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Maximizing the Number of Visible Labels

on a Rotating Map

Ali Gholami Rudi1

Abstract

For a map that can be rotated, we consider the following problem.
There are a number of feature points on the map, each having a
geometric object as a label. The goal is to find the largest subset of
these labels such that when the map is rotated and the labels remain
vertical, no two labels in the subset intersect. We show that, even if the
labels are vertical bars of zero width, this problem remains NP-hard,
and present a polynomial approximation scheme for solving it. We
also introduce a new variant of the problem for vertical labels of zero
width, in which any label that does not appear in the output must
be coalesced with a label that does. Coalescing a subset of the labels
means to choose a representative among them and set its label height
to the sum of the individual label heights.

Keywords: Computational geometry, geometric independent set, map
labelling, rotating maps, polynomial-time approximation scheme.

1 Introduction

Map labelling is a classical optimization problem in cartography and graph
drawing [9], whose goal is to place as many non-intersecting labels on a map
as possible. For static maps, the problem of placing labels on a map can be
stated as an instance of the geometric independent set problem: given a set
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of geometric objects, the goal is to find its largest non-intersecting subset.
In the weighted version, each object also has a weight and the goal is to find
a non-intersecting subset of maximum possible weight.

This geometric problem can be described using intersection graphs
by mapping each object to a vertex and adding an edge between vertices
corresponding to intersecting objects. This converts the geometric problem
to the classical maximum independent set for graphs, which is NP-hard
and difficult to approximate even within a factor of n1−ε, where n is the
number of vertices and ε is any non-zero positive constant [15]. Although
the geometric version remains NP-hard even for unit disks [10], it is easier to
approximate, and several polynomial-time approximation schemes (PTAS)
have been presented for this problem [14, 1, 8, 5, 6]. Note that a PTAS finds
a (1 − ε)-approximate solution in time O(nf(ε)), for any ε > 0 and some
function f independent of n.

Maps may be dynamic, and allow zooming, panning, or rotation, as
recent technology has made prevalent. Most work on labelling dynamic
maps consider zooming and panning operations [2, 3], but only few results
have been published for labelling rotating maps. Gemsa et al. [12] were
the first to study this problem. They assumed the model presented by
Been et al. [2] for zoomable maps, to define the consistency of a rotating
map. For the kR-model, in which each label may disappear at most k times
during rotation, they showed that labelling rotating maps is NP-hard, even
for unit-height labels, when the goal is to maximise the total duration in
which labels are visible without intersecting other labels. For unit-height
labels, they also presented a 1/4-approximation algorithm and a PTAS, both
under the assumption that the number of anchor points contained in any
rectangle is bounded by a constant multiplied by its area, each label may
intersect a constant number of other labels, and the aspect ratio of the
labels is bounded. Note that the first two assumptions may not hold in
real world maps. Subsequently, they extended their results by presenting
heuristic algorithms, and an integer linear programming (ILP)-based solution
for labelling rotating maps under the same assumptions [13]. They also
experimentally evaluated these algorithms. The size of their ILP model of
the problem was improved by Cano et al. [4].

Yokosuka and Imai [18] solved the problem of maximising the size of
labels for rotating maps. Although this problem is NP-hard for static maps,
they presented an exact O(n log n)-time algorithm for the case where anchor
points can be inside the labels, and also for the case when labels are of unit
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height and points can be on the boundary of labels. Gemsa et al. [11] also
studied a trajectory-based labelling problem, when the trajectory of the
viewport of the map is specified as an input.

In this paper, we also study the problem of labelling rotating maps. The
geometric statement of our problem is as follows. The input is a set of points
in the plane. To each of these points a vertical segment is assigned. The
goal is to place the maximum possible number of these segments such that:
i) each segment contains its corresponding point (the point is the anchor
of the segment), ii) when the plane is rotated around a fixed centre point,
each segment is rotated in the reverse direction around its anchor point
to remain vertical, iii) during the rotation of the plane, no two segments
intersect. Note that our model is different from the one assumed by Gemsa
et al. [12], in which labels may disappear and reappear again.

Our contributions are as follows.

• We prove that this problem is NP-hard and present a PTAS for this
problem; our PTAS is based on the one presented by Chan [5] for
geometric maximum independent set.

• We extend our results to the general case, where the labels can be
arbitrary objects. We make no assumptions about the distribution of
the labels: a label may intersect any number of other labels, and the
number of feature points in any rectangle may not be proportional to
its area.

• We also discuss two new variants of the problem, in which labels that
do not appear in the output must be coalesced with labels that do.
We prove them to be NP-hard and model their solution as an integer
linear programme.

This paper is organised as follows. We first prove that our problem is NP-
hard in Section 2. Then, in Section 3, we present a PTAS for this problem,
and then extend it to arbitrary labels. In Section 4 we discuss new variants
of the problem, in which labels that do not appear in the output must be
coalesced with labels that do. Finally, we conclude this paper in Section 5.

2 Notation and Preliminary Results

Let P = {p1, p2, . . . , pn} be a set of points, and let `q be the length of the
vertical segment corresponding to point q. A labelling φ for P assigns a
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vertical segment to some of the points in P . If a segment is assigned to
point pi in labelling φ, we say that pi is included in φ, or equivalently, pi ∈ φ.
The notation φ(pi) denotes the segment assigned to pi, and |φ| indicates the
size of φ, that is, the number of points in P to which φ assigns segments.
Note that the length of the segment assigned to pi is `pi .

If segment s is assigned to pi in φ, then pi must lie on s. The point of s
that is identified with pi is the anchor point of s; alternatively, we say that s
is anchored at pi. When the plane is rotated, s is rotated in the reverse
direction around pi to remain vertical. In the 1-position (1P) model, the
anchor point of a segment must be its bottom end point. In the 2-position
(2P) model, either the top or the bottom end points of a segment can be
its anchor point. In the fixed-position (FP) model, the anchor point of
each segment is fixed (but different segments may be anchored at different
positions). In the slider model, any point on the segment can be its anchor
point. Similar models have been introduced for labelling (static) points with
axis-aligned rectangles, both in the unweighted and weighted cases [17, 7].

A labelling is proper if its assigned segments do not intersect during the
rotation of the plane. In the Maximum Rotating Independent Set (MRIS)
problem for vertical segments, the goal is to find the largest proper labelling.
Instead of rotating the plane and keeping visible segments vertical, we can
equivalently fix the plane and rotate all visible labels in the reverse direction.
This is what we do in the rest of this paper.

We now show that MRIS for vertical segments is NP-hard in the 1P
model by a reduction from the Geometric Maximum Independent Set (GMIS)
problem for unit disks, which is NP-hard [10].

Theorem 1 MRIS for a set of segments in 1P model is NP-hard.

Proof: We reduce any instance of GMIS for unit disks to an instance of
MRIS for segments. Let D be a set of n unit disks on the plane, and let P
be the set of the centres of these disks. Also, let `pi = 2 for 1 ≤ i ≤ n.

We first show that from every non-intersecting subset of disks in D
we can obtain a proper labelling of P with the same size. Let D′ be a
non-intersecting subset of D, and let P ′ be their centres. Since the disks
in D′ are non-intersecting, the distance between any pair of points in P ′

is at least 2. Let φ be the labelling of size |D′| that assigns a segment of
length `pi , anchored at its bottom end point, to each point pi of P ′. These
segments cannot intersect during rotation: the segments are always parallel,
and since the distance of their anchors is at least 2, they do not intersect;
this is demonstrated in Figure 1. This implies that φ is proper.
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pi

p j

Figure 1: Two non-intersecting disks in Theorem 1

For the other direction, let φ be a proper labelling of P . Let D′ be
the set of disks, whose centres are in φ. Since φ is a proper labelling in 1P
model, the distance between any pair of points in P ′ is at least two. This
implies that the disks corresponding to P ′ are non-intersecting. 2

Next, we show that labelling in the 2P model is as difficult as labelling
in the 1P model.

Lemma 1 Let φ be a proper labelling of a set of points P in the 2P model,
and let φ′ be the labelling obtained from φ by changing the labels present in φ
to be anchored at their bottom end points. Then, φ′ is a proper labelling in
the 1P model.

Proof: If φ′ is not proper, there exists at least a pair of points pi
and pj such that φ′(pi) and φ′(pj) intersect during rotation. Without loss
of generality, suppose that `pi ≥ `pj . Therefore, the distance between pi
and pj is at most `pi , implying that, at some point during rotation φ(pi)
intersects pj (and thus φ(pj)), contradicting the assumption that φ is a
proper labelling. 2

Theorem 2 MRIS in the 2P model is as difficult as MRIS in the 1P model,
and we can obtain a solution to one from that of the other.

Proof: For a given set of points, let φ and φ′ be the solutions to MRIS
in the 1P and 2P models, respectively. Clearly, φ′ is also a proper labelling
in the 2P model. Therefore, we have |φ| ≥ |φ′|. On the other hand, based
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on Lemma 1 we can obtain a proper labelling of the same size in the 1P
model from φ. This implies that |φ′| ≥ |φ|. Therefore, we have φ = φ′, and
the solutions we obtain for one model from the solution of the other, are
optimal. 2

For the slider model, we now show that there is an optimal labelling, in
which all labels are anchored at their midpoint.

Lemma 2 Let φ be a proper labelling of a set of points in the slider model,
and let φ′ be the labelling obtained by changing all segments assigned in φ to
be anchored at their midpoint. Then, the resulting labelling is also proper in
the slider model.

Proof: If φ′ is not a proper labelling, there exist points p and q such that
φ′(p) and φ′(q) intersect during rotation, which implies that the distance
between p and q is at most (`p+ `q)/2, where `p and `q are the lengths of the
segments assigned to p and q, respectively. Let φ(p) = p′p′′ and φ(q) = q′q′′,
in which p′ and q′ are the top end points of these segments. Obviously,
|p′p|+ |pp′′| = `p and |q′q|+ |qq′′| = `q. During the rotation, when q′ is on
segment pq, we have

|qq′|+ |pp′′| < |pq|.

Otherwise, the segments would intersect. Similarly, when q′′ is on pq, we
have

|qq′′|+ |pp′| < |pq|.

This, however, implies that

`q + `p = |qq′|+ |qq′′|+ |pp′|+ |pp′′| < 2 · |pq|.

This yields

|pq| > (`p + `q)/2;

a contradiction. Therefore, φ′ is also a proper labelling. 2

In the next section, we study the MRIS problem for segments in the 1P
model, but by Lemma 1 our results also apply to the 2P model. Note that
in the 1P model, labels centred at p and q remain disjoint during rotation if
and only if disks Dp and Dq are disjoint.
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3 A PTAS for MRIS

For point p ∈ P , let Dp denote the disk centred at p with radius `p. In a
proper labelling φ in the 1P model, if points p and q are both present in φ,
their corresponding disks, Dp and Dq, may intersect, but neither disk may
contain the centre of the other. This is what makes MRIS for segments in
the 1P model different from GMIS, in which the objects in the output must
be disjoint. In this section, we first review some of the PTAS presented for
GMIS, and adapt one of them for our problem.

Note that transforming an instance of MRIS to GMIS, based on the
idea used in Theorem 1, does not work since the length of the segments (the
radii of the disks) are not equal. To see this, consider two disks Dp and Dq of
radius 2 and 8, respectively, in an instance of MRIS. To obtain an equivalent
instance for GMIS, we replace each disk with a disk of half its radius, as in
Theorem 1. Therefore, we have two disks D′p and D′q, corresponding to Dp

and Dq, of radius 1 and 4, respectively. D′p and D′q may be a solution in the
GMIS instance, but their corresponding disks may not be a solution in the
MRIS instance (D′p and D′q may be disjoint but Dq may contain the centre
of Dp); this is demonstrated in Figure 2.

p

q

D p

Dq

D′p

D′q

Figure 2: Disks Dp and Dq are disjoint but D′p and D′q are not centre-disjoint

For GMIS, Hochbaum and Maass [14] presented a PTAS for n unit
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disks or squares on the plane in nO(1/ε2) time. Agarwal et al. [1] improved
this algorithm for unit-height objects using dynamic programming with time
complexity nO(1/εd−1), in which d is the number of dimensions. Erlebach et
al. [8] extended Hochbaum and Maass’ algorithm using a multi-level grid to
handle arbitrarily-sized but fat objects (informally, objects with bounded
aspect ratio). Chan [5] presented a similar algorithm for fat objects using
a quadtree instead of multi-level grids, improving the time complexity to
nO(1/εd−1). In the same paper, Chan [5] also presented a divide-and-conquer
algorithm based on the geometric separator theorem [16], that runs in time

nO(1/εd) for unweighted and fat objects in the plane, improving the space
complexity of the previous algorithm. More recently, Chan and Har-Peled [6]

presented a PTAS with time complexity nO(1/εd) based on local search. They
also presented a constant-factor approximation algorithm based on linear
programming.

In the following section, we adapt Chan’s [5] shifted quadtree algorithm
for solving MRIS for segments in the 1P model. The main reason for
preferring this algorithm to other PTAS for GMIS is its lower time complexity.
The algorithm presented by Hochbaum and Maass [14] is simpler but cannot
handle arbitrarily-sized segments in MRIS. To make it mostly self-contained,
we repeat the necessary definitions and proofs of Chan [5], trying to simplify
them where possible.

3.1 The Algorithm

For simplicity, we first map (using scaling and translation) all disks D =
{D1, D2, . . . , Dn} to fit inside a unit square with its lower left corner at the
origin, and store them in a quadtree. Let ri be the radius of disk Di after
this mapping. A quadtree cell at depth d has side length 2−d. Two disks are
centre-disjoint if neither contains the centre of the other. A disk of radius `
is k-aligned if it is inside a quadtree cell of size at most k`.

The algorithm presented by Chan [5], which uses the shifting-quadtree
technique, assumes fat input objects. Also, the objects in the output of
GMIS must be disjoint. In MRIS, input objects are rotating segments, which
are not fat, but the disks that results from their rotation are. However, the
objects in the output of MRIS are centre-disjoint, but may not be disjoint.
Therefore, the results of Chan [5] do not apply directly to MRIS. We modify
Chan’s algorithm to handle centre-disjoint objects with the aid of Lemmas 3
and 4.
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Lemma 3 Let p be a point on the plane. Any set S of centre-disjoint disks
that contain p is of size at most 6.

Proof: Consider the centres of the disks in S ordered radially around p.
We show that for any two consecutive disks in this order with centres a and b
(see Figure 3), we have ∠apb ≥ π

3 . To do so, we show that in triangle pab,
ab is the longest side. Since p is inside and b is outside the disk centred at a,
we have |ab| > |ap|. Using a similar argument for p and the disk centred
at b, we have |ab| > |bp|. Therefore, ab is the longest side of triangle pab. 2

p

a

b

Figure 3: Centre-disjoint disks centred at a and b, containing point p
(Lemma 3)

Lemma 4 There is a constant c such that the size of any centre-disjoint set
of k-aligned disks intersecting the boundary of any quadtree cell is bounded
by ck.

Proof: Let C be a quadtree cell at depth d, and let B be a set of centre-
disjoint, k-aligned disks that intersect the boundary of C. If a k-aligned
disk intersects C, its radius is at least r := 2−d/k, based on the definition of
k-aligned objects. Therefore, since all disks in B are k-aligned, the radius
of any of them is at least r. Let C ′ and C ′′ be axis-aligned squares of side
lengths 2−d − r and 2−d + r, respectively, both centred at the centre of C.
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Place a set X of points on C, C ′, and C ′′ with distance r, as shown in
Figure 4. Since 2−d/r = k, we have |X| ≤ 12k. Any disk of radius at least r
that intersects the boundary of C contains at least one point from X. On
the other hand, at most six centre-disjoint disks can contain any point in X
due to Lemma 3. Therefore, the number of disks in B is at most 72k. 2

r

C

C′

C′′

Figure 4: Points placed around the boundary of the grid cell C in Lemma 4

Let C be a quadtree cell, let B be a set of centre-disjoint disks inter-
secting its boundary, and let I be a set of disks inside C. Let MRIS(C,B, I)
denote the maximum size of a centre-disjoint subset I ′ of I such that I ′ ∪B
is also centre-disjoint.

Lemma 5 Let D be a set of disks that are stored in a quadtree and that are
k-aligned. Let C be a quadtree cell, let B be a set of disks intersecting the
boundary of C, and let I be the set of disks completely in the interior of C.
The value of MRIS(C,B, I) can be computed in time nO(k) from the values
of MRIS with the four children of C passed as its first argument.

Proof: Let Ci for 1 ≤ i ≤ 4 denote the child cells of C in the quadtree. For
a set of disks X, let C in(X) and Con(X) denote the subset of X completely in
the interior of C and the subset intersecting the boundary of C, respectively.
Let B′ be the subset of I with those disks that intersect the boundary of
the children of C. For a centre-disjoint subset J of B′, whose disks are also
centre-disjoint from the disks of B, the value MRISJ(C,B, I), denoting the
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maximum size of a centre-disjoint subset of I \ B that includes J can be
computed as follows:

MRISJ(C,B, I) =
4∑
i=1

MRIS(Ci, C
on
i (B ∪ J), C in

i (I)) + |J |

To compute the value of MRIS(C,B, I), we find the maximum value of
MRISJ(C,B, I) for every centre-disjoint subset J of B′. Applying Lemma 4
to such subsets and the children of C, we can show that the size of any such
subset is O(k). Therefore, we can compare the value of MRISJ(C,B, I) for
every such subset (there are at most nO(k) of them) to find the value of
MRIS(C,B, I) in time nO(k). 2

Theorem 3 A (1−ε)-approximate solution to MRIS for segments in the 1P
model can be computed in time nO(1/ε), for any real constant ε with 0 < ε < 1.

Proof: Let P and D be defined as in the beginning of this section. Let
k = 1/ε. We store D in a compressed quadtree (a quadtree in which nodes
with only one non-empty child cell are merged, resulting in O(n) nodes),
and modify Lemma 5 to consider merged nodes. Let C be the root cell of
this quadtree. We compute the value of MRIS(C,B, I) for every possible
quadtree cell C, and inputs B and I in a bottom-up manner.

1. For each leaf cell C, MRIS(C,B, I) can be computed in O(1) time
slice. The set I has only one element.

2. For any other cell C, I is always C in(D), and B is always a subset of
Con(D) (there are nO(k) subsets); computing MRIS(C,B, I) for every
such input takes nO(k) time by Lemma 5.

Therefore, we can find the exact value of MRIS(C, ∅, D), by computing
MRIS for every node of the quadtree recursively in time nO(1/ε), assuming
that every disk is k-aligned.

Using the shifting technique of [5] (see also [14] and [8]), we can translate
disks k times, such that in one of these translations at least an (1−ε)-fraction
of the disks in an optimal solution to MRIS for D are k-aligned. Computing
MRIS(C, ∅, D) after each such translation, and taking the maximum of these
values, achieves the desired approximation factor. 2
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3.2 Placing Arbitrary Objects

The algorithm of Section 3.1 can be extended to work for a combination of
vertical and horizontal segments (or of any orientation), or even for arbitrary
objects in the FP model. For arbitrary objects of constant complexity, we
similarly denote with Di the disk that results by rotating the i-th object
around its anchor point. Unlike vertical segments in the 1P model, two
objects may intersect during rotation, even if the corresponding disks are
centre-disjoint. To see this, consider a horizontal segment of unit length,
anchored at its left endpoint at the origin, and a vertical segment of unit
length, anchored at its bottom endpoint at (1,−0.5); this is demonstrated
in Figure 5.

Figure 5: Horizontal and vertical bars that intersect during rotation

We modify the results of Section 3.1 as follows. Instead of finding a
centre-disjoint subset of a set of disks, our goal is to find a subset of disks
such that there exists a proper labelling that includes all of the objects that
correspond to them. Lemma 4 can therefore be modified as follows.

Lemma 6 There is a constant c such that for any quadtree cell C and any
set of objects O whose corresponding disks are k-aligned and intersect the
boundary of C, the size of any proper labelling of O is bounded by ck.

Proof: Let C be a quadtree cell at depth d, let B be a set of k-aligned
disks that intersect the boundary of C, and let O be the set of objects that
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correspond to the elements of B. Since the anchor of each object is inside
that object, only objects whose disks are centre-disjoint can appear in φ
(if an objects intersects the anchor of another object during rotation, their
disks certainly intersect). Lemma 4 shows that the size of any centre-disjoint
subset of B is bounded by ck for some constant c. Thus, the size of φ cannot
be any greater. This implies the required upper bound. 2

Using Lemma 6 in Lemma 5 and Theorem 3 implies the following
corollary, after slight modifications.

Corollary 1 For any real ε with 0 < ε < 1, a (1−ε)-approximate solution to
MRIS for arbitrary objects in the FP model can be computed in time nO(1/ε).

4 Labelling with Coalescing

In this section, we discuss a variant of the problem studied in the previous
section for the 1P model, in which some of the labels may be coalesced.
We give two motivating examples. Suppose that the label assigned to each
feature point is horizontal and contains some text. If a label conflicts with
another and cannot be visible during rotation, its text must be appended to
another, nearby label, increasing the latter’s length. This is demonstrated
in Figure 6. The two left-most labels intersect during rotation, as shown
in parts a and b; instead of rotating the plane counterclockwise, the labels
are equivalently rotated counterclockwise. In part c, one of these labels are
coalesced with the other. As another example, suppose that the height of
the bar assigned to a feature point shows the quantity of a variable at that
location. If a bar is not visible, it must be coalesced with another, preferably
nearby bar, the length of which must be increased to represent the sum of
their quantities.

In what follows, we consider two variants for this problem for the 1P
model based on restricting the labels that can be coalesced.

4.1 Unrestricted Coalescing

Let P = {p1, p2, . . . , pn} be a set of points, and let `pi be the length of the
vertical segment assigned to pi. In a labelling, each point is either visible
or is coalesced with another point. The effective length `q of the segment
assigned to a visible point q, is the sum of its length and the lengths of the
segments coalesced with it. If Ci denotes the set of points coalesced with pi,
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Figure 6: Merging labels of intersecting labels in a rotating map

we have
`pi = `pi +

∑
pj∈Ci

`pj .

Point pj may be coalesced with point pi only if the distance between pi
and pj is no greater than the effective length of the segment assigned to pi
after coalescing the points which are closer than pj . In other words, the
following condition is necessary for coalescing pj with pi:

d(pi, pj) ≤ `pi +
∑

pk∈Ci and d(pi,pk)<d(pi,pj)

`pk

In a proper labelling φ, none of the visible labels must intersect during
the rotation of the plane. In MRIS with coalescing (MRISC), the goal is
to find a proper labelling that minimises the maximum length of segments
assigned to the points.

The decision version of MRISC with parameter x for a set of points P
asks if there is a proper labelling, in which the maximum effective length of
the segments assigned to points in P is bounded by x. Theorem 4, shows that
MRISC is NP-hard in the 1P model, even if all input points are on a line.

Theorem 4 MRISC is NP-hard in the 1P model, even if all input points
are on a line.

Proof: We reduce the Partition problem (a special case of Subset
Sum) to MRISC. Given a multiset of numbers S, the goal in the Partition
problem is to decide whether it is possible to partition S into subsets S1
and S2 such that the sums of the elements of these subsets are equal.

Let the multiset S be an instance of Partition of size n and sum w.
Let s1, s2, . . . , sn be the elements of S. We create an instance of MRISC
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as follows. For each element si of S, we place a point pi the x-axis. Let p1
be the origin. For i ∈ {1, . . . , n − 1}, pi+1 is placed to the right of pi on
the x-axis such that the distance between pi and pi+1 is si + si+1. This
is demonstrated for a multiset with elements 2, 1, 3, and 1 in Figure 7.
Let `pi be si for 1 ≤ i ≤ n. We add points pn+1 and pn+2 at −10w and 10w,
respectively. Let `pn+1 = `pn+2 = 15w. We show that we can obtain a
solution to Partition from a solution to MRISC for P = {p1, p2, . . . , pn+2}
with x = 15.5w as upper bound for the maximum effective segment length.

p
1

p
2

p
3

p
4

Figure 7: The placement of points in Theorem 4 for an example multiset

Point pn+1 cannot be coalesced with pn+2 because the maximum effective
length of pn+2 is 16w (if all points except pn+1 are coalesced with pn+2),
whereas the distance between pn+1 and pn+2 is 20w. Similarly, pn+2 cannot be
coalesced with pn+1. Neither can any two points pi and pj with 1 ≤ i < j ≤ n
be coalesced with each other. This can be shown by contradiction, considering
the vertex in Ci closest to pi and showing that it cannot be coalesced with pi.

Therefore, pn+1 and pn+2 are always visible, and the only possible
coalescings are pj with pi for i ∈ {n + 1, n + 2} and j ∈ {1, 2, . . . , n}.
On the other hand, pj for j ∈ {1, 2, . . . , n} cannot be visible, since their
segments intersect with those of pn+1 and pn+2 during rotation. Consequently,
{p1, p2, . . . , pn} needs to be partitioned into subsets Cn+1 and Cn+2 such
that the maximum of `pn+1 +

∑
pj∈Cn+1

`pj and `pn+2 +
∑

pj∈Cn+2
`pj is 15.5w,

or equivalently, the sum of the lengths the elements of Cn+1 and of those in
Cn+2 is w/2. From this partition we can obtain the subsets S1 and S2 for
Partition. 2

We now present an ILP formulation for MRISC.
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Theorem 5 There is an integer linear programme for solving MRISC for a
set of n points, with O(n2) variables and O(n2) constraints.

Proof: Let P = {p1, . . . , pn} be the given set of points. For i ∈ {1, . . . , pn},
we introduce a binary variable xi that shows whether pi is visible, and for
i, j ∈ {p1, . . . , pn}, we introduce a binary variable yij that shows whether pi
is coalesced with pj :

∀i ∈ {1, 2, . . . , n} xi ∈ {0, 1}
∀i, j ∈ {1, 2, . . . , n} i 6= j yij ∈ {0, 1}

Since each point can be coalesced with at most one point, we also have the
following constraints:∑

1≤j≤n
yij ≤ 1, ∀i ∈ {1, 2, . . . , n}

A point that is coalesced with another point is not visible:

xi = 1−
∑

1≤j≤n
yij , ∀i ∈ {1, 2, . . . , n}

We introduce an auxiliary variable `pi to express the effective length of the
segment assigned to pi. We have:

`pi = xi`pi +
∑

1≤j≤n
yji`pj , ∀i ∈ {1, 2, . . . , n}

A point can be coalesced with another only if the distance between them is
bounded as follows:

yjid(pi, pj) ≤ `pi +
∑

d(pi,pk)<d(pi,pj)

yki`pk , ∀i, j ∈ {1, 2, . . . , n}

The objective is to minimize an auxiliary variable z that meets the following
constraints:

z ≥ `pi , ∀i ∈ {1, 2, . . . , n}

2
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4.2 Restricted Coalescing

Let P = {p1, p2, . . . , pn} be a set of points and let `pi be the length of the
vertical segment assigned to pi. Each point in P is either a vital point or an
optional point. Let PV and PO denote the sets of vital and optional points,
respectively; we have P = PV ∪ PO. In a labelling, every vital point must
be visible. Any optional point p may be visible or may be coalesced with
a pre-specified vital point vital(p). If pi is coalesced with pj , the length of
the segment assigned to pj increases by `pi . In a proper labelling φ, none of
the visible labels should intersect during the rotation of the plane. In MRIS
with restricted coalescing (MRISRC), the goal is to find a proper labelling
of maximum size.

The decision version of MRISRC asks if there is a proper labelling of
size k. We now show that MRISRC in the 1P model is NP-hard.

Theorem 6 MRISRC is NP-hard in the 1P model.

Proof: We reduce from GMIS for unit disks to MRISRC. Let D =
{d1, d2, . . . , dn} be a set of n unit disks on the plane. Define a set of points
P = {p0, p1, p2, . . . , pn} such that pi is the centre of di for 1 ≤ i ≤ n, and
p0 is a point of distance at least 2n from any disk in D. Also, let `pi = 2
for 0 ≤ i ≤ n, PV = {p0}, PO = {p1, p2, . . . , pn}, and vital(pi) = p0 for
0 ≤ i ≤ n. We show that any independent subset of D of size k corresponds
to a proper labelling of size k + 1 for P , and vice versa. This would imply
that there is an independent subset of D of size k if and only if there is a
proper labelling of P of size k + 1.

Consider any independent subset D′ of D of size k. Let P ′ be the union
of {p0} and the centres of the disks in D′. Since D′ is independent, the
distance between any pair of points in P ′ is at least 2, implying that the disks
that result from rotating the labels of two elements of P ′ are centre-disjoint.
Since n− k points are coalesced with p0, `p0 is 2(n− k+ 1). The distance of
p0 to any other point in P is at least 2n. Thus, the rotation disk of p0 is
disjoint from that of every other element of P ′. Therefore, a labelling of size
k + 1 containing P ′ is a proper labelling.

For the converse, let P ′ be the set of points in a proper labelling of P of
size k+ 1. Let D′ be the subset of D that consists of the disks whose centres
are in P ′. Since the rotation disks of the elements of P ′ are centre disjoint,
the distance between any pair of points in P ′ is at least two. Therefore, D′

is independent. 2
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Theorem 6 also shows that even if at most one optional point is assigned
to each vital point, the problem remains NP-hard. We now show that
MRISRC can be formulated as an ILP.

Theorem 7 There is an integer linear programme for solving MRISRC for
a set of n points, with O(n) variables and O(n2) constraints.

Proof: Let P = {p1, . . . , pn} be the given set of points. For i ∈ {1, . . . , n},
we introduce two binary variables: xi that shows the visibility of point pi,
and xi that shows its exclusion from the labelling. We have xi = 1− xi. For
any vital point pi, xi = 1.

xi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n}
xi = 1− xi, ∀i ∈ {1, 2, . . . , n}
xi = 1, ∀pi ∈ PV

The auxiliary variable `pi indicates the effective length of the segment
assigned to pi. The effective length of each segment can be described using
the coalescing relationships between the points as follows.

`pi = `pi , ∀pi ∈ PO

`pi = `pi +
∑

vital(pj)=pi

xj`pj , ∀pi ∈ PV

To prevent the segments assigned to visible points from intersecting, we have
the following constraint:

`pi > (1− xi − xj) · d(pi, pj), ∀i, j ∈ {1, 2, . . . , n}

where, d(pi, pj) is the Euclidean distance between points pi and pj .

The objective is to maximize ∑
1≤i≤n

xi,

subject to the above constraints.

2
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5 Concluding Remarks

We have studied the problem of labelling rotating maps. We have proved the
problem to be NP-hard even for vertical labels of zero width, and modified a
PTAS presented by Chan [5] for geometric maximum independent set to solve
this problem. We also have studied a variant of this problem for vertical,
zero-width labels, in which the labels that do not appear in the labelling
must be coalesced with a label that does, and we have have presented ILPs
for solving them.

Several problem remain for further investigation such as the following.

• Theorem 4 proves that MRISC is NP-hard. Is MRISC strongly NP-
hard?

• Are approximation and randomized algorithms possible for MRISC
and MRISRC?

• Other coalescing models are interesting to investigate. They may be
more suitable for specific applications.
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