9] the notion of a fault is contemplated in detail, and following [61]
for a fault to serve as an explanation of a failure a change needs to be
known which resolves the failure. More specifically a justification is
needed that a change serves as (a possible) remedy for a problem (the
occurrence of a failure). Three forms of justification are discussed:
leading to specialised notions of fault: (1) Laski fault (following [61])
where the change turns the program in to a provably correct program,
(2) a MFJ-fault (following [69]) where the change as applied to X
leads to a program X'which fails on fewer inputs (or more generally,
which behaves better in whatever metric for conformity of program
behaviour with the specification one wishes to use), (3) an RTJoC fault
(Regression test based justification of change), where it is required
that then changed program still passes the test suite (consisting of
successful tests only) which has thus far been obtained for X. Now the
phrase “test suite” was used in [9] but in the light of the terminology
just outlined a more precise wording can be found.

Now assume that the available test suite consist of (successfully) ver-
dicted test samples only. In this case all verdicted test samples are
stripped from outputs, flags and verdicts, so that a test battery re-
mains. Then a test with X’ is performed for every test case in the
new test battery, and a new test suite (collection of test samples) re-
sults. These are all inspected and augmented with a verdict such that
a new suite of verdicted test samples results. How the requirement on
regression testing reads that all verdicts are positive (i.e. pass).

Thus regression testing is a matter of performing test runs on a test
battery which is obtained by taking the test cases out of the verdicted
test samples which constitute the successful part of the testing history
of the project for designing X thus far.

A Survey of Testing for Instruction Sequence Theory 65

(iii) One might claim that both remarks (i) and (ii) move the subject from
testing to debugging, where testing would be done with a specification
at hand, and with a preference for adapting the program to the spec-
ification rather than conversely, while debugging may not even take
any specification into account. The vast literature on program debug-
ging seems to share with the literature on testing, as well as with the
equally large literature on bugs, that no definition of a bug is pro-
vided, or is imported via a reference to earlier work. Interestingly the
literature on debugging takes for granted that a bug is localised in the
text of a program somehow, and that debugging has two dimensions:
finding the bug, and repair of the bug. In the literature on bugs, how-
ever, bug is more general and bug reports are plausibly about failures
rather than about fragments of programs. Although debugging seems
to lie at the very practical end of the subject of program quality, it also
opens a door to a theme which seems to be out of reach of program
testing: debugging may shed light on the fundamental phenomenon
of unrealisability of a specification, see e.g. [57].

9 Concluding Remarks

Many approaches to and perspectives on program testing have been left
untouched in the paper thus far. I will briefly discuss some of these matters
in the concluding section. Finally I will provide an example of the notion
of partisan ambiguity from elementary arithmetic.

9.1 Conditions on Test Batteries.

Theoretical work on testing started with [48]. A brief summary in slightly
adapted notation reads as follows. One considers a program X which de-
termines a function [X] from D to D’. A test case is an element of D. It
is assumed that verdict function OK: D x D" — {pass, fail} is known. A
test battery T is a subset of D. Test battery T is successful for X if for
all d € T it is the case that OK(d, [X](d)). A notion of X-completeness C
is introduced as a predicate on test batteries, i.e. as subsets of 2. T have
added “X-” to the notation in order to highlight that the notion is specific
for X. Now X C 2P is X-complete of it enjoys the following property:
for each test battery T € C, if T is successful for X then X is failure free
(i.e. for all d € D, OK(d,[X](d)), or stated differently: D, the so-called
exhaustive test battery, is valid for X).

66 Jan A. Bergstra

Now notions of X-validity and X-reliability can be defined for C as
follows: C' is X-valid if whenever X is not failure free there must be a test
battery T' € C' (that is an X-complete test battery) which is not successful
for X. C is X-reliable (as a completeness criterion for X) if either all test
batteries contained in C' are valid for X or alternatively no test battery in C
is successful for X, i.e. it does not matter which T battery in C is used
for X. Then the following result is shown:

Theorem 9.1 (Goodenough € Gerhart, 1975). Given an X -valid and X -
reliable completeness criterion C, if T € C' and T is valid for X, then X is
failure free.

These notions are geared towards the option that testing provides complete
certainty, that is as much certainty as exhaustive testing would bring, if
doable. The practical problems with application of these notions are clearly
explained. The paper then continues with an exposition of the so-called
condition table method for testing, which can be seen as a precursor of later
equivalence class based methods, where instead of exhaustive testing for
each equivalence class of D testing a single test case in it suffices. Later
Weyuker & Ostrand [89] discover that X-validity and X-reliability are not
independent notions and that instead for each program X and each com-
pleteness criterion C, C' is X-valid or C' is X-reliable. This observation
constitutes a limitation of the notion of X-completeness which motivates
the introduction of another qualification for a criterion viz. the notion
of a criterion being (X, S)-revealing for a subset S C D. The criterion
C C 2%(C 2P) is (X, S)-revealing if and only if it enjoys the following prop-
erty: if X fails on S (i.e. for some d € S, “OK(d, [X](d))) then for each
test battery T' € C, X is not successful on 7. It is then shown by example
that the new meta-criterion covers more cases than X-reliability.
Interestingly [48] comes close to arguing that testing cannot always be
replaced by formal proofs, though such is not stated as a theoretical fact. I
will now look into that matter more closely. I will assume that single pass
instruction sequence X and data d € D are mathematical entities. The
notion that program X can be put into effect on hardware M with input
d € D amounts to the idea that a hardware configuration M[(X), (d)], with
physical components (X) and (d) supposedly representing X and d produces
after some processing time next state of itself which is adequately described
as M[(x), (d})] for d’ in D" where x represents whatever data (including X')
as the program may have been dropped by being put into effect (which is
plausible for a single pass instruction sequence). As an assertion in physics

A Survey of Testing for Instruction Sequence Theory 67

rather than in the theory of computing consider the following hypothetical
proposition:

Proposition 9.1 (Assertion in physics.) Running M[(X),(d)] leads to
M[(x), (d')].

Proposition 9.1 would require for its validation repeated tests runs with the
same inputs. Validity of Proposition 9.1 would at best known with a prob-
ability close to 1 but yet different from 1. Even if formal verification of X
w.r.t. some formal model fimys of M|[—, —| has been successfully completed,
that state of affairs will not guarantee Proposition 9.1 with a certainty of
100%. In fact experiments intending to validate or falsify Proposition 9.1
(or similar assertions) may be performed in order to validate the formal
model of M[—,—], and the very assertion that fmys provides a satisfactory
model of M[—,—] will involve probabilities and statistics. These consider-
ations may not matter much for computation on a discrete domain, but if
timing is essential, reading of devices is needed and handling of actuators
takes place, and if requirements are phrased in terms of expectations of the
behaviour of “real hardware” then the relevance of “physical assertions” like
Proposition 9.1 increases.

In order to remove a possible role of physical experimentation theoreti-
cal work on testing it would be helpful to make the assumption that testing
is done on the basis of simulation of computations on a formal machine
model, and that verification is done (i.e. proof checking) w.r.t. the same
formal machine model, and that both are done on the same or compara-
ble hardware.

9.2 Instruction Coverage and Branch Coverage

Coverage is a magic word in program testing. In [56] a survey of 101 forms of
coverage is documented. The author indicates that the plurality of forms of
coverage renders it unavoidable that in a software project choices are made.
Not all forms of coverage are achieved or aimed at, and there is no easy way
to prioritise. The relevance of achieving various forms of coverage is non
obvious: for instance in [86] the question is posed to what extent branch
coverage shows a high correlation with fault detection. Mixed conclusions
are drawn from inspecting a significant body of testing outcomes.

Definition 9.1 Let X =Y;Z%. During a run of X an instruction u in Z
is performed if at least one of its unfolded versions is performed. A testing

68 Jan A. Bergstra

process Piest delivers p% instruction coverage if for p% of the instructions
of X (i.e. the instructions of Y combined with the instructions of Y Z) are
performed during at least one of the runs (as generated by testing process
Utest) which end with verdict pass.

Definition 9.2 Let inSeq X contain k test instructions. A suite of test
samples for inSeq X of size n (the number of test cases), delivers p% branch
coverage if p% of the 2 - k pairs of method call and corresponding Boolean
reply occur during at least one of the runs of Yiest.

Given X it may be very difficult to design a test process which achieves
100% instruction coverage as well as 100 % branch coverage. It is reasonable
to ask the programmer of X to provide such test cases, however, because by
doing so some evidence is provided that none of the instructions and none
of the tests in X are redundant. Such information should be available to
the designer at low cost, and a customer of software who intends to grasp
how it works should be entitled to such information.

9.3 Formal Program Testing

Formal program testing was proposed in [33]. The idea is simple: try to
prove a program correct and one ends up with a number of verification
conditions for which a formal proof is needed. That may be a problem
(which it was in 1981), and the idea is that besides computer tools which
simplify these conditions testing may be used to obtain confidence in said
verification conditions.

Formal program testing approaches formal verification with a mathe-
matical mindset on what constitutes a proof and at the same time a testing
mindset on how to deal with so many details. Formal program testing can
be adapted to instruction sequences without any problem. As such the idea
is quite attractive because it allows a stepwise method where the precondi-
tion is made weaker along with the postcondition and the proof is improved
at each step, until perhaps a failure prevents further weakening of the pre-
condition. If for a program P a test case a (i.e. the input) creates a run
which produces test sample (a,b) and a verdict v(in = a, out = b) = pass is
issued, then {in = a}P{out = b} is a valid partial correctness assertion, for
which one may look for a proof, and the verification conditions thus found
may be made plausible by means of tests.

A Survey of Testing for Instruction Sequence Theory 69

9.4 Further Theories of Testing

Gourlay [49] provides a comprehensive analysis for various proposals for a
meta-criterion i.e. a qualification of a criterion such as it being X-reliable
or (X, S)-revealing. Almost 40 years later this paper is still state of the art
on the subject of general (program) testing theory.

Bougé [31] surveys a history (in 1985) of program testing theory and
the author concludes that the theory of program testing is about black-box
behaviour and focuses on various criteria and interrelations of test batteries.
With reference to original work on criteria for test sets of [48] Bougé writes:

It must in fact be split into a transcendental part (proving ide-
ality of the criterion and adequacy of the test) and a calculable
part (running the test cases). The most important feature of
the proposal is, to our mind, the notion of a criterion and the
properties which are defined about it. Notice that passing any
test satisfying an ideal criterion demonstrates the correctness.

The idea that testing works towards confidence is reflected in this quote:

Any testing theory should focus rather on success of tests than
on failure, because only the former is actually informative.

The idea that testing activity comes with a transcendental part is quite
useful for bridging the gap with formal verification. However, when scanning
the literature on program testing said transcendental part seems not to play
a role of any significance until now.

9.5 The Relevance of Testing
Lipton [63] writes:

Almost all real computations use testing to insure their correct-
ness.

and

Further testing is usually viewed as a method of discovering
errors, not as a method of proving the absence of errors. Indeed
the main appeal of formal verification is that it has the potential
to yield “proofs” that software is error free. Clearly testing
would be more valuable if it led to provable statements about
programs.

70 Jan A. Bergstra

Here I read error free as “leading to failure free behaviour”. Further testing
is positioned as a second best option for acquiring confidence, given the in-
herent difficulties of (formal) verification, while at the same time in practice
testing constitutes a search for failures.

Remark: The apparent contradiction that testing “is” looking for failures
and faults, while at the same time testing is considered a part of verification,
that is working towards positive conclusions, can be overcome if one admits
informal negation by failure as a reasoning pattern for software quality.
In the medical profession reasoning on the basis of negation by failure is
standard practice: if a certain effort to uncover a class of potential problems
yields nothing, i.e. yields a negative outcome, then one proceeds as if said
problems are absent. For programs a similar attitude is possible: rather
than to categorically state the absence of certain problems, one proceeds
under the hypothesis that such problems have a low probability, and as if
these are absent, comparable to boarding a plane. Even a proof does not
provide 100% certainty (as the proof might be wrong, or a proof checking
might fail by producing a false positive, or the underlying specification may
be invalid etc.), so I it seems that there is no unbridgeable categorical gap
between testing and formal verification.

9.6 Restricting the Scope of Program Testing
Gaudel [44] writes:

First, let us make more precise the background of the works
reported here. The aim of a testing activity is to detect some
faults in a program. The use of the verb detect is important here,
since locating and correcting the faults are generally regarded
as out of the scope of testing: they require different data and
techniques.

The notion of a fault is left undefined in this work.

Remark: Gaudel appears to refer to a failure (rather than a fault, i.e.
an ALR fault) in the sense of the program producing an invalid result on
certain inputs. Presumably for for Gaudel spectrum based fault localisation,
which locates faults that supposedly cause one or more failures of which the
existence is known, does not classify as an activity in testing.

A Survey of Testing for Instruction Sequence Theory 71

In any case, restricting the scope of testing is a path chosen by many
authors in order to make the topic accessible for fundamental research.

9.7 Risk Based Testing

Aktag et. al. [1] discuss risk based testing (RBT). The approach of RBT has
a significant tradition already and is aiming at the acquisition of confidence
based on software specific risk analysis which them guide the creation of
test cases. In [39] a difference is made between the use of testing for risk
assessment and the use of risk assessment for testing.

For a theoretical approach starting with instruction sequences dis-
cussing RBT is not plausible because for theoretical examples starting out
with a risk analysis would be rather artificial. Risk analysis is remote from
theoretical considerations on program structure and behaviour. The simpler
issue of developing a theoretical framework concerning user profiles seems
not to have drawn any attention thus far, while risk analysis would need to
take such work as a point of departure. Nevertheless RBT provides in princi-
ple a perspective for obtaining quantified positive information from testing,
and on the long run developing methods for RBT seems to be a necessity.

Risk assessment may be considered an overhead on testing. However,
the same overhead is present, in principle, for formal verification. Indeed
RBT stands besides RBFV (risk based formal verification), on equal footing.
RBFV would be a theme within RBV (risk based verification). As it turns
out risk based verification is a widely used phrase in high tech engineering
without a connotation of software verification. I did not find work on “risk
based software verification” or more specifically on “risk based formal ver-
ification”. That state of affairs is counterintuitive, however. Indeed given
a specification for a system S = S[X] containing a software component X
is given as a conjunction of properties P;(S),..., P,(S) each of which is
amenable to testing as well as to verification. Then one would expect risk
analysis to determine for which of these properties the additional effort of
obtaining a formal verification on top of a successful and informative test
suite would be warranted.

Nevertheless, a focus on instruction sequences is unlikely to shed any
further light on RBT.

72 Jan A. Bergstra

9.8 Fuzzing

Fuzzing (see e.g. [62]) is another word for systematic and completely au-
tomated (and massive) random testing. Fuzzing has become mainstream
in testing and has been credited with the detection of tens of thousands of
faults in critical software. Fuzzing requires an automated solution to the
oracle problem, otherwise it can’t be performed at sufficient scale. Typically
a new system may be fed with all sorts of inputs (including inputs which lies
outside the range which the designers had in mind) to see if a crash takes
place. In that manner security problems may be detected which otherwise
would be revealed only after the program has been used in practice.

Fuzzing may cover more ground, i.e. look into more cases, than the
use of a program in practice will do during its entire lifetime. Fuzzing
may uncover problems which otherwise might only be detected after many
years. Fuzzing need not be restricted to any known user profile. On the
contrary fuzzing may be used to spot vulnerabilities which can be exploited
by adversary “users” who don’t comply with any known or expected user
profile.

9.9 Program Testing in the Context of Machine Learning

Machine learning gives rise to programs the origin of which comes from
training data which are used during the learning process. In comparison to
classical design, the training data, which embody intended behaviour, deter-
mines the logic, rather than the other way around. Lots of blogs (e.g. [45])
have been devoted to the role of testing for programming on the basis of
machine learning.

In [93] a distinction is made between machine learning-based testing,
which is about the use of machine learning as a tool for testing in the con-
ventional sense, and machine learning testing which uses testing to obtain
information about machine learning programs. Further a distinction is made
between (i) a learning program (an ML program in the terminology of [93]),
software which performs learning and thereby creates a learning system,
which may include support for validation and testing, and (ii) the “model”
i.e. the learnt program which comes about as a result of machine learning
that may be used in practice.

In [32] the separation between model (learnt program), and machine
learning program (ML program) is less clear, however. In the terminology
of [32] ML programs include learnt programs. I prefer not to follow the latter

A Survey of Testing for Instruction Sequence Theory 73

conventions and instead to view learnt programs as novel outputs of ML
programs which are instances of conventional software, i.e. implementations
of machine learning algorithms which admit specification in advance.

9.10 On Terminology for Testing Machine Learning
Instruction Sequences

I will adopt the following assumptions, which are deliberately cast in terms
of inSeq’s rather than in terms of programs in order to avoid manifest dis-
crepancies with existing literature (such as [32]). This leads to the following,
perhaps over-simplified, picture.

e A model as created from an ML inSeq in combination with training
data, validation data, and (perhaps human) input to serve as an oracle
for the classifiers to be learnt is referred to as a “learnt inSeq”. An
ML instruction sequence implements a process for the development
of learnt inSeq’s. The quality of an ML inSeq is independent from
training sets, validation sets, human intervention by way of serving as
oracles for the problem which is to be learned.

e An ML inSeq supports the production of learnt inSeq’s on the basis
of training data and validation data, where the quality of the result
may be evaluated by means of so-called test data. Now the ML inSeq
is a conventional program to which all and exclusively conventional
notions of correctness, validity, verification and testing apply.

In [93] it is mentioned that training data can contain bugs. That phe-
nomenon would be immaterial for the quality of an ML inSeq (other
than the ability of the instruction sequences to deal with flawed train-
ing sets), while it matters for created learnt inSeq’s.

ML inSeq testing is about testing ML inSeq’s, just as matrix multi-
plication inSeq testing will be about testing inSeq’s for matrix multi-
plication.

e There is no reason why ML inSeq’ss would not be understood as con-
ventional programs.

e ML testing is about the quality of learnt inSeq’s. Judging the quality
of learnt inSeq’s requires a solution of the oracle problem w.r.t. the
intended learnt programs, a topic whiles lies outside the scope of soft-
ware engineering for an ML program. Thus ML testing is not about

74 Jan A. Bergstra

the testing of ML inSeq’s, but about the testing of ML inSeq outputs,
i.e. learnt inSeq’s.

9.11 Partisan Ambiguity in Arithmetic: A Case Study from
Outside Informatics

The idea of partisan ambiguity can be illustrated with an example from out-
side computer programming. I hold that the concept/term fraction features
partisan ambiguity:

(i) some will claim that a fraction is a composed entity consisting of a
numerator, a function symbol for division, and a denominator,

(ii) some will hold that a fraction is a rational number,
(iii) some consider fraction a notion from mathematics, other authors do not,

(iv) some consider fraction to be intentionally ambiguous, by combining
two or more of the mentioned options under a single umbrella, etc.

I hold that the partisan ambiguity of fraction stands in the way of an efficient
use of that concept/term. As a remedy in [10] it is proposed to use fracterm
for an expression with division as its leading function symbol. The value of
a fracterm is a fracvalue, and (in elementary arithmetic) fracvalue is merely
another word for rational number. A fracterm is a composite entity and
for that reason it is not a number. Equivalence (i.e having the same value)
of fracterms is denoted with =, and for fracterms t and r, t = r signifies
that ¢ and r have the same value (i.e. fracvalue), not that ¢ and r are the
same fracterm. Equality of fracterms can plausibly be denoted with ¢ = r.
Thus the assertion ¢ = r is ambiguous: asserting equivalence of fracterms
and asserting the equality of two fracvalues, but both interpretations will
lead to the same truth value. Simplification of a fracterm, if possible, yields
a different but equivalent fracterm.

I consider fraction not to be intentionally ambiguous. Having made
that choice, there is some merit in contemplating the possibility that natural
language for arithmetic is, or might be, in need of an intentionally ambiguous
umbrella for fracvalue and fracterm. I consider fraction not to be a candidate
for that role, because I have no wish to resist the widespread views (i) and
(ii) on fractions listed above. I will use fracthing for that purpose.

Fracvalue and fracterm are to be distinguished from fracsign, which
is a (physical) sign which refers to a fracterm and thereby indirectly to

A Survey of Testing for Instruction Sequence Theory 75

a fracvalue. Fracthing is an umbrella which covers fracsign as well. On a
blackboard one may count the number of fracsigns that have been written on
it. If one asks for the number of fracthings on a blackboard it is plausible to
coerce (i.e. reduce the scope of meaning) fracthing into fracsign first before
counting. So there are as many fracthings on the blackboard as fracsigns.
For fracsigns the question is clear and also for fracterms and fracvalues: if
the blackboard shows the following four fracthings: 1/2, 1/2, 2/4 and 1/3
there are respectively, four fracsigns, three fracterms and two fracvalues.
It is an unusual property of fracthings that these include the (physical)
fracsigns and yet there are infinitely many fracthings.

The terminology thus obtained is consistent with three plausible but
mutually incompatible identifications:

[1AP%)]

(i) fraction “is” fracterm,

(ii) fraction “is” fracvalue, and
(ili) fraction “is” fracthing.
Rather less plausible is option

(iv) fraction “is” fracsign. Upon adopting any particular convention from
these four options a simple account of fractions results, but compati-
bility with the other three options for assigning a meaning to fraction
would then be lost.

9.12 Conclusions

Designing testingdinSeqTh is more easily started than completed. The lit-
erature on faults, bugs, testing, fault localization, and debugging is quite
extensive. The thought experiment of incorporating terminology, results,
and objectives on the area of program testing in testing4dinSeqTh has been
very helpful for me in the sense that having the liberty to settle for defini-
tions which do not precisely, and in some cases not even remotely, coincide
with definitions found elsewhere in the literature on testing, is needed in
order to be able to work towards a consistent and coherent picture.

My attempt to take into account a significant part of the issues dis-
cussed in the testing literature may not convince the reader. But doing so is
a necessity if a realistic picture of testing is to be achieved. I have not spent
as much attention to structural testing methods as might be expected given
the relative size of that part of the literature on program testing. Testing

76 Jan A. Bergstra

is a part of technology and therefore the subject is being reinvented time
and again, and in the ongoing adaptation to changing practical needs lies
its strength. The following relatively recent themes in program testing I
consider essential for an appreciation of testing;:

(a) fuzzing for finding security flaws,

(b) metamorphic testing as an escape from the oracle problem, a technique
which “by definition” finds failures without disclosing any clue on
underlying faults, thereby providing an incentive for

(c) spectrum based fault localisation as an instance of white box testing,
and

(d) mutation based testing.

It is remarkably difficult to argue convincingly that testing is there to stay,
which I think is the case, and that whatever progress is made in the context
of formal specification, automatic programming, and formal verification,
there will always be a residual need for testing, a methodology which for
that reason must be provided with a strong theoretical basis.

Moreover, I expect that with quantum computing becoming incorpo-
rated in the practice of informatics, the principled necessity of program
testing will become more obvious. The unavoidability of testing will be-
come a consequence of the fact that the unpredictability and computational
intractability of the underlying physics cannot be ignored in the same way
as it was done for (now) classical and traditional digital computing.

References

[1] Ahmet Ziya Aktas, Eray Yagdereli, and Doga Serdaroglu. An intro-
duction to software testing methodologies. Gazi University Journal
of Science Part A: Engineering and Innovation, 8:1-15, 2021. URL:
https://dergipark.org.tr/en/pub/gujsa/issue/60638/517975.

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cam-
bridge University Press, 2008. doi:10.1017/CB09780511809163.

[3] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamen-
tal concepts of computer system dependability. In TARP/IEEE-RAS
Workshop on Robot Dependability: Technological Challenge of Depend-
able Robots in Human Environments, 2001.

https://dergipark.org.tr/en/pub/gujsa/issue/60638/517975
https://doi.org/10.1017/CBO9780511809163

A Survey of Testing for Instruction Sequence Theory 7

[4]

[10]

[11]

[12]

[13]

[14]

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E.
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEFE Transactions on Dependable and Secure Computing,
1(1):11-33, 2004. doi:10.1109/TDSC.2004.2.

Jos C. M. Baeten and Cornelis A. Middelburg. Process Algebra with
Timing. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, 2002. doi:10.1007/978-3-662-04995-2.

Adam Barr. The problem with software, why smart engineers write bad
code. MIT Press, 2018.

Boris Beizer. Software System Testing and Quality Assurance. Van
Nostrand Reinhold, 2nd edition, 1990.

D. Elliott Bell and Leonard J. LaPadula. Secure computer systems:
mathematical foundations. Technical Report 2547, MITRE CORP
BEDFORD MA, 1973.

Jan A. Bergstra. Quantitative expressiveness of instruction sequence
classes for computation on single bit registers. Computer Science Jour-
nal of Moldova, 27(2):131-161, 2019. URL: http://www.math.md/
publications/csjm/issues/v27-n2/12969/.

Jan A. Bergstra. Instruction sequence faults with formal change justi-
fication. Scientific Annals of Computer Science, 30(2):105-166, 2020.
doi:10.7561/SACS.2020.2.105.

Jan A. Bergstra. Promise theory as a tool for informaticians. Trans-
mathematica, 2020. doi:10.36285/tm. 35.

Jan A. Bergstra. Qualifications of instruction sequence failures, faults
and defects: Dormant, effective, detected, temporary, and perma-
nent. Scientific Annals of Computer Science, 31(1):1-50, 2021. doi:
10.7561/SACS.2021.1.1.

Jan A. Bergstra and Inge Bethke. On the contribution of backward
jumps to instruction sequence expressiveness. Theory of Computing
Systems, 50(4):706-720, 2012. doi:10.1007/s00224-011-9376-x.

Jan A. Bergstra and Mark Burgess. Promise Theory: Principles and
Applications. xt Axis Press, 2014. 2nd edition, 2019.

https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1007/978-3-662-04995-2
http://www.math.md/publications/csjm/issues/v27-n2/12969/
http://www.math.md/publications/csjm/issues/v27-n2/12969/
https://doi.org/10.7561/SACS.2020.2.105
https://doi.org/10.36285/tm.35
https://doi.org/10.7561/SACS.2021.1.1
https://doi.org/10.7561/SACS.2021.1.1
https://doi.org/10.1007/s00224-011-9376-x

78

Jan A. Bergstra

[15]

[21]

[22]

[23]

Jan A. Bergstra and Mark Burgess. Candidate software process flaws
for the Boeing 737 Max MCAS algorithm and risks for a proposed
upgrade. CoRR, abs/2001.05690, 2020. arXiv:2001.05690.

Jan A. Bergstra and M. E. Loots. Program algebra for sequential
code. Journal of Logic and Algebraic Programming, 51(2):125-156,
2002. doi:10.1016/S1567-8326(02)00018-8.

Jan A. Bergstra and Cornelis A. Middelburg. Thread algebra for strate-
gic interleaving. Formal Aspects of Computing, 19(4):445-474, 2007.
doi:10.1007/s00165-007-0024-9.

Jan A. Bergstra and Cornelis A. Middelburg. Distributed strategic in-
terleaving with load balancing. Future Generation Computer Systems,
24(6):530-548, 2008. doi:10.1016/j.future.2007.08.001.

Jan A. Bergstra and Cornelis A. Middelburg. Thread algebra for poly-
threading. Formal Aspects of Computing, 23(4):567-583, 2011. doi:
10.1007/s00165-011-0178-3.

Jan A. Bergstra and Cornelis A. Middelburg. Instruction sequence
processing operators. Acta Informatica, 49(3):139-172, 2012. doi:
10.1007/s00236-012-0154-2.

Jan A. Bergstra and Cornelis A. Middelburg. On instruction sets for
Boolean registers in program algebra. Scientific Annals of Computer
Science, 26(1):1-26, 2016. doi:10.7561/SACS.2016.1.1.

Jan A. Bergstra and Cornelis A. Middelburg. Instruction sequences
expressing multiplication algorithms. Scientific Annals of Computer
Science, 28(1):39-66, 2018. doi:10.7561/SACS.2018.1.39.

Jan A. Bergstra and Cornelis A. Middelburg. A short introduction
to program algebra with instructions for boolean registers. Computer
Science Journal of Moldova, 26(3):199-232, 2018. URL: http://www.
math.md/publications/csjm/issues/v26-n3/12735/.

Jan A. Bergstra and Alban Ponse. Execution architectures for program
algebra. Journal of Applied Logic, 5(1):170-192, 2007. doi:10.1016/
j.jal.2005.10.013.

http://arxiv.org/abs/2001.05690
https://doi.org/10.1016/S1567-8326(02)00018-8
https://doi.org/10.1007/s00165-007-0024-9
https://doi.org/10.1016/j.future.2007.08.001
https://doi.org/10.1007/s00165-011-0178-3
https://doi.org/10.1007/s00165-011-0178-3
https://doi.org/10.1007/s00236-012-0154-2
https://doi.org/10.1007/s00236-012-0154-2
https://doi.org/10.7561/SACS.2016.1.1
https://doi.org/10.7561/SACS.2018.1.39
http://www.math.md/publications/csjm/issues/v26-n3/12735/
http://www.math.md/publications/csjm/issues/v26-n3/12735/
https://doi.org/10.1016/j.jal.2005.10.013
https://doi.org/10.1016/j.jal.2005.10.013

A Survey of Testing for Instruction Sequence Theory 79

[25]

[26]

[30]

[31]

Gustavo Betarte, Juan Diego Campo, Carlos Luna, and Agustin Ro-
mano. Formal analysis of android’s permission-based security model.
Scientific Annals of Computer Science, 26(1):27-68, 2016. doi:10.
7561/SACS.2016.1.27.

Harsh Bhasin, Esha Khanna, and Sudha Sudha. Black box testing
based on requirement analysis and design specifications. International
Journal of Computer Applications, 87(18):36-40, 2014. doi:10.5120/
15311-4024.

Ken J. Biba. Integrity considerations for secure computer systems.
Technical Report 3154, MITRE CORP BEDFORD MA, 1977.

Manuel Blum and Sampath Kannan. Designing programs that check
their work. Journal of the ACM, 42(1):269-291, 1995. doi:10.1145/
200836.200880.

Marcel Bohme, Cristian Cadar, and Abhik Roychoudhury. Fuzzing:
Challenges and reflections. IEEE Software, 38(3):79-86, 2021. doi:
10.1109/MS.2020.3016773.

Adilson Luiz Bonifacio and Arnaldo Vieira Moura. Test suite com-
pleteness and black box testing. Software Testing, Verification and
Reliability, 27(1-2), 2017. doi:10.1002/stvr.1626.

Luc Bougé. A contribution to the theory of program testing. Theoretical
Computer Science, 37:151-181, 1985. doi:10.1016/0304-3975(85)
90090-8.

Houssem Ben Braiek and Foutse Khomh. On testing machine learning
programs. Journal of Systems and Software, 164:110542, 2020. doi:
10.1016/j.jss.2020.110542.

Robert Cartwright. Formal program testing. In John White, Richard J.
Lipton, and Patricia C. Goldberg, editors, Conference Record of the
Eighth Annual ACM Symposium on Principles of Programming Lan-
guages, POPL 1981, pages 125-132. ACM Press, 1981. doi:10.1145/
567532.567546.

Christophe Chareton, Sébastien Bardin, Dongho Lee, Benoit Valiron,
Renaud Vilmart, and Zhaowei Xu. Formal methods for quantum pro-
grams: A survey. CoRR, abs/2109.06493, 2021. arXiv:2109.06493.

https://doi.org/10.7561/SACS.2016.1.27
https://doi.org/10.7561/SACS.2016.1.27
https://doi.org/10.5120/15311-4024
https://doi.org/10.5120/15311-4024
https://doi.org/10.1145/200836.200880
https://doi.org/10.1145/200836.200880
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1002/stvr.1626
https://doi.org/10.1016/0304-3975(85)90090-8
https://doi.org/10.1016/0304-3975(85)90090-8
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1145/567532.567546
https://doi.org/10.1145/567532.567546
http://arxiv.org/abs/2109.06493

80

Jan A. Bergstra

[35]

[36]

[41]

[42]

Tse-Hsun Chen, Meiyappan Nagappan, Emad Shihab, and Ahmed E.
Hassan. An empirical study of dormant bugs. In Premkumar T. De-
vanbu, Sung Kim, and Martin Pinzger, editors, 11th Working Confer-
ence on Mining Software Repositories, MSR 2014, pages 82-91. ACM,
2014. doi:10.1145/2597073.2597108.

Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. Metamorphic test-
ing: A new approach for generating next test cases. Technical Report
HKUST-CS98-01, Deptartment of Computer Science, The Hong Kong
University of Science and Technology, 1988. arXiv:2002.12543.

Mohammad Torabi Dashti and David A. Basin. A theory of black-box
tests. CoRR, abs/2006.10387, 2020. arXiv:2006.10387.

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward.
Hints on test data selection: Help for the practicing programmer. Com-
puter, 11(4):34-41, 1978. doi:10.1109/C-M.1978.218136.

Gencer Erdogan, Yan Li, Ragnhild Kobro Runde, Fredrik Seehusen,
and Ketil Stglen. Approaches for the combined use of risk analysis
and testing: a systematic literature review. International Journal on
Software Tools for Technology Transfer, 16(5):627-642, 2014. doi:
10.1007/s10009-014-0330-5.

Michael Felderer, Matthias Biichler, Martin Johns, Achim D. Brucker,
Ruth Breu, and Alexander Pretschner. Security testing: A survey. Ad-
vances in Computers, 101:1-51, 2016. doi:10.1016/bs.adcom.2015.
11.003.

Michael Felderer and Vahid Garousi. Together we are stronger:
Evidence-based reflections on industry-academia collaboration in soft-
ware testing. In Dietmar Winkler, Stefan Biffl, Daniel Méndez, and
Johannes Bergsmann, editors, 12th International Conference on Soft-
ware Quality: Quality Intelligence in Software and Systems Engi-
neering, SWQD 2020, volume 371 of Lecture Notes in Business In-
formation Processing, pages 3-12. Springer, 2020. doi:10.1007/
978-3-030-35510-4_1.

Gordon Fraser and José Miguel Rojas. Software testing. In Sungdeok
Cha, Richard N. Taylor, and Kyo Chul Kang, editors, Handbook of
Software Engineering, pages 123-192. Springer, 2019. doi:10.1007/
978-3-030-00262-6_4.

https://doi.org/10.1145/2597073.2597108
http://arxiv.org/abs/2002.12543
http://arxiv.org/abs/2006.10387
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1007/s10009-014-0330-5
https://doi.org/10.1007/s10009-014-0330-5
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1007/978-3-030-35510-4_1
https://doi.org/10.1007/978-3-030-35510-4_1
https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1007/978-3-030-00262-6_4

A Survey of Testing for Instruction Sequence Theory 81

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Vahid Garousi, Michael Felderer, and Feyza Nur Kilicaslan. A survey
on software testability. Information and Software Technology, 108:35—
64, 2019. d0i:10.1016/j.infsof.2018.12.003.

Marie-Claude Gaudel. Testing can be formal, too. In Peter D. Mosses,
Mogens Nielsen, and Michael I. Schwartzbach, editors, TAPSOFT’95:
Theory and Practice of Software Development, 6th International Joint
Conference CAAP/FASE, volume 915 of Lecture Notes in Computer
Science, pages 82-96. Springer, 1995. doi:10.1007/3-540-59293-8\
_188.

Yulia Gavrilova. Machine learning testing: a step to perfection. Serokell
Site, November 11 2020 [Online]. URL: https://serokell.io/blog/
machine-learning-testing.

David Gelperin and Bill Hetzel. The growth of software testing. Com-
munications of the ACM, 31(6):687-695, 1988. doi:10.1145/62959.
62965.

Joseph A. Goguen and José Meseguer. Security policies and security
models. In 1982 IEEE Symposium on Security and Privacy, pages 11—
20. IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.

John B. Goodenough and Susan L. Gerhart. Toward a theory of test
data selection. IEEE Transactions on Software Engineering, 1(2):156—
173, 1975. doi:10.1109/TSE.1975.6312836.

John S. Gourlay. A mathematical framework for the investigation of
testing. IEEE Transactions on Software Engineering, 9(6):686-709,
1983. d0i:10.1109/TSE.1983.235433.

Jens Grabowski, Anthony Wiles, Colin Willcock, and Dieter Hogrefe.
On the design of the new testing language TTCN-3. In Hasan Ural,
Robert L. Probert, and Gregor von Bochmann, editors, Testing of
Communicating Systems: Tools and Techniques, IFIP TC6/WG6.1
18 International Conference on Testing Communicating Systems
(TestCom 2000), volume 176 of IFIP Conference Proceedings, pages
161-176. Kluwer, 2000.

Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and
Brendan Murphy. "Not my bug!” and other reasons for software bug

https://doi.org/10.1016/j.infsof.2018.12.003
https://doi.org/10.1007/3-540-59293-8_188
https://doi.org/10.1007/3-540-59293-8_188
https://serokell.io/blog/machine-learning-testing
https://serokell.io/blog/machine-learning-testing
https://doi.org/10.1145/62959.62965
https://doi.org/10.1145/62959.62965
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/TSE.1975.6312836
https://doi.org/10.1109/TSE.1983.235433

82

Jan A. Bergstra

[56]

[57]

report reassignments. In Pamela J. Hinds, John C. Tang, Jian Wang,
Jakob E. Bardram, and Nicolas Ducheneaut, editors, Proceedings of
the 2011 ACM Conference on Computer Supported Cooperative Work,
CSCW 2011, pages 395-404. ACM, 2011. doi:10.1145/1958824.
1958887.

Brent Hailpern and Padmanabhan Santhanam. Software debugging,
testing, and verification. IBM Systems Journal, 41(1):4-12, 2002. doi:
10.1147/sj.411.0004.

Dick Hamlet. Predicting dependability by testing. ACM SIGSOFT
Software Engineering Notes, 21(3):84-91, 1996. doi:10.1145/226295.
226305.

Richard G. Hamlet. Foundations of software testing: Dependability
theory. In David S. Wile, editor, Proceedings of the Second ACM SIG-
SOFT Symposium on Foundations of Software Engineering, SIGSOFT
199/, pages 128-139. ACM, 1994. doi:10.1145/193173.195400.

Shahin Honarvar, Mohammad Reza Mousavi, and Rajagopal Nagara-
jan. Property-based testing of quantum programs in q#. In ICSE
20: 42nd International Conference on Software Engineering, pages
430-435. ACM, 2020. doi:10.1145/3387940.3391459.

Cem Kaner. Software negligence and testing coverage. In STAR 96:
Fifth International Conference on Software Testing, Analysis, and Re-
view, pages 313-327, 1996.

Robert Konighofer, Georg Hofferek, and Roderick Bloem. Debugging
formal specifications using simple counterstrategies. In Proceedings of
9th International Conference on Formal Methods in Computer-Aided
Design, FMCAD 2009, pages 152-159. IEEE, 2009. doi:10.1109/
FMCAD.2009.5351127.

Christine M. Kreiser. Computer bug. American History, 45(6):19,
2011.

Butler W. Lampson. A note on the confinement problem. Commu-
nications of the ACM, 16(10):613-615, 1973. doi:10.1145/362375.
362389.

https://doi.org/10.1145/1958824.1958887
https://doi.org/10.1145/1958824.1958887
https://doi.org/10.1147/sj.411.0004
https://doi.org/10.1147/sj.411.0004
https://doi.org/10.1145/226295.226305
https://doi.org/10.1145/226295.226305
https://doi.org/10.1145/193173.195400
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1109/FMCAD.2009.5351127
https://doi.org/10.1109/FMCAD.2009.5351127
https://doi.org/10.1145/362375.362389
https://doi.org/10.1145/362375.362389

A Survey of Testing for Instruction Sequence Theory 83

[60]

[61]

[65]

[66]

[67]

[68]

[69]

Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S.
Choi. A taxonomy of computer program security flaws. ACM Comput-
ing Surveys, 26(3):211-254, 1994. doi:10.1145/185403.185412.

Janusz W. Laski. Programming faults and errors: Towards a theory
of software incorrectness. Annals of Software Engineering, 4:79-114,
1997. doi:10.1023/A:1018966827888.

Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecu-
rity, 1(1):6, 2018. doi:10.1186/s42400-018-0002-y.

Richard J. Lipton. New directions in testing. In Joan Feigenbaum
and Michael Merritt, editors, Distributed Computing And Cryptogra-
phy, Proceedings of a DIMACS Workshop, volume 2 of DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science, pages
191-202. DIMACS/AMS, 1989. doi:10.1090/dimacs/002/13.

Pan Liu, Yihao Li, and Huaikou Miao. Transition algebra for software
testing. IEEE Transactions on Reliability, 70(4):1438-1454, 2021. doi:
10.1109/TR.2021.3116054.

Lu Luo. Software testing techniques: Technology maturation and re-
search strategies. Technical Report 17-939A, Institute for Software
Research International, Carnegie Mellon University, 2001.

Annabelle Mclver and Carroll Morgan. Correctness by construction
for probabilistic programs. In Tiziana Margaria and Bernhard Steffen,
editors, 9th International Symposium on Leveraging Applications of
Formal Methods: Verification Principles, ISoLA 2020, volume 12476
of Lecture Notes in Computer Science, pages 216-239. Springer, 2020.
doi:10.1007/978-3-030-61362-4_12.

Cornelis A. Middelburg. Searching publications on software testing.
CoRR, abs/1008.2647, 2010. arXiv:1008.2647.

Cornelis A. Middelburg. Program algebra for random access machine
programs. CoRR, abs/2007.09946, 2020. arXiv:2007.09946.

Ali Mili, Marcelo F. Frias, and Ali Jaoua. On faults and faulty
programs. In Peter Hofner, Peter Jipsen, Wolfram Kahl, and Mar-
tin Eric Miiller, editors, 14th International Conference on Relational
and Algebraic Methods in Computer Science, volume 8428 of Lecture

https://doi.org/10.1145/185403.185412
https://doi.org/10.1023/A:1018966827888
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1090/dimacs/002/13
https://doi.org/10.1109/TR.2021.3116054
https://doi.org/10.1109/TR.2021.3116054
https://doi.org/10.1007/978-3-030-61362-4_12
http://arxiv.org/abs/1008.2647
http://arxiv.org/abs/2007.09946

84

Jan A. Bergstra

[70]

[71]

[73]

[74]

[76]

Notes in Computer Science, pages 191-207. Springer, 2014. doi:
10.1007/978-3-319-06251-8_12.

Roy Miller and Christopher Collins. Acceptance testing. In Proceedings
XPUnwverse 2001, page 238, 2001.

Andriy V. Miranskyy, Lei Zhang, and Javad Doliskani. Is your quantum
program bug-free? In Gregg Rothermel and Doo-Hwan Bae, editors,
ICSE-NIER 2020: 42nd International Conference on Software Engi-
neering, New Ideas and Emerging Results, pages 29-32. ACM, 2020.
doi:10.1145/3377816.3381731.

Joshua Moerman. Nominal Techniques and Black Box Testing for Au-
tomata Learning. PhD thesis, Radboud University Nijmegen, 2019.
URL: http://hdl.handle.net/2066/204194.

Edward F. Moore. Gedanken-Experiments on Sequential Machines,
pages 129-154. Princeton University Press, 1956. doi:10.1515/
9781400882618-006.

Srinivas Nidhra and Jagruthi Dondeti. Black box and white box
testing techniques-a literature review. International Journal of Em-
bedded Systems and Applications (IJESA), 2(2):29-50, 2012. doi:
10.5121/ijesa.2012.2204.

Adrian Nistor. Understanding, detecting, and repairing perfor-
mance bugs. PhD thesis, University of Illinois at Urbana-
Champaign, 2014. URL: https://mir.cs.illinois.edu/marinov/
publications/Nistor14PhD.pdf.

Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil
Madhavapeddy, and Peter Sewell. Sibylfs: formal specification and
oracle-based testing for POSIX and real-world file systems. In Ethan L.
Miller and Steven Hand, editors, Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015, pages 38-53. ACM, 2015.
doi:10.1145/2815400.2815411.

Sergio Segura, Dave Towey, Zhi Quan Zhou, and Tsong Yueh Chen.
Metamorphic testing: Testing the untestable. IEEE Software, 37(3):46—
53, 2020. doi:10.1109/MS.2018.2875968.

https://doi.org/10.1007/978-3-319-06251-8_12
https://doi.org/10.1007/978-3-319-06251-8_12
https://doi.org/10.1145/3377816.3381731
http://hdl.handle.net/2066/204194
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.5121/ijesa.2012.2204
https://doi.org/10.5121/ijesa.2012.2204
https://mir.cs.illinois.edu/marinov/publications/Nistor14PhD.pdf
https://mir.cs.illinois.edu/marinov/publications/Nistor14PhD.pdf
https://doi.org/10.1145/2815400.2815411
https://doi.org/10.1109/MS.2018.2875968

A Survey of Testing for Instruction Sequence Theory 85

78]

[79]

[30]

[81]

[83]

[84]

[85]

[36]

Fred R. Shapiro. Etymology of the computer bug: History and folklore.
American Speech, 62(4):376-378, 1987. URL: http://www. jstor.org/
stable/455415.

Emad Shihab, Audris Mockus, Yasutaka Kamei, Bram Adams, and
Ahmed E. Hassan. High-impact defects: a study of breakage and sur-
prise defects. In Tibor Gyiméthy and Andreas Zeller, editors, SIG-
SOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-19) and ESEC’11: 13th European Soft-
ware Engineering Conference (ESEC-13), pages 300-310. ACM, 2011.
doi:10.1145/2025113.20251565.

Yogesh Singh. Software Testing. Cambridge University Press, 2011.
d0i:10.1017/CB09781139196185.

Eric Steegmans, Pieter Bekaert, Frank Devos, Geert Delanote, Nele
Smeets, Marko van Dooren, and Jeroen Boydens. Black & white
testing: Bridging black box testing and white box testing. pages 1-
12. Sterck, P, 2004. URL: https://lirias.kuleuven.be/retrieve/
6947.

Jan Tretmans. Testing concurrent systems: A formal approach. In
Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR ’99: 10th In-
ternational Conference on Concurrency Theory, volume 1664 of Lec-
ture Notes in Computer Science, pages 46—65. Springer, 1999. doi:
10.1007/3-540-48320-9_6.

Jeffrey M. Voas and Keith W. Miller. Software testability: The new ver-
ification. IEEE Software, 12(3):17-28, 1995. doi:10.1109/52.382180.

Thuy Duong Vu. Thread algebra for noninterference. RAIRO -
Theoretical Informatics and Applications, 43(2):249-268, 2009. doi:
10.1051/ita:2008026.

John Watkins. Agile Testing: How to Succeed in an Extreme Testing
Environment. Cambridge University Press, 2009.

Yi Wei, Bertrand Meyer, and Manuel Oriol. Is branch coverage a good
measure of testing effectiveness? In Bertrand Meyer and Martin Nor-
dio, editors, International Summer Schools on Empirical Software En-
gineering and Verification, LASER 2008-2010, Revised Tutorial Lec-

http://www.jstor.org/stable/455415
http://www.jstor.org/stable/455415
https://doi.org/10.1145/2025113.2025155
https://doi.org/10.1017/CBO9781139196185
https://lirias.kuleuven.be/retrieve/6947
https://lirias.kuleuven.be/retrieve/6947
https://doi.org/10.1007/3-540-48320-9_6
https://doi.org/10.1007/3-540-48320-9_6
https://doi.org/10.1109/52.382180
https://doi.org/10.1051/ita:2008026
https://doi.org/10.1051/ita:2008026

86

Jan A. Bergstra

tures, volume 7007 of Lecture Notes in Computer Science, pages 194—
212. Springer, 2010. doi:10.1007/978-3-642-25231-0_5.

Elaine J. Weyuker. On testing non-testable programs. The Computer
Journal, 25(4):465-470, 1982. doi:10.1093/comjnl/25.4.465.

Elaine J. Weyuker. Evaluating software complexity measures. IEEE
Transactions on Software Engineering, 14(9):1357-1365, 1988. doi:
10.1109/32.6178.

Elaine J. Weyuker and Thomas J. Ostrand. Theories of program testing
and the application of revealing subdomains. IEEFE Transactions on
Software Engineering, 6(3):236-246, 1980. doi:10.1109/TSE.1980.
234485.

Linmin Yang, Zhe Dang, and Thomas R. Fischer. Information gain of
black-box testing. Formal Aspects of Computing, 23(4):513-539, 2011.
d0i:10.1007/s00165-011-0175-6.

Peng Yang, Zixi Liu, Jin Xu, Yong Huang, and Ya Pan. An em-
pirical study on the ability relationships between programming and
testing. IFEE Access, 8:161438-161448, 2020. doi:10.1109/ACCESS.
2020.3018718.

Abubakar Zakari, Sai Peck Lee, and Chun Yong Chong. Simultaneous
localization of software faults based on complex network theory. IEFEE
Access, 6:23990-24002, 2018. doi:10.1109/ACCESS.2018.2829541.

Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning
testing: Survey, landscapes and horizons. IEEE Transactions on Soft-
ware Engineering, 48(2):1-36, 2022. doi:10.1109/TSE.2019.2962027.

(© Scientific Annals of Computer Science 2022

https://doi.org/10.1007/978-3-642-25231-0_5
https://doi.org/10.1093/comjnl/25.4.465
https://doi.org/10.1109/32.6178
https://doi.org/10.1109/32.6178
https://doi.org/10.1109/TSE.1980.234485
https://doi.org/10.1109/TSE.1980.234485
https://doi.org/10.1007/s00165-011-0175-6
https://doi.org/10.1109/ACCESS.2020.3018718
https://doi.org/10.1109/ACCESS.2020.3018718
https://doi.org/10.1109/ACCESS.2018.2829541
https://doi.org/10.1109/TSE.2019.2962027

	Introduction
	Motivating ``testing4inSeqTh''
	Taking into Account the Diverse Literature on Testing
	The Point of Departure, and How to Proceed
	A Conclusion Turned into an Assumption
	Other Chapters of Instruction Sequence Theory

	Terminology for Ambiguous Concepts
	Refinements of Notions of Ambiguity
	Examples from Programming and Program Testing
	Residual Informality
	Problematic Concept/Term's
	Examples of Concept/Term Qualifications

	Subjective Aspects of Programming and Testing: A Rudimentary Agent Model
	Testing, Validation, Verification, Informal Verification, Formal Verification
	From Claiming a Simultaneous Evolution of Testing to Claiming Concurrent Evolutions of Testing

	Security Testing
	Security Testing in the Absence of a Positive Notion of Security
	Security testing4inSeqTh
	Working With Simple Security Models
	Lampson Confinement
	Bell LaPadula Security Model for Confidentiality
	Biba Security Model for Integrity
	Non-interference
	Recent Models

	Tensions and Choices for testing4inSeqTh
	Program Notation Diversity
	Model to Reality Gap (for Software Testing)
	Industry to (Academic) Research Gap
	Theory to Theory Gap
	Testing Scope Spectrum
	Testing Objectives Spectrum
	Oracle Problem
	History and State of the Art

	Bug: An Intentionally Ambiguous Concept
	Bugs and Bug Life-cycles

	Testing Instruction Sequences: Terminology and Definitions
	Test Case and Test Sample: First Definitions
	A Programmer Driven Software Process
	Black-box Testing Versus White-box Testing (I)
	Black-box Testing Versus White-box Testing (II)
	Test Runs of PGLA Instruction Sequences
	Test Case Versus Test Sample
	Completeness of Black-box Testing for Single PassInstruction Sequences

	Auxiliary Data, Input and Output
	Taking Auxiliary Services into Account
	Dealing with Inputs and Outputs
	Combining Inputs, Outputs and Auxiliaries
	Taking Multi-threading into Account
	Revisiting General Program Testing Theory
	Incorporating General Testing Theory in testing4inSeqTh

	Concluding Remarks
	Conditions on Test Batteries.
	Instruction Coverage and Branch Coverage
	Formal Program Testing
	Further Theories of Testing
	The Relevance of Testing
	Restricting the Scope of Program Testing
	Risk Based Testing
	Fuzzing
	Program Testing in the Context of Machine Learning
	On Terminology for Testing Machine LearningInstruction Sequences
	Partisan Ambiguity in Arithmetic: A Case Study from Outside Informatics
	Conclusions

