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1. Introduction

The biharmonic equation, besides providing a benchmark problem for various analytical and
numerical methods, arises in many practical applications. For example, the bending behavior of a thin
elastic rectangular plate, as might be encountered in ship design and manufacture, or the equilibrium
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of an elastic rectangle, can be formulated in terms of the two-dimensional biharmonic equation, e.g.,
Timoshenko & Woinowsky-Krieger [1]. Also, Stokes flow of a viscous fluid in a rectangular cavity
under the influence of the motion of the walls, can be described in terms of the solution of this
equation, e.g., Pan and Acrivos (1967), Shankar [2], Srinivasan [3], Meleshko [4] or Shankar and
Deshpande [5]. A more recent application of the biharmonic equation has been in the area of
geometric and functional design, where it has been used as a mapping to produce efficient
mathematical descriptions of surfaces in physical space, e.g., Sevant et al. [6] and Bloor and
Wilson [7]. Interest in solutions of the biharmonic equation and their mathematical properties go back
over 130 years, and comprehensive reviews of this work have been given by Meleshko [8,9]. In his
review article, he concentrates upon the method of superposition in which the solution is described in
terms of a sum of separable solutions of the biharmonic equation. In another work, Meleshko [4]
obtained some results for Stokes flow in a rectangular cavity in which the solution is based upon the
sum of terms consisting of the product of exponential and sinusoidal functions, where the coefficients
in the series are determined from the requirement that the prescribed boundary conditions are
satisfied, and Meleshko [10] described the work which has been done in trying to solve this problem,
e.g., Meleshko and Gomilko [11]. Other physical phenomena like flows of electro-rheological fluids,
fluids with temperature dependent viscocity, filtration processes through a porous media, image
processing and thermorheological fluids give rise to mathematical models of hyperbolic, parabolic
and biharmonic equations with variable exponents of nonlinearity. More details can also be found in
references [12, 13]. Recently, the hyperbolic equations with nonlinearities of variable exponents type
had received a considerable amount of attention. We refer the reader to [14—17] and the references
therein. Only few works concerning coupled systems of wave equations in the variable-exponents
case have been found in the literature. For examples, Bouhoufani and Hamchi [18] obtained the
global existence of a weak solution and established decay rates of the solutions, in a bounded domain,
of a coupled system of nonlinear hyperbolic equations with variable-exponents. Messaoudi et al. [15]
studied a system of wave equations with nonstandard nonlinearities and proved a theorem of existence
and uniqueness of a weak solution, established a blow-up result for certain solutions with
positive-initial energy and gave some numerical applications for their theoretical results. In [16],
Messaoudi et al. considered the following system

ey — A+ ™ u, + fi(u,v) = 0in Q x (0,T),

Vi = Av + v, + fr(u,v) = 0in Q x (0,7),

with initial and Dirichlet-boundary conditions (here, f; and f, are the coupling terms introduced
in (1.3). The authors proved the existence of global solutions, obtained explicit decay rate estimates

under suitable assumptions on the variable exponents m, r and p and presented some numerical tests.
In this work, we consider the following initial-boundary-value problem

Uy + N2u+ "2 u, = fi (u,v) inQx(0,T),
Ve —Av+ v v = fHy)  inQx(0,T),

(1.1)

u=v=95=0 on dQ x (0,T), (1.2)
u(0) = up and u, (0) = u in Q,
v(0) = vg and v, (0) = v; in Q,

where ( is a smooth and bounded domain of R”, (n = 1,2, 3), the exponents m and r are continuous
functions on  satisfying some conditions to be specified later, % denotes the external normal
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derivatives of u on the boundary € and the coupling terms f; and f, are given as follows: for all
x € Qand (u,v) € R%,

0 0
fi(x,u,v) = EF (x,u,v) and f> (x,u,v) = EF (x,u,v), (1.3)

with ot
F(e,u,v) =alu+vP© + 26w 7, (1.4)

where a,b > 0 are two positive constants and p is a given continuous function on Q satisfying the
condition (H.2) (below).

2. Preliminaries

This section presents some material needed to prove the main result. Let g : Q — [1,00) be a
continuous function. We define the Lebesgue space with a variable exponent by

LIOQ) = { f: Q — Rmeasurable in Q : g,)(1f) < +oco, for some A > 0},

where

040(f) = f |17 dx.
Q
Lemma 2.1. [13,19]If1 < g~ < g(x) < g* < +co holds then, for any f € L1Y(Q),

min {IFIZ,5 LIS} < 0q00(f) < max (A1 AL )

where

q~ = essinf q(x) and q* = esssup q(x).
xeQ xeQ)

Lemma 2.2. (Embedding property [20]) Let q : Q —> [1, o) be a measurable function and k > 1 be
an integer. Suppose that r is a log-Holder continuous function on Q, such that, for all x € Q, we have

— (x) .
{kﬁq <q) <q° <4 <

- + oot n
k<q <q" <oo, ifro=1.

Then, the embedding W(])"r(')(Q) — L19(Q) is continuous and compact.

Throughout this paper, we denote by V the following space
2 du 2
V={ueH Q) : u= . = 0o0n 0Q} = Hy(Q).
n
So, V is a separable Hilbert space endowed with the inner product and norm, respectively,
w,2)y = f AwAzdx and |wlly = [|Awll,,
Q

where ||AW||k = ”AW”LA(Q) .
We assume the following hypotheses:
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(H.1) The exponents m and r are continuous on Q such that

2<m(x), %f n=1,2, @.1)
2<m <m(x)<my <6, if n=3
and 2 if 1,2
< =
inerwEnse Waoh =
forall x € ﬁ, where
my = inf m(x), my = sup m(x), r; = inf r(x) and r, = sup r(x).
xeQ eQ xX€Q xeQ
(H.2) The variable exponent p is a given continuous function on Q such that
3<p <px)<pt<+4oo, if n=12, 2.3)

p(x) =3, if n=3,
forall x € Q.

3. Existence of weak solution

In this section, we prove the local existence of the solutions of (1.2). For this purpose, we introduce
the definition of a weak solution for system (1.2). We multiply the first equation in (1.2) by ® € C7'(€2)
and the second equation by ¥ € C7’ (), integrate each result over Q, use Green’s formula and the
boundary conditions to obtain the following definition:

Definition 3.1. Let (ug,vg) € V X H(I) (Q), (u1,v1) € LH(Q) x L*(Q). Any pair of functions (u, v), such
that
ue L ([0,7);V),v € L= ([0,T); H)(Q)),
u, € L ([o, T); LZ(Q)) N L"O Q% (0,7)), (3.1)
v, € L™ ([0, T); LZ(Q)) NLO@Qx(0,T)),

is called a weak solution of (1.2) on [0,T), if

%f u,ddx + fQAuA(Ddx+fQ|u,|m()‘)‘2u,CDdx
= ffld)dx,
4 f vWdx + [, VvWWdx + [ vy, Pdx

foZ\PdX,
u(0) = uo, u;(0) = uy,v(0) = v, v,(0) = vy,

fora.e. t € (0,T) and all test functions ® € V and ¥ € H(I)(Q). Note that C§(Q) is dense in ‘V and
in Hy(Q) as well. In addition, the spaces V, H)(Q) c L™(Q) N L")(Q), under the conditions (H.1)
and (H.2).

AIMS Mathematics Volume 8, Issue 4, 7933-7966.



7937

In order to establish an existence result of a local weak solution for the system (1.2); we, first,
consider the following auxiliary problem:

Uy + N2u+ u, lu, "7 = f(x, 1) inQx(0,7),
Vi — Av + v, v 972 = g (x, 1) inQx(0,7), g
u:v:@:() onan(O,T), ()

on
u(0) = ug, u,(0) = uy,v(0) = v, v(0) =v; inQ,

for given f,g € L2(Qx (0,T)) and T > 0.
We have the following theorem of existence and uniqueness for Problem (S ).

Theorem 3.1. Let n = 1,2,3 and (uy,vg) € V X Hé(Q), (u1,vy) € Hé(Q) X L*(Q). Assume that
assumptions (H.1) and (H.2) hold. Then, the problem (S) admits a unique weak solution on [0, T).

Proof. Let {a) j}wl be an orthogonal basis of V and define, for all kK > 1, (u*,V*) a sequence in V; =

span{w, wy, ..., wi} C YV, given by
u(x,1) = T a;(Dw;(x) and V(1) = Z5_ b (Dw(x)
for all x € Q and t € (0, T) and solves the following approximate problem:

fQ uf,(x, Hw;idx + fQ AuF(x, ) Aw idx + fg |uf(x, t)|m(x)_2 uf(x, Hw;dx

= j;zfcx, t)w]’ S
k k x -2 (Sx)
fg Vi (x, Hw jdx + fQ VVi(x,)Vw;dx + fQ |vt (x, t)l v (x, Hw dx
= jg‘zg(xa t)(L)j,
forall j =1,2,...,k, with
Mk(()) = M](() = Zf;l (g, w;) wi, Mf(()) = M]f = Zi-;l (ur, w) w; 3.2)
Vk(o) = VIS = 25:1 Vo, wi) w;, v’,‘(O) = Vlf = Ele i, wi) w;,
such that ) ) 1
U, — uy and vy, — vy in H,(Q),
0 0 0 0 0( ) (3.3)

ut — uy and Vi — vy in LA(Q).

For any £k > 1, problem (S;) generates a system of k nonlinear ordinary differential equations.
The ODE standard existence theory assures the existence of a unique local solution (u*,v*) for (Sy)
on [0,7%), with 0 < T, < T. Next, we have to show that T, = 7,Vk > 1. Multiplying (S4); and

(S1) by a;(t) and b;.(t), respectively, and then summing each result over j = 1, ..., k, we obtain, for all

0<t< Ty,
+ f |ult‘(x, 1)
Q

= f f(x, Duk(x, Hdx (3.4)
Q

m(x) dx

%% [ fQ (Iuf Cx, P + (AubY(x, 1) dx
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and

%dit[ fg (WFGe O + 19V P(x, 1)) dx | + fg [vie

= f g(x, Vi (x, t)dox. (3.5)
Q

r(x) dx

The addition of (3.4) and (3.5), and then the integration of the result, over (0, 7), lead to

1
5 @B + 1 OIF, + IVl + IV O3]

f f |u (x, s)| ) |v (x, s)| o ))dxds

(3.6)
[||u"||2 + Nl + V513 + I9VI5]
!
+ f f [f (x, $)ug(x, 8) + g(x, sV (x, s)] dxds.
0 Ja
Using Young’s inequality and the convergence (3.3), then Eq (3.6) becomes, for some C > 0,
1
5 I + V@I + Il IR, + IV Ol
T k m(x) k r(x)
+ |u, (x, s)| + |vt (x, s)| dxds
0 Ja
T 2 NI
<Cte f (ko + o) s
0
T
+C, f f (IfCx, )P + g(x, 5)) dxds.
0 Jo
Using the fact that f, g € L? (Q x (0, T)) and choosing & = ﬁ, we infer
1 k k k k g k m(x) k r(x)
5 sup [||M ||2 +Iv; ||2 + |lu ”rv + |V ] + |u,(x, s)| + |vt (x, s)| dxds
(0.T%) 0 Q
< C, + Te sup ([luf1l3 + Iv13)
(0.T%)
<Cr, (3.7

where C7 > 0 is a constant depending on T only. Consequently, the solution (u*, v*) can be extended
to (0, T), for any k£ > 1. In addition, we have

() is bounded in L=((0, T), V),

(v*) is bounded in L¥((0, T), Hy (X)),

(u¥) is bounded in L=((0, T), L*(Q)) N L"O(Q X (0, T)),
(Vf) is bounded in L2((0, T), L*(Q)) N L'O(Q x (0, T)).

AIMS Mathematics Volume 8, Issue 4, 7933-7966.



7939

Therefore, we can extract two subsequences, denoted by () and (v/), respectively, such that, when
| — oo, we have

u' — u weakly *in L*((0,T), V),

vl = v weakly * in L¥((0, T), Hj(Q)),

ul — u; weakly * in L=((0, T), L*(Q2)) and weakly in L"(Q x (0, T)),
vl — v, weakly * in L=((0, T), L*(€)) and weakly in L'”(Q x (0, T)).

t

Under the assumptions (H.1) and (H.2) and using similar ideas and arguments as in [ [15], Theorem 3.2,
p.6], one can see that

. _m()
| ui (=2 uﬁ = u, "7y, weakly in L=0-1(Q x (0, T)),

. )
| VO yE =y, 972 v, weakly in L0 (Q x (0, T))

and establish that (u, v) satisfies the two differential equations in (S), on Q X (0, T').

To handle the initial conditions, we follow the same procedures as in [15], and we easily conclude
that (u,v) satisfies the initial conditions. For the uniqueness, Assume that (S) has two weak
solutions (u#;,v;) and (u,v,), in the sense of Definition 3.1. Let (®,¥Y) = (uy; — uy, vir — Var),
then (u, v) = (u; — up, vi — v,) satisfies the following identities, for all # € (0, T),

% [ fg (lu,|2 + (Au)z)dx]

+2 f (a2 w3, = o™ 1) 1, = 102l = 0 (3.8)
Q
and
d
- [ fg (vl + |Vv|2)dx]
+2 f (1 @72 w1, = Wl ™7 vy, ) (01, = va)dix = 0. (3.9)
Q

Integrating (3.8) and (3.9) over (0, 1), with # < T, we obtain

t
et 5 + el + 2 f f (oeaal™ 72 01, = luad " 1) (1, = wz)dxd = 0 (3.10)
0 JQ
and

!
[[vill5 + 19I5 + 2 f f (w1l @72 v, = a0 vyy) vy, = va)dxdr = 0. 3.11)
0 Q

But we have, forall x € Q,Y,Z € R and g(x) > 2,
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then, estimates (3.10) and (3.11) yield
el > + ull3, = v + IVv]I5 = 0.
Thus, u,(.,t) = v,(.,t) = 0 and u(.,t) = v(.,t) = 0, forall t+ € (0,7). Thanks to the boundary
conditions, we conclude u = v = 0 on Q X (0,7T), which proves the uniqueness of the solution.

Therefore, (u,v) is the unique local solution of (§), in the sense of Definition 3.1, having the
regularity (3.1).

Lemma 3.1. Lety € L™ ((0,T),V) and z € L™ ((0,T), H}(Q)). Then

[0, 2), H(,2) € LA(Q X (0, T)). (3.13)

Proof. From (1.3) and (1.4), we have, for all (u,v) € R?,

Ay = (pO) + 1) [a e+ PO (4 v) + b fu] *F |v|”‘*z”‘] (3.14)
and
By = (po) +1) [a i+ VPO ) + by v |u|W2M] . (3.15)

Lety € L*((0,7),V) and z € L¥ ((O, T),Hé(Q)). Applying Young’s inequality and the Sobolev
embedding, we obtain, for all # € (0, T) and some C;, C, > 0, the following results:

f A, dx <2 [az f y + 2177 dx + b f PO [P dx]
Q Q I

<Gy [ f by + 2 dx + f v +2" dx+ f PO dx + f |z|3<”<x>“>dx], (3.16)
Q Q Q Q

where Cy = 2 max {az, 3b2} > 0. By the embeddings, we have forn = 1,2,

3 3
1<§(p‘+1)§§(p++1)§2p+§3(p+—1)<oo,

since 3 < p~ < p(x) < p* < oco. Therefore, estimate (3.16) leads to

f i, 2 dx
Q
<C; [IIV(y + Z)||§P+ +|IV(y + Z)lli”i n ”Ayllg(p*—l) + ”Ay”;(p*—U]

3(pt 3(p—
e [ann;(” D v < oo, (3.17)

where C; = CyC.,. _
e For n = 3, we use the embedding H(Q) in L°(Q) to obtain (3.17), since p = 3 on Q.
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So, under the assumption (H.2), we have

flfl(y, 2)I* dx < oo,
Q

and similarly
f LA, 2 dx < oo,
Q
for all # € (0, T). Which completes the proof.

Corollary 3.1. There exists a unique (u,v) solution of the problem:

y + N2u+ "™ u, = fi(y,2), inQx(0,T),
Ve — AV + v 972y, = H(n,2), inQx(,T),

u=v=54=0 on 0Q x (0,T), (R)
u(0) = ug and u, (0) = u; in Q,
v(0) = vy and v; (0) = vy, in Q,

in the sense of Definition 3.1 and having the regularity 3.1.
Proof. A combination of Theorem 3.1 and Lemma 3.1 implies this corollary.
Now, consider the following Banach spaces
Ar = {w € L™((0.T), V)/w, € L™((0,T), LX(Q))},
equipped with the norm:

2 2 2
Iwlly, = sup[Iwll5, + sup[[will;
0,7) 0,7)

and
By = {w € L((0,T), Hy(Q))/w, € L((0,T), Q)

equipped with the norm:
2 2 2
Iwllg, = Sou})) IVWIl; + sup [[wll>

and define amap F : A7 X By :— Ar X By by F(y,z2) = (u,v).
Lemma 3.2. F maps D(0, d) into itself where
D(0,d) = {(w,w) € Ar X By such that ||(w, w)l|a,xp, < d}.

Proof. Let (y,z) be in D(0,d) and (u, v) be the corresponding solution of problem (R) (i.e., F(y,z) =
(u,v)). Taking (®,¥) = (u;, v;) in Definition 3.1 and integrating each identity over (0, t), we obtain, for
allr < T,

1 !
5 [l =l 3+ 1Al = iAol + f f (e, )" dxds
0 Q

:ffutfl(y,z)dxds (3.18)
0 Ja
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and

I ’ s
5 [l = a1 + 1915 = 11V voll3] + f f [viCx, )" dxds
0 Q

:ffvtfz(y,z)dxds. (3.19)
0 Ja

The addition of (3.18) and (3.19) lead to

1
5 [l + vl + 1Al + 1913

1
2 2 2 2
< > [l + 11113 + 1Auo15 + 19vol3]

2
f s fi(y, 2)dx
Q

I

2 2 2 2
sup ([l + [Iv3 + lull3, + 119v113)
0<t<T

!
<vy+2sup f( fv,fz(y,z)dx
o<r<T Jo Q

where y = [luy|[5 + [Iv113 + lluoll3, + [ Vvoll3. Under the assumption (2.3) and applying Young’s inequality
and the Sobolev embedding (Lemma 2.2), we obtain for all r € (0,7),

px)-1 p)+1
f u,fi(y, 2)dx a f lu ly + 2P dx + b f ]y 2 dx]
Q Q Q

b 2 2b
s(p++1)[8(“+ D[ 2 [y e 2 [ ppet g dx]
Q Q Q

—+

f vifa(y, 2)dx
Q

Jas.

for all # € (0, T'). Therefore,

—+

f u, f1(y, 2)dx ) dr, (3.20)
Q

<(p +1

2
€ 2 2pt 2 3(p(x)-1 3 1
= [§||u,||2+Cs(f [y + 2 +f|y+z|p +f|y| PO 4 [ g2
Q Q Q Q

2 2p~ 2p~ 2p* 2p*
< caellwlls + IAVE" + 925" + A" + 19215 |

3(p=1) 3(pt—1) 3(p+1) 3(pr+l)
+ [uAyuz” + AV 4 V2T V22 ] (3.21)

where &, ¢y, ¢, are positive constants. Likewise, we get

plx

S(p++1)[“f il + 2P dx b [ ol 1 oI dx]
Q Q

2 2p~ 2p~ 2p* 2p*
<o [3||Vt||2 AV +1IVZIL” + A" + 11Vl ]

f v fa(s D
Q

= - 3(p+D) 3(pt+D)
+cz[||Vz||§(P N /9 G B TP ] (3.22)

Combining (3.21) and (3.22), yields

!
sup f ( f s fi(y, 2)dx
0,7) Jo Q
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+ 2T, (10 DI s, + 10 DI s, )

3(p~-1) 3(pt-1) 37+ 3(pt+D)
+ T (100D + 105205 + 100N, + 1020 )- (3.23)

By substituting (3.23) into (3.20), we obtain, for some c3 > 0,

1 2 2
3 I, V4, x5, < Yo + €Tcs ||, Vs, x5,
2p~ 2p*
+ 273 (|00 DI s, + 10- DI 5,
3T+

- = 3 +D)
+Tes (||(y, sy + 100D 5" + 100N s, + 105D s, ) (3.24)

Choosing & such that €Tc; = }L and recalling that [|(y, 2)lls,x, < d, for some d > 1 (large enough),
inequality (3.24) implies

2 2p~ 2p*
1 )Gy s, < 40+ 8Tcs (1100 DI s, + 100 DI 5, )
3(p~=1) 3(p+-1) 3(p~+D) 3(pt+1)
+4Tes (10,905, + 105 D050 + 10 M + 10 M4, )
< 4’)/() + TC4d3(p+_]), Cyq > 0,

d*—4yp

W’ we find

So, if we take d such that d> >> 4y, and T < Ty =
4y + Tead™” ™V < d2,
Therefore,
(2t I, 5, < d°.
Thus, F maps D(0, d) to D(0, d).

Lemma 3.3. F : D(0,d) — D(0,d) is a contraction.

Proof. Let (y1,z1) and (y2,22) be in D(0,d) and set (uy,vi) = F(yi,z1) and (u2,v2) = F(y2,20).
Clearly, (U, V) = (u; — u, vy — v,) is a weak solution of the following system

Us+ AU + |1/llz|m(x)_2 Uiy — |1/52t|m(x)_2 Uy

= fibn,21) = fi(2, 22) in Qx(0,7),
Vi — AV + |Vlt|r(X)_2 Vir — |V2t|r(X)_2 Vo

= L, 21) = (02, 22) inQx(0,7),
U=V=0 ondQ x (0,7),
(U0),V(©0) = (0),V,(0) =(0,0) inQ,

in the sense of Definition 3.1. So, taking (®,¥) = (U,, V,), in this definition, using Green’s formula
together with the boundary conditions and then, integrating each result over (0, f), we obtain, for a.e.
t<T,

1 ' - m(x)—
5 (U + 1AU1E) + f f (101 a1 1972 =, oy |"72) U dxd s
0 Q
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Sff|f1(¥1,21)—fl()’2,Zz)||Ut|dXdS
0

Q

and

1 ' — rx)—
5 (VB +IVVI) + f f (Vi 107 = vy o, ) Vidixds
0 Q
!
< f f|f2 1> 21) = f2 02, 2| |Vild xds.
0 Q

Under the condition (H.2), using Holder’s inequality and inequality (3.12), these two estimates give,
forn=1,2,3,

!
WU + U3, < 4f WUALILf 1 21) = fi(v2, 22)llds (3.25)
0
and
!
IIVt||§+||VVII§S4f Vil f2 s 20) = fo (02, 22) [lods. (3.26)
0

The addition of (3.25) and (3.26) imply

!
UG + IV + IUI, + 11V VI < 4f U LI O 20) = fi(v2, 2)ll2d's
0
t
+4f WVill2llf2 315 21) = f2 (92, 22) |l2ds, (3.27)
0

for all r € (0, T). Now, we estimate the terms:

fivisz1) = fiz, 22l and || f> (01, 21) = fo (02, 22) 2.

Using appropriate algebraic inequalities (see [21]), we obtain for two constants C;, C, > 0 and for all
xeQandre 0, 7),

j; i02) = ibn 2P dx < I+ L+ I+ 1, (3.28)
where
L =C, f vt = y2lP (i PO+ (2 PP D)dx
o
+C Lb’l e 0 R P R A
L =C, fg 21 = 22 (1 PO+ |2y PP D)dx

2 2 -1 2 -1
+C f l21 = 2P (i P79 + [z PPO D),
Q
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2 -1 -1 -1
L=0C f Iz = 2Py P07 (2 P97 + [z )dx,
Q

=G [ =y (o
Q

By using Holder’s and Young’s inequalities and the Sobolev embedding (Lemma 2.2), we get the
following estimate for a typical term in /; and />,

L 2
3 3
f yi = yal? |y1|2(p(x)_l)de2( f Vi —yz|6dx) ( f |y1|3(""‘)‘”)
e o
i !
< Cllyr - y2”6 [(f 1 P l)dx) (f |y1|3(”‘1)dx)

< ClAGY =yl (5023 + e 1)
< CIAYIG (1A + Ay I )

< CIAY I (101, 20175 + 101 20135 ) - (3.29)

since

e 1 <3(p~—-1)<3(p*-1)<oo,whenn=1,2.
. 1S3(p‘—1):3(p+—1):6:n%,whenn:&

Likewise, we obtain
f 21 = 2o P77V dx < CIVZIR (02 217 5 + 102, 21505 (3.30)
Q

Since (v1,21), (2, 22) € D(0,d) and d > 1, estimates (3.29) and (3.30) lead to
I < C|AY|? &~V and I, < C||VZ|? &PV,
Hence,
I + I, < Cd*" D (|AYIG +1VZ53). (3.31)

Similarly, a typical term in /3 can be handled as follows

1 1
f|Z1—Zz| Iy PO |z PO dx

< 2(f lz1 — 22l a'x) (f [v1 |2<P(x) 1)|Z |2<p(x) 1))
2
2 om0 ) 30011\
< Cllzi = zllg y1l? dx| + lz1]2 dx
Q Q

< CINGr — o (11 12D 4 )
< ClIV(z zZ>||2(||y1||g(p+_l) bl 2+ Wl 2+ el
2 (-1 (-1 (r*-1) (-1
< ClIV(z = 23 (1A 1 ™" + Ayl =" + Izl ™ + V21l )
2 (p*-1 (D
< 2CIVZIG (111, 20U ) + 101, 20U 50 )

since
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o 1< %(p‘—l)s %(p+—1)<oo,whenn: 1,2.
e 1<3(p-D=2(p"-1)=6=2, whenn=3.
Therefore,

I < Cd” Y |vzZ|3, (3.32)

since (y1,21), (y2,22) € D(0,d). Using the same arguments, a typical term in I, can be estimated as
follows:
Casel1: If n=1,2, we have 3 < p~ < p* < o. So,

2 1 -3
f yi = Yol [l |y 7907 dix
Q

3 1
} 3
< 2(f |)’1 - y2|3d)€) (f |Z2|3(l7(x)+1)|y1|3(p(x)—3))
Q Q
: :
< C||}’1 - y2||§ [(f |Z2|6([’(x)+l)dx) + (f |y1|6(p(x)—3)dx)
Q Q

2 2(pt+1 2(p~+1 2(p*t-3 2(p~-3
< ClAYIE (IV2l? Y + 1Vl + 1Ayl + Ay 57 )
< 4C|IAY|3 @D,

since (yla Zl)’ (.)/2’ ZZ) € D(Oa d) a@ d>1.
Case 2: If n = 3, then p = 3 on Q. Hence,

2 1 -3 2 4
f v = yal? |zl g PO dx = f v = yol |zal* dx
Q Q

} :
SC( f |y1—y2|6dx) ( f |zZ|6dx)
Q Q

< Clly; = yalllzalle
< ClIAYINI(2, 2215, s, -

So, forall € (0, T), we deduce that
L < C||AY|Rd>P™D, (3.33)
Finally, by substituting (3.31)—(3.33) in (3.28), the following can be obtained

f A2 = fiG, 2)F dx < Ca*7 0 (IAY 15 + 1VZ115), (3.34)
Q

for all # € (0, T). Similarly, we get

[ 10120 = £ 2f dr < D (1Y + 192E). (3.35)
Q

Now, we use (3.34) and (3.35) in (3.27) to obtain

!
1 gy < Csup [ (1AY(IE + V2 ds
0

0.1)
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< CdV VTNV D)3 s, -
Hence, if we take T small enough, we get for, 0 <y < 1,
G IR, s, < VI DI, s, -
Thus,
IKO1,21) = KO2, 223,08, < ¥ I01.20) = 02, 22|53, x5, -
This proves that F : D(0,d) — D(0,d) is a contraction.
Theorem 3.2. Let n = 1,2,3. Under the assumptions (H.1) and (H.2) and for any (up,vy) € V X

Hé (Q), (u,vy) € Hé (Q) x L*(Q) the problem (1.2) admits a unique weak solution (u,v), in the sense of
Definition 3.1, having the regularity (3.1), for T small enough.

Proof. The above Lemmas and the Banach-fixed-point theorem guarantee the existence of a
unique (u,v) € D(0,d), such that F(u,v) = (u,v), which is a local weak solution of (1.2).

Remark 3.1. From the definitions (1.3) and (1.4), one can easily see that, for all (u,v) € R?,
u fi(x,u,v) +vir(x,u,v) = (p(x) + )F(x,u,v). (3.36)

We, also, have the following results.

Lemma 3.1. [22] There exist Cy,C, > 0 such that, for all x € Q and (u,v) € R?, we have
Ci(julP™* " + POy < F(x,u,v) < CoufP™@* 4+ @, (3.37)

Corollary 3.2. Forall x € Qand (u,v) € R?, we have
Ci({w)+{) < fF(x, u,vydx < Co({ (W) + £ (v), (3.38)
Q

where

{(u) — f|u |I7(x)+1 dx and f(V) _ f |V |P(x)+1 dx.
Q Q

Now, we introduce the energy functional associated with our problem

1
E(t) = 5 (Il + vl + 1Al +[1Vv15) - f F (x,u,v)dx, (3.39)

Q

for all € [0, T'). A direct computation implies, for a.e. t € (0,7),

E @) =- f [, | dx — f v, dx < 0. (3.40)
Q Q
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4. Blow-up result

In this section, our goal is to prove that any solution of Problem (1.2) blows-up in some finite time

T+, if
max{m*,r"} < p~and 0 < E(0) < E,

where

E=(t-—L )y (d. (p~ + 1))7r

=|- - = 1-p~

1 2 ’E +1 Y1s Y1 « (D >
d. = (V20" *Da +2b)c? !

and c. is a positive constant, which comes from the Sobolev embedding.

Remark 4.1. The following well-known inequalities are needed in the proof of the lemmas.

(1) For A,B>0andd > 1, we have
(A+ B)? <2471 (Ad + B").

(2) Forz>0, 0< 6 <1anda >0, we have
s 1
<z+1<|1+—-|(z+a).
a

(3) For X, Y >0, 6 >0and % + é = 1, Young’s inequality gives

o 0P
XY < —X'+ —VY~
A B
(4) The embedding Lemma 2.2, Holder’s and Young’s inequalities and (4.3) imply that

o, < Ve, [+ 19E)]

and
2 2 2
levll ., < <2 (I1Aull3 + IVV3).

2
Lemma 4.1. For any solution (u,v) of the system (1.2), with initial energy

E0) < E,

and

1/2 1
71 < (lAugll3 + IVwoll3) " <

T V2,

there exists 'y, > vy, such that

1/2
v2 < (IAull +I99I3) , V£ € [0,T).

4.1)

4.2)

4.3)

4.4)

4.5)

(4.6)

4.7)

(4.8)

4.9)

(4.10)
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Proof. Lety = (JlAul} + [[Vv{2)”, then using (3.39), we have

E(t)zlyz—fF(x,u,v)dx. 4.11)
2 0

The use of Lemma 2.1, (4.6) and (4.7) leads to

fF(x, u,v)dx = af|”+v|p(x>+ldx+2bf "2 iy
Q o .

p+1 pt+l
< amax {Ilu +ll L e+ V||,,(_)+.}

4

+ 2b max {lluvllp; ]| 2, } (4.12)

pl)+1 2 | p()+1
2 2

< amax {( \/EC*y)P'H ’ ( \/EC*)/)p +1 }
+2bmax {(e.y)” L ().
Combining (4.11) and (4.12), we obtain

E@) 2%72 — amax {( \/Ec*y)pnrl , ( \/Ec*y)p++l}

= 2bmax {(c.y)” L ()" ).

(4.13)

Fory in |0

1 .
> Voo ], one can easily check that

Ay <2ty < 1.

Consequently, we have

(\/zc*y)l’ﬁrl > (\/Ec*y)l’*ﬂ and (c,y)” "' > ( \/EC*y)pul ‘

Thus, (4.13) reduces to
1 _ _
E() > §y2 - ( V2 +Dg + Zb) el Hlyp

If we set |
h (y) = E,),2 _ kyp ”’where k = (\/2(P*+l)a + 2b) Cf_+1,

then

E(t)>h(y), forally € [0, ] . 4.14)

1
Ve,
It is clear that 4 is strictly increasing on [0, 7y;) and strictly decreasing on [y, +0). Since E (0) <
E, and E; = h(y,), then, we can find y, > vy, such that i (y,) = E (0). But,

1/2
2 2
a0 = (IlAuoll3 + [IVol3)
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therefore, by (4.14), we get
h(y2) = E(0) 2 h(yo).
1

This implies that yy > y,. Hence, y, € (yl , E] . To prove (4.10), we assume that there is a ¢ty € [0,7)
such that
5 N\ 172
(AU, ) + IVVC 10)IB) T < 7.

. /2, .
Since (llAull% + ||Vv||§) is continuous and vy, > v, t, can be selected so that

1/2
[IAuC, )3 + I19vC, )IB] > 1.

Using (4.14) and the fact that & is decreasing on [yl, #], we obtain

) N 1/2
E () > h((1auC, 0l + 199, w)1B) ) > 7 () = E0),
which contradicts the fact that £ (f) < E (0), for all # € [0.T'). Thus, (4.10) is established.
Lemma 4.2, Let H (t) = E; — E(t), forallt € [0, T). Then, we have

O<HO)<H@) < fF(x, u,v)dx, forallt € [0, T) (4.15)
Q
and
f F(x,u,v)dx > d,y; " (4.16)
Q
Proof. Using (3.40), (4.8) and (4.11), we have
1
O<E{—-EQ0) =HO)<H@t)<E - E)/Z + fF(x,u,v)dx. “4.17)
Q
From the fact that i(y,) = 1y? — d.y] *' = E;, we have
1 _
Ey - 571 =—dy] !

then since y > y, > vy, we obtain
H () < —d*yf_H + LF()C, u,v)dx < LF()C, u,v)dx.
Thus, (4.15) is established. To establish (4.16), we use (4.15) to obtain
E(0) > %yz - fQF(x, u,v) dx,

which implies,
1
fF(x,u,v)dx > —y* — E(0).
Q 2
But £(0) = h(y,) and y > 7y», so

1 _
fF(x, u,v)dx 2 55 = h(y) = d.y; "
Q

AIMS Mathematics Volume 8, Issue 4, 7933-7966.



7951

Lemma 4.3. There exist C3,Cy4, Cs > 0 such that any solution of (1.2) satisfies

2+ IV < C5 (@) + £ o)), (4.18)
\fmwmdxsc4@an+§w»f~+@oo+§w»ﬁﬂ (4.19)
Q
and . )
fg W™ dx < Cs [(é W)+ W) + () +¢ (V))P‘“] , (4.20)

where {(u) and {(v) are defined in Corollary 3.2.

Proof. We define the following partition of Q
Q.={xeQ/ julx>1}and Q- ={xe Q/ |u(x, 1) < 1}.

The properties of p(.) and Holder’s inequality imply that, for some ¢; > 0,

(x)+1 (x)+1
{(u):f """ dx +f """ dx
. .
p+1 pr+l
Zf 7] dx +f |1 dx
+ Q_
p++1

_ _ p+1
> lul” "dx + ¢ (f ulP ! dx) )
Q. Q_

p +1

£ (u) > f lul’ "' dx and (@)lz f lulP ! dx. (4.21)
+ Q_

C1

Hence,

Use (4.21) to obtain, for some ¢, > 0.

el < @)+ €2 (¢ )
<L)+ W) + 6 () + ()i
= W+ LD|1+ e @@+ o).
Recalling (3.38) and (4.15), we deduce that
O<HO)SH@M)<C(C(w)+Z(v)). 4.22)

Therefore,
p— pt

" < (@) + L) |1+ 2 (H(0) /C) 71 | < e )+ ().

Similarly, we arrive at

M < e (@) +Z ).
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Therefore, (4.18) is established. To establish (4.19), we recall that p~ > max {m*, r"}, to conclude that

f u|™™ dx < f lul™ dx + f lul™ dx
Q Q, Q_
— % _ )”:_l
< c( ufP ! dx)’ ' +c(f ufP ! dx)’ :
Q. Q_

m* m-
< c(llullp_ﬂ + ||u||p_+1), ¢>0.

Using similar calculations as above, we obtain (4.19) and (4.20).

Lemmadd. LetG(H) = H' " () + ¢ fQ (uu, + vv,)dx,t > 0, where € > 0 to be fixed later. Then, there

exists p > 0, such that
G (1) 2 &p (H (@) + lludll3 + Ivill3 + £ () + £ ()

and hence,

G@)=>G(0)>0, fort >0,

where

- 4 - 4 - _
0<0'Smin{ p —mt+1 p—rt+1 p -1 }

(p~+D(m* =1) (p-+ D" =1) 2(p~+ 1)
Proof. Differentiate G and use (1.2) to have

G W=U0-HTOH @) +e(luls + Ivili)
+ gf (ufy (x,u,v) + v (x,u,v)) dx = & (|| Aull3 + [V]])
Q

- gf (Iu,lm(x)_2 uu + v, 2 vtv) dx.
Q

By the definition of H and E, we get

IAull; + 1193 = 2fF(x, u,v)dx = |lwll; = W3 +2E; =2H ().

Q

Combining (3.36), (4.25) and (4.26), we obtain
GO2U-a)HTOH (1) +2e (llmll% + ||Vz||§) +2eH (1)
—2eE +e(p - l)fF(x, u,v)dx
Q
¢ f (1l e "+ ] O .
Q
A combination of (4.16) and (4.27) leads to
G 0= -0)H T OH @)+ 26l + vl

volp 12008 ") ) [ Flnunax
Q

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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+2eH (1) — € f (Iue ot ™" + ] o 97" i, (4.29)
Q

-l
where p~ — 1 — 2(d*a§ +1) E| > 0, since y, > .

Now, the last two terms of (4.29) can be estimated by applying (4.5) with
X=ul, Y=u9" A=m), B =L asfollows:

m(x)—1°

6m(x)
f || |ut, "™ dx < f |u|™™ dx
o o m ) (430)

m(x)—1
+ f r(nzx) 6—m(x)/(m(x)—1) |l/lt|m(x) dx.
Q

1-m(x)

Let k be a positive constant to be selected later and take & = [7{7{ d (t)] "™ to obtain

m

lzl—m’ )

f |1 |u,|m(x)—l dx < f [7{ (t)]cr(m(x) D |u|m(x) dx
Q Q

mt -1 (4.31)

+

kH (1) f |, " dx.
Q

The properties of m(x) and H(r) give

H (0)
<& [7’{ (t)](r(m*—l) f [7_{ (O)](T(m(x)—l) |u|m(x) dx,
Q

o(m(x)-1)
f [H ()] | g = f [W(I)} [H ()] " g
Q Q

where ¢ = 1/[H (0)](’(m+_1). But [H (0)]”" ™D < ¢, forall x € Q, where ¢; > 0. So, for some
cs > 0, we get

f [H O™ 1" dx < ey [H ()]0 f ™ dx. (4.32)
Q Q
Combining (4.31) and (4.32) to obtain

]}l—m‘ .
flul " dx < & [H ()] —1)f|u|m(x) dx
Q m o

. (4.33)
m"—1. — m(x)
+ —kH 7 (1) f |us|™ dx.
m Q
Applying Similar calculations, we arrive at
/~€1_r— +_
f Ot vdx < S [H (0] f ' dx
o " X Q (4.34)
r-—1-~
+ ———kH (1) f v "™ dx.
r Q

Adding (4.33) and (4.34), we have
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kl m~
f(lul |ut|m(x)—1+|v| |Vz|r(X)_1)deC4 [H(I)]a(m l)flulm(x)dx
Q m-

Q
Cskl_r

[H (H]7C"D f W dx (435)
Q

+aH ™7 (1) (f lu, ™™ dx + f v, '@ dx) ,
Q Q

=y k} Using (3.40), we have

H' (1) = f ™ dx + f V"™ dx.
Q Q

kl m-
f (llxll |I/lt|m(x)_l + || |V,|r(x)_l) dx <C4m [7—[ (t)](r(m -1) f |u|m(x) dx
Q

Q
=l
" 05]:-_ [7{ (t)]a'(ﬁ—l) f |v|r(x) dx (436)
Q

+aH 7 (OH (1).

where @ = max{

Hence, (4.35) becomes

Using (3.38) and (4.15), we have

[H O™ <c@w+cep™
Using the last inequality and (4.19), it can be concluded that

wt
(mt 1)+ -2

[+ ()7 f "™ dx < ¢6 (£ (u) +¢ (V)) "

— m_
1)+ T

+c6 () +¢ (V)) S (4.37)

Applying 4.4) withz=Cl(w)+ L), a=HO), §=0c(m"—-1)+ =

"
p~+1

and then withd = oc(m* — 1) +

r= +1 , respectively, we get

(@ + 2o

1+ —7{(0)] (L) + £(v) + H(0))

<a(l(u)+Lv)+H®) (4.38)

and _
@) + )TV <o Q) + L) + HD) (4.39)

_ 1
where v = 1 + o)

A combination of (4.37)—(4.39) implies that, for some ¢; > 0,
o(m*-1) m(x
[H ()] f " dx < ¢ ({(u) + L) + H (@) (4.40)
o)
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Similar calculations give, for some cg > 0,

(1o fg P dx < e () + E) + H(@D)

Using (4.35), (4.40) and (4.41), we obtain, for cg, cj9 > 0,

-

_ _ k
f (1 "0+ o O dx <
Q

co ({(u) + {(v) + H(@))

m-

71-r

+

— 1 (L) + {0) + H()

rt —1

+

kH T H' (0).
Inserting (4.42) into (4.29), we have

G (0= (1 -0 —eR)H " (OH (1) + 2 (|l + V)

71-m~ 71=r"
+8(2—k — Cg—k - C10)'H(f)
m r
71-m~ T 1=r"
+8(c]1—k P clo)(g(u>+§(v>).
m r

where ¢;; > 0and R = k (% + %) Now, we select & large enough so that

G 02 (1-0-eR)H B)H (1)
+ gcia (llll3 + i3 + H (1) + £ ) + £ 1),

where ¢;, > 0. Once k is fixed, we select & small enough so that
l—0c—eR>0and G0) = H'7(0) + 8[ (uouy + vovy)dx > 0.
Q

Using the fact that # is a non-decreasing function, therefore (4.23) is established.

(4.41)

(4.42)

Theorem 4.1. Under the assumptions (4.1) and (4.9), any solution of the system (1.2) blows-up in a

finite time.

Proof. Using (4.3) and the definition of G, we have

1/(1-0)
"< (7{]_0 ) + sf luu, + vv,| dx)
Q

] 1/(1-0)
<2 [7{ (t)+(s f (|uu,|+|vv,|)dx) )
Q

1/(1-0)
<ci3 (7{ 0+ (f (lual ety + [v] |Vt|)dx) )
Q

(4.43)
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where ¢ = 27" max{l,g‘/(l‘“)}.

The embedding Lemma 2.2, Lemma 4.2, Holder’s and Young’s inequalities give

1/(1-0)
(f (el || + |V Ivtl)dX)
Q
1/(1-0) 1/(1-0)
o/(1-0) o/(1-0)
2 (f |ue] |ty dx) +2 (f [v| |v,|dx)
Q Q

<
o/(l-0) 1/(1- 11— e il
< 27 ety o1y + Ml W1y ) (4.44)
1/- 1/(1~ 1/(1- 1/(1-
< Cy4 (||I/t||p/_(+1zr)”u[”2/( o) 4 ”V”p/_(ﬂa')llvt”z/( (r))

2/(1-207) 2 2/(1-207) 2
< crs (lully sy + ladly + 1M,y + 1vill)

< 15 (€ @) + £ ) + a3 + [vil3)

wheret=2/(p~+1)(1 - 20).
Using (4.15), (3.38) and since 7 < 1, we get, for some cg > 0,

1/(1-0)
( fg (I || + 1] |vt|>dx) < c16 (£ ) + £ ) + ldly + il + H ().

Inserting the last estimate in (4.43), we obtain

""" (0 < e (L) + L)+ H @+l + D). (4.45)
Combining (4.23) and (4.45), we deduce that
G 0=>¢6"" @), forallt> 0.
where ¢ = % . A simple integration over (0, ¢) yields

g(r/(l—(r) ([) > — .
G (0) - &=

1-o
a

which implies that G(f) — +o0, as t — T, where T* <

—————. Consequently, the solution of
a'élg(l“’) )

Problem (1.2) blows-up in a finite time.
5. Global existence and decay-rate estimates

In this section, we establish the existence of global solutions for initial data in a certain stable
set. Then, we show that the decay estimates of the solution energy are exponential or polynomial,

depending on the max {m*,r*}.

5.1. Global existence

To state and prove our first result, we introduce the two functionals defined for all ¢ € (0, T) by

1(t) = I (u(t) = ||Aull3 + |V = (p* + l)fF(x, u,v)dx, (5.1)
Q
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1
J (0 = J ) =3 (IAul + 119v3) - f F (x,u,v)dx (5.2)
Q
and give the following Lemma.

Lemma 5.1. Under the assumptions (H.1) and (H.2), we suppose that

100)>0and B < 1,

where
B =Calp* + Dmax {c” e (%E(O)) ra (Z(I)—_Jrl)E(O))z}.
Then,
I(t) >0, forallt € (0,T). (5.3)

Proof. From the continuity of / and the fact that 7(0) > 0, there exists #; in ]0, T') such that
I1(t) >0, VYt e(0,1). 5.4

We have to show that this inequality is strict.
Recalling (5.1) and (5.2), we have

+

YOE h(umnz +IVvIB) + pataul
Combining with (5.4), this gives
702 52 T (1wl + I9VIR). Ve € 0,10, (55)
2(p7+ 1)

From the definition of the energy, we have

1
E(0) = 7@+ 5 (luli3 +1Ivii3). (5.6)
forall r € (0, T) . Consequently,
2(pt+1)
IAul3 + IVVI3; £ ==—=E(1).
? T (-1

Thus, the decreasing property of E leads to

2(p"+1)
T (pr-1)

On the other hand, from Lemma 2.1 and the Sobolev embedding H3(Q) < L’“*!(Q), we have

max {[[Aul}, IVVI3} £ = —="E (0), ¥ € (0,1). (5.7)

- - +
f ul? ! dx < maxte? I Auly e AUy
Q
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“+1 -1 ] t-1 2
< max {c? N Aull} 7, el 1 Aull} T HIAuU; -

Combining with (5.7), this yields, for all 7 € (0, #),

f u|P dx
Q
[7

Smax{cf“ (ME(O))Z,CQ’*“(ME(O)) 2 }|Au||§.

(pt—=1 (p*=1
Therefore,
B 2
PO dx < ————||Aulf3. (5.8)
fg C(pt+1) :
Similarly, we have
B 2
PO dx < — 2 ——|[Vy|l3. (5.9)
fg C:pr+1) 7
The addition of (5.8) and (5.9) gives
p(x)+1 p(x)+1 ﬁ 2 2
|u| + v dx < ———  (||Au]l5 + [|VV]]5) . (5.10)
L( ) C(pt +1) ( 2 2)
Combining (5.10) with (3.38), we infer that
B
fQF(x, ) dx < g (I1Aul3 + 119v13) (5.11)
2 2
< (1wl + 19vi).

for all # € (0, #;) . From the definition of I, this leads to
I1(r)>0.¥Yre(0,1).

By repeating the above procedure and using the decreasing property of E, we can extend #; to T and
obtain (5.3).

Theorem 5.1. Suppose that all assumptions of Lemma 5.1 are fulfilling. Then, the local solution (u,v)
of the system (1.2) exists globally.

Proof. Substituting (5.5) into (5.6) and thanks to (5.3), it yields

-1

P
E —_
() > 20

1
= (sl + 19v13) + 5 (Heall3 + 11wl

forall t € (0, T). Then, we have

IAull3 + 9V + 3 + i3 < CE (1)
< C3E(0), (5.12)

for C3 = max{2, %}. This means that the norm in (5.12) is bounded independently of ¢. Therefore,
the solution (u, v) exists globally.
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5.2. Decay-rate estimates

To prove the decay result, we need the following Lemma.

Lemma 5.2. Suppose that the assumptions of Lemma 5.1 hold. Then, there exists a positive constant
Cy, such that the global solution (u, v) satisfies

f (lu O™ + (o)) dx < CLE() for all t 2 0. (5.13)
Q

Proof. The result is immediate by replacing p with m and r in (5.8) and (5.9), respectively, and by
recalling (5.12).

Theorem 5.2. Under the assumptions of Lemma 5.1, the solution of the system (1.2) satisfies the
following decay estimates, for all t > 0,

%’ 1 > 2’
E@®) <{ (s e (5.14)
ke ", ifa=2,

where @ = max {m*,r*} and k,w > 0 are two positive constants.

Proof. Multiplying (1.2); by u (¢) E" (¢) and (1.2), by v (#) E” () and then, integrating each result over
Qx (s, T), for s € (0,T) and 7 > O to be specified later, we arrive at

T
f f E" (f) [u (1) u () + u(®)Au(t) + u(t) Ju, "2 u,(t)] dxdt
K Q

T
= f fE” O ut) fi (x,u,v)dxdt
s Q

and
T
f f E" (1) [v () vie (6) = v()AV(E) + v () vy (OO 0,(0) | dxdt
s Q

T
= f f E"(t)v (1) f> (x,u,v)dxdt.
s Q

Green’s formula and the boundary conditions lead to
T
f f E" (1) [ e (8, (00), = lag O)F + 1A ()P + 10 (2) , (), ()" | et
s Q

T
:f fE” O u) fi (x,u,v)dxdt, (5.15)
K Q

and
T
f f E"(0) [0 (0 v (0)), = vy OF + [V9@F +v (0 v, (0) v, ()7 | dxdt
s Q
T
= f f E"(t)v (1) f> (x,u,v) dxdt. (5.16)
s Q
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Adding and subtracting the following two terms

[ EM @ [B1AuOP + (1 + ) lu, (0P| dxdt
[T L E" @ [BIVVOP + (1 + By v, (O] dar,

to (5.15) and (5.16), respectively, and recalling (5.11), we arrive at

T
(1-8) f E" (1) f (18w + Vv + lu, (B)F + v, () dxdt
K Q
T
= f E" (1) Q[(u(t)u,(r)+v(r>vt(z>>t—(2—ﬁ>(|u,<r>|2+|v,(t)|2)]dxdt
T
+ f E" (1) f (s 0 1t () lty "7+ v (@) v, (8) v ()7 dxelt
K Q
T
= f E"(t) f B (18u@P + IVv(®F) = (p (x) + 1) F (x,u,v)| dxdt < 0.
s Q
Now, by exploiting the formula:
E" (1) f (u () u; (1) + v (D) v, (D), dx =C%(E” (0 f (u (1) s (t)+v(r)vt(t))dx)
Q Q
-nE" () E (1) f (@) u, (1) + v (@) v, (1)) dx,
Q
estimate (5.17) yields
T T
2(1-p) f E™ () dt <n f ET (O E () f (u@ u, () + v (1) v, (1) dxdt
s , p s Q
- f —(E” () f (u(t)u,(t)+v(t)v,(t))dx)dt
K dt Q
T
- [ 20 [ (0u 0o v oo or?) dd
K Q

T
+(2—/3’)f E" (t)f(lu,(t)|2+|v,(t)|2)dxdt
K Q

=L+L+05+1

Next, we handle the terms ;, i = 1,4 and denote by C a positive generic constant.

e First, applying Young’s and Poincaré’s inequalities, we obtain

T
I =77f E"™' ()E (t)f(u(t)uz(t)+V(t)vz(t))dxdl
K Q

T
sg f E" (0 (=E ) [l 01 + s DI + v @I + v, DI3] e

(5.17)

(5.18)
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T
<C f E™ (0 (=E ) [IlAu @IB + 19y OIF + llu, ()13 + v, (0)113] dt,

By (5.12), this gives

T
L <C f E" (1) (—E’ (r)) dt
< CE"™ (s) = CE™' (T) < CE"(0)E (s) < CE(s). (5.19)

e Concerning the second term, we have

T
L =- f i (E” ) f (w@u: @) +v@)v: (1) dx) dt
s dt Q
= E"(s) (f (u Cx, 8) ur (x, 8) + v (x, ) v (x, 5)) dX)
Q
- E"(T) (f (u,T)u, (x,T) +v(x,T)v, (x,T)) dX)
Q

Again, by (5.12) and the inequalities of Young and Poincaré, we get

f u(x,s)u, (x,s)dx
Q

< C(I1Au ()13 + llus (1) < CE (s),

f u(x, Tu,(x,T)dx
Q

< C (IlAu (DI + llu, (D) < CE(T)

and likewise

f v(x,s)v,(x,s)dx
Q

< C(IVv (I + IIv ()I3) < CE (s)

f v(x, T)v, (x,T)dx
Q

< C(IVv (DI + v (T)II3) < CE(T).

Therefore,
I, < CE™' (5) < CE"(0)E (s) < CE (s). (5.20)

e For the third term, we apply Young’s inequality (as in (4.30)) to obtain, for some & > 0,

T
I =- f E" (t) f (l/l (t) u; (t) |I/£z ([’)lm(X)—Z +v (t) v, (£) |Vt (t)|r(x)—2) dxdt
s Q

T
< f E (t)(g f Iu(t)l’"(x)dx+£ f Iut(t)lm(x)dx)dt
K Q Q
T
+ f E”(t)(g f |v(t)|’(x)dx+é f Iv,(t)lr(x)dx)dt.
s Q Q
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Invoking Lemma 5.2 and recalling (3.40), yields

T T
L<: f E" (1) f (|u(r)|m<x>+|v(t)|r<x>)dxdt+1 f E"(t)(-E (1) dt
2 s Q € JUs

T
<eC f E™' (t)dt + C.E (s).

e Now, we handle I,, as follows:

T
Li=@2-p) f E" (1) f (lue OF + v, () dxdt
K Q

T T
=2-5) [ f E" (1) f |u, (0)) dxdt + f E" (1) f Iv,(t)lzdxdt]
s Q K Q

=2 -pU1+ ).

We claim that
T
Ji, Jh < gcf E™ (t)dt + C.E (5).

Since 2 < @ < m(.) < @ on £, we obtain

T
Jy = f E" (1) f lu, () dxdt
K Q
T
- f E”(t)[ f lu, (D> dx + f Iu,(t)lzdx]dt
s Q_ n

2/a 2/
E" (1) [ f |u, ()| dx) + ( lu, ()% a’x) l dt
Q Q.

T
c [ o
ST 2]a 2]a
C f E" (1) [( f lu, ()" dx) +( |u, (t)l’"(x)dx) }dt,
K Q_ Q.

IA

IA

where
&= min{m~,r }, a = max{m*,r*},

Q,={xeQ:|uxt)>1}and Q_ = {x € Q : |u(x,t)| < 1}.

Therefore,
T T -
J <C f E"(0)(-E' ()" dt + C f E" (1) (~E’ (1))"" dt
=CWJ, + Jy).

Three cases are possible:

(5.21)

(5.22)

(5.23)
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(1) ife =a& =2 (mx) = r(x) = 2, on Q), then
T
Ji<C f E" (£) (—E’ (t)) dt
S T
< CE(s) < sCf E™ () dt + CE (s).

N

(2) if @ > 2 and @ = 2, we exploit Young’s inequality with
0=m+1)/pand & =n+1

to find
T
J, = f E" (1) (~E’ (1))*'“ dt
' T T
<&C f E™ (0 dt + C, f (—E' (1) gy
So, forn =5 — 1, we get
T T
J, <eC f E™' (1 dt + C, f (=E' (1)) dt
S - A
<eC f E™ () dt + C.E (s). (5.24)
Also, in this case, we have

T
Jy = f E" (1) (—E’ (1)) dt < CE(s). (5.25)

By inserting (5.24) and (5.25) into (5.23), we infer that J; (and similarly J,) satisfies (5.22).
(3) if @ > @ > 2, we apply Young’s inequality with

d=a/(@-2) and " =a/2

to obtain
T ~
Js = f E" (1) (~E' ()" dt
N T ~ )
<eC f E (0)"7@2 gt + C.E (s).
Butna/(@-2)=n+1+(@—-a)/(@—-2),then
B T
Jy < eC (E (s5)) @ /(@2 f E™ () dt + C.E (5)

T
<eC f E™ (t)dt + C.E (5). (5.26)
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The addition of (5.24) and (5.26) leads to (5.22).
We conclude that the claim is true for any @ > @ > 2. Therefore,

T
I, <eC f E™ (t)dt + C.E (5). (5.27)

Now, substituting (5.19)—(5.21) and (5.27) into (5.18), we get

T T
2(1—,8)f Eﬂ“(r)drsSCf E™ () dt + C,E (5),
withn = ¢ — 1. So,
T T
2(1—ﬁ)f E%’(r)drgcf E> ()dt + C.E(s).

N

Choosing & small enough, we obtain

fTE‘z’ (t)dt < CE(s).
Letting T — oo, it yields
me‘S (t)dt < CE(s),Vs > 0.
Applying Komornik’s lemma [23], we get the desired decay estimates.

6. Conclusions

We considered a coupled system of Laplacian and bi-Laplacian equations with nonlinear damping
and source terms of variable-exponents nonlinearities. We gave a detailed proof of the local existence
using Faedo-Galerkin method and Banach-fixed-point theorem. We also showed that the solutions with
positive-initial energy blow-up in a finite time. Furthermore, we proved a global existence theorem,
using the Stable-set method and established a decay estimate of the solution energy, by Komornik’s
integral approach.

Acknowledgment

The authors would like to acknowledge the support provided by King Fahd University of
Petroleum & Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary
Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of
Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No.
INCB2205, is also greatly acknowledged.

AIMS Mathematics Volume 8, Issue 4, 7933-7966.



7965

Contflict of interest

The authors declare that there is no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York: McGraw-hill,
1959.

P. Shankar, The eddy structure in stokes flow in a cavity, J. Fluid mech., 250 (1993), 371-383.
https://doi.org/10.1017/S0022112093001491

R. Srinivasan, Accurate solutions for steady plane flow in the driven cavity. i. stokes flow, Z. angew.
Math. Phys., 46 (1995), 524-545. https://doi.org/10.1007/BF00917442

V. Meleshko, Steady stokes flow in a rectangular cavity, P. Roy. Soc. A-Math. Phy., 452 (1996),
1999-2022. https://doi.org/10.1098/rspa.1996.0106

P. Shankar, M. Deshpande, Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech., 32 (2000),
93-136. https://doi.org/10.1146/annurev.fluid.32.1.93

N. E. Sevant, M. 1. Bloor, M. J. Wilson, Aerodynamic design of a flying wing using response
surface methodology, J. Aircraft, 37 (2000), 562-5609. https://doi.org/10.2514/2.2665

M. L. Bloor, M. J. Wilson, Method for efficient shape parametrization of fluid membranes and
vesicles, Phys. Rev. E, 61 (2000), 4218-4229. https://doi.org/10.1103/PhysRevE.61.4218

V. Meleshko, Biharmonic problem in a rectangle, In: In fascination of fluid dynamics, Springer,
1998, 217-249. https://doi.org/10.1007/978-94-011-4986-0_14

V. Meleshko, Selected topics in the history of the two-dimensional biharmonic problem, Appl.
Mech. Rev., 56 (2003), 33-85. https://doi.org/10.1115/1.1521166

V. Meleshko, Bending of an elastic rectangular clamped plate: Exact versus engineeringsolutions,
J. Elasticity, 48 (1997), 1-50. https://doi.org/10.1023/A:1007472709175

V. Meleshko, A. Gomilko, Infinite systems for a biharmonic problem in a rectangle, P. Roy. Soc. A
Math. Phy., 453 (1997), 2139-2160. https://doi.org/10.1098/rspa.1997.0115

S. Antontsev, S. Shmarev, Blow-up of solutions to parabolic equations with
nonstandard growth conditions, J. Comput. Appl. Math., 234 (2010), 2633-2645.
https://doi.org/10.1016/j.cam.2010.01.026

S. Antontsev, S. Shmarev, Evolution pdes with nonstandard growth conditions, In: Atlantis studies
in differential equations, 2015. https://doi.org/10.2991/978-94-6239-112-3

B. Guo, W. Gao, Blow-up of solutions to quasilinear hyperbolic equations with
p(x,t)-Laplacian and positive initial energy, C. R. Mecanique, 342 (2014), 513-519.
https://doi.org/10.1016/j.crme.2014.06.001

S. A. Messaoudi, O. Bouhoufani, I. Hamchi, M. Alahyane, Existence and blow up in a system of
wave equations with nonstandard nonlinearities, Electron. J. Differ. Eq., 2021 (2021), 1-33.

AIMS Mathematics Volume 8, Issue 4, 7933-7966.


http://dx.doi.org/https://doi.org/10.1017/S0022112093001491
http://dx.doi.org/https://doi.org/10.1007/BF00917442
http://dx.doi.org/https://doi.org/10.1098/rspa.1996.0106
http://dx.doi.org/https://doi.org/10.1146/annurev.fluid.32.1.93
http://dx.doi.org/https://doi.org/10.2514/2.2665
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.61.4218
http://dx.doi.org/https://doi.org/10.1007/978-94-011-4986-0_14
http://dx.doi.org/https://doi.org/10.1115/1.1521166
http://dx.doi.org/https://doi.org/10.1023/A:1007472709175
http://dx.doi.org/https://doi.org/10.1098/rspa.1997.0115
http://dx.doi.org/https://doi.org/10.1016/j.cam.2010.01.026
http://dx.doi.org/https://doi.org/10.2991/978-94-6239-112-3
http://dx.doi.org/https://doi.org/10.1016/j.crme.2014.06.001

7966

16.

17.

18.

19.

20.

21.

22.

23.

% AIMS Press

S. A. Messaoudi, A. A. Talahmeh, M. M. Al-Gharabli, M. Alahyane, On the existence and stability
of a nonlinear wave system with variable exponents, Asymptotic Anal., 128 (2022), 211-238.
https://doi.org/10.3233/ASY-211704

S. H. Park, J. R. Kang, Blow-up of solutions for a viscoelastic wave equation with variable
exponents, Math. Method. Appl. Sci., 42 (2019), 2083-2097. https://doi.org/10.1002/mma.5501

O. Bouhoufani, I. Hamchi, Coupled system of nonlinear hyperbolic equations with
variable-exponents: Global existence and stability, Mediterr. J. Math., 17 (2020), 166.
https://doi.org/10.1007/s00009-020-01589-1

L. Diening, P. Harjulehto, P. Hésto, M. Ruzicka, Lebesgue and Sobolev spaces with variable
exponents, Springer, 2011.

D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis,
Springer Science & Business Media, 2013.

K. Agre, M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms,
Differ. Integral Equ., 19 (2006), 1235-1270. https://doi.org/10.57262/die/1356050301

C. O. Alves, M. M. Cavalcanti, V. N. D. Cavalcanti, M. A. Rammaha, D. Toundykov,
On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave
equations with damping and source terms, Discrete Cont. Dyn. S, 2 (2009), 583-608.
https://doi.org/10.3934/dcdss.2009.2.583

V. Komornik, Decay estimates for the wave equation with internal damping, In:
Control and estimation of distributed parameter systems: Nonlinear phenomena, 1994.
https://doi.org/10.1007/978-3-0348-8530-0_14

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

Ez; terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 4, 7933-7966.


http://dx.doi.org/https://doi.org/10.3233/ASY-211704
http://dx.doi.org/https://doi.org/10.1002/mma.5501
http://dx.doi.org/https://doi.org/10.1007/s00009-020-01589-1
http://dx.doi.org/https://doi.org/10.57262/die/1356050301
http://dx.doi.org/https://doi.org/10.3934/dcdss.2009.2.583
http://dx.doi.org/https://doi.org/10.1007/978-3-0348-8530-0_14
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Existence of weak solution
	Blow-up result
	Global existence and decay-rate estimates
	Global existence
	Decay-rate estimates

	Conclusions

