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1. Introduction

Fractional differential equations (FDE) arise in wide variety of engineering and scientific disciplines
as a mathematical modeling of processes and systems in many fields. For details, see [3,10,12,14,21—
25] and the references therein.
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The qualitative analysis of FDE are extensively investigated by scientists using different fixed point
theorems and other techniques. For more details see [1,4-8,11,13,16-19,26] and references therein.

The solvability of the FDE depends mainly on the shape of the given system and the initial or
boundary conditions. By mean of fractional calculus we can obtain an integral solution of the given
differential system. The fractional calculus are used with some verities due to different shapes of
fractional derivatives and integrals. Here in this article, we use some type of generalized fractional
derivative that depends on some kind of function and some authors called it as derivative of a function
with respect to another function [16, 19].

For the qualitative analysis, almost all researchers are using the basic fixed point theorems such as
Banach contraction principle, Schauder fixed point, etc. These theorems are fantastic tools to get the
existence and uniqueness of the solution but it they need some strong conditions to satisfy, hence we
search for another way to get the existence and uniqueness of the solution that need weaker
conditions. The iterative technique is one of such methods that can be applied to obtain the existence
and uniqueness of the solution of the main problem. On the other hand, we introduce the idea of
maximal and minimal solution for the given problem to justify the variety of mathematical sources.
Before going into other similar previous article, we also consider in this article the generalized
Ulam-Hyers stability which is important topic for the qualitative analysis of any system.

In [2], Houas and Benbachir studied the fractional problem

D*x(t) = F1(t, x(2), (D", D™, ..., D" ")x(1)), 1€ (0, 1),
x(0) = x*, X'(0) = x”(0) = ... = x"2 =0, Px(1) = APPx(}),0 < < 1,

where ‘D%,i =0, 1,2, ....,n— 1 denote the Caputo FD of order a; withn—1 < @,_; <n, 4 # 0is areal
number and f is a given continuous function.

In [4], Wang et al. provided the existence solution to non-zero FDE with boundary values problem
(BVP) for a coupled system.

D%u(t) + F1(t,v) =0, in (0, 1),
DPv(t) + F5(t,u) = 0, in (0, 1),
u(0) =0, u(l) = au(f),
v(0) = 0, v(1) = bv(§),

where 2 < @,8<3,0<a,b<1, £€(0,1)and f,g € C([0, 1] X [0, +00), [0, +00)).

In [8], Ali et al. studied the iterative solutions and stability analysis to a CS of FDE.

Whereas, Ali et al. [9] extended their previous work and introduced the below fractional order
nonlinear CS withe boundary condition

D%u(t) + Fi(t,v(1)) =0, re]0,1],
DPv(t) + F5(t,u(f)) =0, te€]0,1],
u() =uw'(0) = ... = u" ) =0,
v() =v'(a) = ... = v D(0) =0,

wheren =2,3,4,..,n—1<a,B8 <n,u,v e C[0,1].
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The main purpose of this work is to provide the existence criterion and the Ulam-Hyers (UH)
stability analysis of the considered CS

DEPu() + Fi(t,v(1) =0, t€[a,bl,

D) +Fa(t,u(®) = 0, 1€ [a,bl,

(1.1)
w(b) + (@) = I%5F 3(b, v(b)), i/ (@) = .. = u™(a) = 0
v(b) + Agv(a) = PEF4(b, u(b)), v (@) = ... = v D(a) = 0

where Dqu, and Dqu, n—-1<a,B <n,n > 2, are the FD of a function u with respect to another
function $, -1 < 4,, 43 <0, and f, g, h, k are appropriate functions.

In fact, we investigate the existence of unique maximal and minimal solutions for the differential
coupled system (1.1) using iterative technique. The so-called green’s function will be given and its
properties will be discussed in details. The solution of the linear version of the CS (1.1) will be
obtained by using the properties of fractional calculus. Moreover, the generalized Ulam-Hyers stability
of the solution is also considered. Finally, we present examples to demonstrate consistency to the main
results.

The paper is organized as follows. In Section 2, we recall some notions and notation. In the
Section 3, we introduce the main results concerning the existence of solution of the problem (1.1). The
UH stability of the solution for the fractional CS (1.1) is investigated in Section 4. Finally, in Section 5,
we present some applications to the fractional differential coupled system (FDCS) (1.1).

2. Preliminaries

The fractional integrals (FI) and FD of a function u# with respect to another function £ along with
their properties will be introduced in this section briefly to be used in our discussion. First of all, we
assume that $(¢) be strictly increasing function on (a, b], having a continuous derivative on (a, b) and
9’(t) > Oforall ¢ € [a, b].

Definition 2.1. [3] Let u € L[a, b] be a real-valued function. The FI of order @ € R, for a function u
with respect to another function $ on [a, b] is given by

' (Nur)dr

@9 —
0= Ty ), Bo-smre <

where I' is the Euler Gamma function, provided that right-hand side is pointwise given on (0, +c0).

Definition 2.2. [3] The FD of order @ > 0 for a function u with respect to another function $ on [a, T']
is given by

% S (Nu(r)dr
Do) = 505 a) ssf(r)dt) f 50) - S =0

such that the integral is well-defined on (0, o), where n = [a] + 1 and [«] stand for the integer part of
the real number «.

Lemma 2.3. [3] Let 8 > a > 0. Then the relations
I L) = 1772 u),

at+ “a+
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(DGR LEDue) = L Su(o),
(D D)u(r) = u(@),
is hold for (sufficiently good) functions u(t).
Lemma 2.4. [3] Let a > 0, then the FDE
DgPu(r) = 0,

has the solution in the form of

n—1 l/t(k) ((1)
u(t) = Z ﬁkv
k=0 ’

(90 - H(@),

K)oy _
where Ug (= (%@%)ku(t).
Lemma 2.5. [3] Let a > 0, then

n—1 u(k)

. (a)
IPIDu] = u(t) = ) —=—(5() - @)

k=0

Next, some definitions and results concerning the minimal ana maximal solutions are recalled.

Definition 2.6. [9] Let U = Cla, b] be the Banach space endowed with norm:

|| u ||= maxer, 77 [u(?)] which satisfies the partial ordering, and let W = [u,,, uy,] with u,, < uy be a
set W C U, and the operator P : W — U is known as increasing function if for each u;,u, € W and
uy < up gives Pu; < Pu,. The operator P is known as decreasing function if for each u;,u, € W and
uy < u, gives Pu; > Pu,.

Definition 2.7. [9] Suppose I be an identity operator. If (I — P)u,, < 0, then the function u,, € W is a
minimal solution of (I — P)u = 0 and if (I — P)uy, > 0, then the function u,, € W is a maximal solution
of (I — P)u=0.

Definition 2.8. [20] We say that the subset W c U = Cla, b] is uniformly bounded, if 4 a real number
¢ > 0 such that | u(¢) |< ¢ for all u of W and what ever ¢ € [a, b].

Definition 2.9. [20] We say that the subset W c U = Cla, b] is equicontinuous, if Ye > 0, 46 > 0
depending only on € such that for 71, 1, € [a, b] satisfying the inequality | #; — #, |[< ¢ for all u of W we
have | u(t;) — u(t,) |< €.

Lemma 2.10. [20] Let U Banach space which satisfies W C U and u,,u, € W where u, < u,, n € Z,.
If u, — uand u,, — u’, then u < u".

3. Main results

The solution and analyses of the coupled fractional system (1.1) is the main part of this article. This
section devotes for obtaining solutions of such problems. The following assumptions are necessarily
to obtain our results:

(I;) The real-valued functions f, g, h, k : [a,b] X R — R satisfy the Caratheodory conditions.
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(I>) The functions F(t,v), F»(t, u), F5(t, x) and F4(t, y) are increasing in v, u, x and y for every ¢ € [a, b]

respectively.
(13) Existence of constants €, £, 3, Q4 > 0 such that

IF12, vi(0) — F1(2, v2(D)] < 4[vy — val,

IFa (2, u1 (1)) — Fa(t, ua ()| < oluy — usl,

IF3(2, x1(2)) — F3(t, x2()| < Qalx1 — xa,

IFa(t, y1(0) = Fa(t, y2(0))] < Quly1 — yal.
(14) Existence of constants Cy, C,, C5, C4 > 0 such that:

| Fia,) I< Cy, [Faa, ) |I< Gy, | F3(a,.) I< Csand | Fu(a, ) [< Cy.

(I5) Suppose that B = {u € C([a, b]) :|| u ||< R}, and W = [u,,, uy], where u,,, uy, € B,

S Co(Ag + D(Q + Q)i 1 (@) ¥Ppi1(a) + (Cr + C3)¥oi1(a)
B 1 = Qs (A + 1)W1 (@)¥pi1 (@) + Q3) ’

and
(Q1 + Q3)¥ o4 1(a)¥psi1(a@) max{(Qy + Qy), Q(Ag + 1)} < 1.

All the constants My, Q,, Q3, My, Cy, C,, C5, C4 will be specified later.
Lemma 3.1. Let p,0 € C([a,b]) and n — 1 < a < n, then the FDE:

DX2u(t) + p(t) = 0,

$ . (3.1
u(b) + Agu(a) = I0(b),u'(a) = ... = u" V(a) = 0,1, € (-1,0],
has the solution
b a-1
[H(b) — H(r)]
1= G, (t, + "(r) dr, 3.2
u(r) fa [ (z, r)p(r) L1 D@ o(r)|9'(r) dr. (3.2)
where G,(t,r) is given by
rea R0 B ORI
o <s<t<
Go(t,r) = {[55(17)_5(”]”1 T(@) a<s<t<b, (3.3)
T LThh@) a<t<s<b,
G,(t,r) is known as Green’s function.
Proof. Using Lemma 2.5 to the linear BVP (3.1) yields that
u(t) = Ci + Co[H(1) — H(@)] + C3[H(1) = H@T + ... + C.[H() — H@]1"" = I3 (). (3.4)
We use the conditions /(a) = u®(a) = ... = u"Y(a) = 0, we have C, = C;3 = ... = C,, = 0. Further, as

u(b) + Agu(a) = 1420 (b), then we have

1 . @,
C, = 1320(b) + 12720(D).

Ay +1 Ay +1
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Therefore, we deduce from (3.4) that

L (T90) =51, L (TI90) =51,
) = g [ B s ot g [ B s ot
! _ a-1
- L 5 I“(igr)] ' (Np(rydr.
Hence, we obtain the result (3.3) and the proof is finished. O

We can now obtain the representation of the integral solution of the couple system (1.1).

Lemma 3.2. The CS (1.1) has the integral representation

{u(t) = [ [Galt, F 1 (V(P) + Yol DFa(r V()] &' (D1, 1 € [a, T, 53)

v(t) = [ [Gy(t. IFa(r, u(r) + Pk, u(r)| & (), 1 € [a, T,

_ a-1 . .
where ¥, (r) = %, G,(t,r) and Gg(t, r) are given as in (3.3).

The next are some properties of the green function G,(¢, r) that can easily obtained by its definition.
Lemma 3.3. The following properties are satisfied for all t, s, T € |a, b]:
(1) 0 < Golt, ) < Po(r) < Wola), and 0 < Gy(t, r) < Wy(r) < Wy(a).
(2) [ Golt, Ndr < (b= )o@, [ Galt, NS ()dr < ¥or1(@), and [ Gylt, NS (Ndr < W, (a).
b b
(3) [ a9 ()dr < Wosr(@), and [ Gplt, S/ (r)dr < W.1(a).
(4) 1Ga(r, J) = Gala, ) < SEBO = (4, + 1)¥,()), where Go(a, J) = ¥a()).

The CS (3.5) can be writhen as follows:

u(t) = f (Gt P (1) + ¥ s )] )
= f (Gutt. P f b |G, D2, u() + sk, u(1)] ' (1)l )
+ Wo(r) F3(r, f b |G, D2, u(2) + (DK, u(1)| &' (NI (r)dr, g
W) = f b |Gt P2, u(r) + Pa(rk(r, u(r) | & (Mdr oo

b b
= f [Gg(t, r)F(r, f [Go(r, DF1(7,v() + o (DA, vO)] ' (1)d))

b
+ Wp(r) k(r, f [(Go(r, PF1(7,v(D) + YDA, v()] ' (DA DI (r)dr.

Remark 3.4. Due to existence of the symmetry between u and v, to obtain the results of the study, it
is sufficient to study on u, and in the same way we get the results for v.
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We define the operator P : W — W as

b b
Pu(n) = f [Galt, PF(r, f |Gt D2, u(1) + sk, u(1)| ' ()l )

b 3.7
+ Wo(r) Fa(r, f |G, D2 () + Vs (K, w1 | &' (NS (Fydr.
In accordance with (3.6) and (3.7), we can obtain
[l — Pl(u()) =0, t€la,b]. (3.8)

We notice that Eqgs (3.6) and (3.8) are the same results that are fixed points of P. As in (/;), such that,
for u,u” € W with u < u*, we get

b b
Pu®) = [1G0F [ [Gar D) + BRG] 5 )

b
+ W, (r) Fa(r, f |G, DF2(3, u(p)) + Wp(k (. u(1)| &' (DAPIS (r)dr

b b 3.9
< [ 1GuwnFi [ G PG00 + Bk )] S O

b
+ Wo(r) F3(r, f |Gt D2, () + WDk ()] &' (NANIS ()
= P(u” (1)),

thus P denotes increasing operator.
(1) Let that the minimal and maximal results of (3.8) are respectively u,, and uy, € W, and u,, < uy; on
la, D].

Lemma 3.5. Let (I))—(Ig) hold. If P : W — W, then P is equicontinuous and uniformly bounded.

Proof. Under assumptions (/;) — (Is), let u;,u; € W C U, where i, j = 1,2, 3, ...,n. The proof consists
of two steps.

Step 1: P is equicontinuous. In accordance with the definition of the operator P that is given in (3.7),
we have

| Pui() = P(uj(1)) |
-1 (Gt PF A [ (G D) + B )| '
+ W, (r) Fa(r, f b |G, DF2(1, 1:(3)) + Bk, (1) | &' (NI (r)dr)
—( f b[Ga(t, rFi(r, f b [Gﬁ(r, DE2(7,u; (D) + ¥(Dk(), uj(J))] '(nd))
b

+ W, (r) F5(r, f |G, DF2(g. 1, () + PR ()| ' (NPT (F)dr) |

a
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- [ Gt NS O [ (G D ) + Es Ok )| '
- Fi(r, f b |G, DF2(, () + WDk, ;)| ' (D p)r

i f ", (A f b |G, DF2(1, (7)) + Pk ui )| ()
— Fa(r, f b |G, DF2(3, () + Pk, ;)| ' (D p)ar |

<[ Galt. NS ) | Fi(r [ (G D) + Es Ok )| '
- Fi(r, f b |G, DF2(1, () + PR ;1) 9 () | dr

+ f W90 | Fiir f h |G, DF2(, i) + Wp( D, ui )| 9 (el )
— Fa(r, f b |Go(r, D2 (1)) + Pk ;)| ' () | dr

<Q f Gut.no 0 | f h |G, DF2 (i) + (DK wi)| ' (el
~ f h |Go(r, D2 u,(1)) + PR ;)| &' () | dr

+Q; f w90 | f b |Go(r, DFa(gs (1)) + Wp( D, ui )] ' (1)
-[ (Gt D200 1500 + BRG] o | dr

< f b Go(t, N9 (r)( f b Gp(r, ) | Fa(g, wi()) = Fa (g ui(D) | ' (pd pdr
+Q f " Gult. NS (X f W) 1K) — G w)) | Q)

+Q; f ", 9 f "G ) | Fao ) — Fat /) | )
+Q; f w9 f W) K1) — kG0 | ddr
<O f " Gatt, NS (X f " Gptr ) L)~ ) | Q)

+ O f " Galt, NS (X f OIS ) — ) | dpdr

b b
+ Q5 f Yo (N9 (r)( f Gp(r, O' (D L wi(p) —u(p) | dpdr
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+ Q30 fa b Yo (N9 (r) fa b Ye(NS' D 1 ui()) —ui(p) | dpdr
< Qi j; b Go(t, )" (r)( j; b Gp(r, S (DA pdr || wi — u; ||
+0Q fab G (1, r)ﬁ'(r)(fab V(NS (DA pdr || u; — u; ||

+ Q5 fa b Yo (r)9'(r)( fa b Gp(r, " (N pdr || ui — u; ||

+ 30 fa b Yo (N9 (r) L b Ys(NS' (Ndpdr || u; — u; ||

< QQYs.(a) ‘[lb Go(t, ) (r)dr || u; — u; ||

+ Q1 Q541 (a) Lb Go(t, D' (r)dr || u; — u; ||
+003¥p. 1 (a) fah Yo(NS' (Ndr |l ui — u; ||

b
+ 9394‘Pﬁ+1(0)f Yo (NS (dr || u; — u; |l

< QLYo (@WYp1(@) Nl wi — uj ||

+ QYo 1(@)¥Ypi1(a) [l ui — uy ||

+ QY 1 (@ Wpi1(@) || ui — uj ||

+ QY1 (@Wsi1(@) || u; — uj ||

< Q1+ Q3)( + Q) Yor1 (@) Wpr(a) || u; —uj |
< QI ui—uyll,

where
Q= (Q +Q3)(Q + Q)V¥oi1(a)¥Yp1(a). (3.10)

Step2: P is uniformly bounded. Again by (3.7), we obtain
| Pu(2)) |
b b
=| f [Galt, 1)F (7, f |G, DF2(3, 1)) + Ws k(s ()| ()
b
+ W, (r) Fa(r, f |G, DF2(g. () + Bp( Dk ()| &' (NI (r)dr |
b b
< [ Gt @ 1F0: [ [Gatr 0.0 + BRG] S ) dr
b b
- f Wo(1)9'(r) | F3(r, f |Ga(r, D2 () + sk, u(1)| ' () | dr
b b
< f Galt, N9 (1) | Fi(r, f |Ga(r, D2 () + sk, u(1)| &' ()l )

AIMS Mathematics Volume 8, Issue 4, 7817-7839.
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—ﬂmﬁmwmmmmm+%mmmmbmm>
+ﬂwﬁmmmmmwm+%mmmmbmmnm
ﬂf%msmwwjﬁ@mmmmm+%mmwmbmw>
—a@ﬁmwmmmmm+%mmmmbmm>
Hﬂmﬁﬁ%mmaumm+%mmﬁwmbmwpMr

< f b Golt, D' (r) | Fr(r, f b |G, DF2(.u(p)) + Wp(Dk . u()| &' (D))

- Fi(a, f b |Gota, PF2(1, u(p)) + Wa()k (s, u(1)| ' (Ddy) | dr
+L%wwmmﬂ@ﬁmmmmmmm+%mmmmbnmnw
+ f b Yo(n9'(r) | F5(r, f b |G, DF2(, u(p) + ¥R, u()| ' (el )
4wmlq@mm5umm+%UMmmﬂswwnw
ﬂKTW%WHﬁ@ﬁﬁ%@ﬁﬁ@%M+%ﬂWuMM5@@ﬂW
<Q f b Go(t,N)9'(r) | f b |G, P20, u() + WA, u()] &' (el
-lfﬁ%@ﬁEUMU»+%MWUMﬁﬂ50MHm+CR£2%@ﬂ50Mr
+Q; f w90 | f b |Go(r, DFa(s, (1)) + Ba(Dk(, u(i) | &' (D
—ﬁmwmmmmm+%wmwwbmmmwﬂgf%mwmw
SQamemeXEW%Mﬂ—QMJHJBUMﬂHS@WMr
+C&KGwJEWWWH%Lﬂﬂ®50KK|%Mﬁ-@ﬂdﬂ
xMMansmwwﬂcifwmmvwr

b
sgafcnmwsv>
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<[ 1 Gotr ) — Gt ) | i) — s, (@) + g(a @) | 5’ G

+ C fb G,(t,r)D (r)dr + Q3 fb Y, (D' (r)

<[ 1 Gotr )~ G, ) | i) — gla, (@) + g(a @) | 5’ G

+ C; fb Y, (S (r)dr

<o [ " Gt NS () [ | Gotr ) - Gota, ) | Faroa)) — F uta)) | &)
o f  Gatt NS ) f | Gatr )~ Gatar ) I Faauta)) | Gy + C, f " Gt
wo [ L8 0 | | Gotr ) - Gota, ) | Faoi)) — Faat uta)) | &)
vo [ L8 | | Gatr )~ Gatar ) | Faa uta)) | &G

+ C; fb Y, (r)dr

<o [ " Gut NS ) | | Gyt ) = G ) 14 — @) | ')y

o |  Gatt | 1 Gotr )~ Gt | 9’ + C, | " Gt nr
o0 [ w9 [ 1 Gyt )~ G ) 14 — (@) | &)

oo [ L9 | | Gotr ) Gata, ) | ' + C | w08 (rdr
<2000+ ) [ " Gatt NS ) [ ") |

cuc+ [ " Gatt NS ) | "W, (0)S G dr + [ " Gott, NS (1

* a4 1) [ L9 | W) G pdr | u |

b b b
+ CrQ3(A5 + 1)f ‘Pa(’”)g(”)(f ¥s(n9 (Ndpdr + C3f Yo ()9 (r)dr
< Qi(Ag + D¥ori1(@)¥pii(a) || u || +Q21Co(Ag + DW¥or1(a)¥pii(a)
+ C\Wosi(a) + QoQ3(Ag + DWor1(@)¥pii(a) || u |
+ Co (g + DY o 1(@)¥pi1(a) + C3Woi1(a)
<R.
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This finishes the proof. O
Lemma 3.6. Let (I))—(Ig) be hold. Then there exists an iterative convergent sequence of the CS (3.6).

Proof. The operator P is equicontinuous and uniformly bounded by Lemma 3.5. Thanks to the Ascoli-
Arzela theorem, we deduce that compact operator is P. Let the minimal solution of the Eq (3.8) be
uy = u,. Then, according to condition (/s), we get uy < uy. As P is an increasing operator, then we
obtain uy < Puy < Puy; < uyy, thatis, uy < u; < uy, on the interval [a, b], where u; = Puy is an iterative
results of Eq (3.8). By utilizing P, we obtain Puy < Pu; < Puy < uy thatis, u; < up < uy on [a, b],
where u, = Pu;. We get a bounded monotone sequence {u,} such that

g <uy <ur <...<u,_1 <u, <uy on la,b], 3.11)

where u,, = Pu,_; is result of Eq (3.8). As {u,} bounded monotone sequence, 4 u € W so that u,, — u
as n — oo. Therefore u = Pu, is the result of Eq (3.6) given by:

b b
u = [ (G0 [ [Gar D) + BRG] S )

b
+W,(r) Fa(r, f |G, DF2(3, 1)) + WDk ()| &' (DAY (P,
t € la,b].

Hence, in view of (3.10) and (3.11), we get

| up —uy || =l Puy — Pug || M || uy — up ||,
2
| us —uy || =[| Puy — Puy [|< M~ || uy — ug ||,
| ttnrr — wp || =Il Py — Puayy |I< M™ | uy —uo || -
Consequently, we obtain
” Uptn — Uy ” S” Um+n — Um+n—1 ” + ” Um+n-1 — Um+n-2 ” +ot ” Uny1 — Up “
< in - Qm ! I (3.12)
< Uy — U
-0 1 ,

for positive integers m and n. The condition M < 1, implies that || w4, — u, ||—= 0 when n — co.
Thus {u,} is a Cauchy sequence in W. Let u*(¢) = lim,_ u,(f), thus Pu* = u*. Therefore, ift m — oo
in (3.12), then error estimate for the minimal solution is

n

1-Q

lu' —u, ll < | ur —uo Il -

Now, let us choose u;; = uy, as the previous steps, we have a sequence {u,} so that uj > uj > u; > ... >
u' | > uy > u, on [a,b]. This sequence converges to a solution u* of the integral form (3.6). Thus, we
may obtain an estimate error of the maximal result that is given by

n

* "
u, —u||<
R

Il up —uy Il

AIMS Mathematics Volume 8, Issue 4, 7817-7839.



7829

Therefore, by employing Lemma 3.2, the iterative sequences approach for minimal and maximal
solutions of (3.5) are:

(1) = f (Gutt. P f h |Go(r, D2, 1 (7)) + PR, 11 ()| ()

+ Wo(r) Fa(r, f b |G, DF2( a1 (1)) + PR a1 ()| ' DAPIS (r)dr, > 1.
() = f b[Gp(t, rFa(r, f b [Golr, DF1(J, Va-1(D) + Ya(DA(, Vi1 GD] D' (D)

+ Wy(r) k(r, f (Gt DA v )+ Fa RO v O] S DANIS P, 3 1.
o= [ (Gt FAC | (G a1 + Es R, (] )

+ Wo(r) Fa(r, f b |Go(r, NP, 165, () + B(DRCps 165, ()] &' NANIS (r)dr,  n> 1.
V() = f (Gt Pt f (Gl DA Vs 0D + ¥l DG v D] '

b
+ Ws(r) k(r, f [Go(rs DF1(J: v (D) + YaDR(, v, ON] ' (DAPIS (dr,  n > 1.

Hence, we have

b
u' (1) = lim u,(t), v'@) = f [Gﬁ(t, NF(r, u*(r)) + Ys(r)k(r, u*(r))] ' (r)dr,

b
(1) = lim w(0), V() = f (Gt PIFa(r, (1)) + W )k(rs ()] ' (1)l

This finishes the proof. O

Theorem 3.7. Let (I1)—(Is) be hold. Then the CS (3.5) has unique minimal and maximal solutions.

Proof. We prove firstly that (u*,v*) and (u*, v¥) that are constructed using the iterative sequences u,
and u, in Lemma 3.6 are the minimal and maximal solutions of (3.5). Choose an arbitrary element
w € W with Pw = wand u, < w < u,. As P is increasing and applying Lemma 3.6, we have
u'(t) < w(t) < u*(t), and therefore, u*(¢) and u*(r) are the minimal and maximal fixed points of P
respectively. Hence (u*,v*) and (u*, v*) are the minimal and maximal solution of (3.5) respectively.
Next, for the concern of uniqueness property of minimal and maximal solutions of the system (3.5), let
Uy, Uy € W be the minimal and maximal solutions of Pu = u respectively. Then u,,, < Pu,,, uy > Puy,.
We use u,, and u), as initial iterations respectively so that u,, — u,, and uy, — u),,n — oco. We also
have Pu,, = u;,, Pu), = u;,. To prove u,, = u”, observe that uy < uj,, and P is increasing, so we have u, =
P'uy < P'u;, foreachn € {1,2,3,...}. Then up < u; <up < ... <u, < ... < u,. Therefore from (3.11)

and mathematical induction, it is obvious that || u;, — u, ||=|| P"u;,, — P"up ||< Q" || u;, — up ||— 0 as
n — oo. Therefore || u;, — u" ||= 0 as n — oo, which gives u* = u;,. using the same procedure, we have
u* = u,. Therefore, the minimal and maximal solutions of the CS (3.5) are unique. |
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4. Generalized UH stability of the solutions of FDE (1.1)

The stability analysis of FD systems is the most important qualitative aspect in order to control
such systems. This makes scientists focus on investigations of different types of stability analysis and
specially the UH stability for fractional sense. In this section, we give sufficient conditions that make
the fractional nonlinear system (1.1) is UH stable on the interval [a, b]. For this concern, let us recall
the following auxiliary definitions [15].

Definition 4.1. The fractional system (1.1) is said to be UH stable if we can find a real number Cr, > 0
with the property that, for every € = max{e|, &} > 0 with ¢, > 0 and €, > 0, and for every solution
(u,v) € Cla, b] x Cla, b] of the inequality

{wzfu(t) +Fit v < &, 1€labl,
“4.1)

D) + Fa(tu@®)| < €., t € [a,b],
1 a unique solution (i, v) € Cla, b] X Cla, b] of the proposed BVPs (1.1) with
” (l/t, V) - (ﬁa 1_’Y) ||S Cf,ge’ re [a’ b]

Definition 4.2. The fractional system (1.1) is said to be generalized UH stable if we can find @y, :
[0, 00) — [0, 00) with ®(,(0) = 0, with the property that, for every e = max{e;, &} > 0 with ¢, > 0
and e, > 0, and for every solution (u,v) € Cla, b] X Cla, b] of the inequality (4.1), 3 a unique solution
(i1,v) € Cla, b] x Cla, b] of the proposed BVPs (1.1) with

I (e, v) = (&1, V) ||< Dyg(e).

Remark 4.3. The pair (1, v) € Cla, b] X Cla, b] is said to satisfy the inequality (4.1) if and only if we
can find functions p, g € Cla, b] depending only on (u, v) respectively, that are satisfying

@) |p(®)| < €, |q(t)| < &, for all t € [a, b], and

(i) DZ2u(t) + F1(t,v(1)) = p(t), for all 1 € [a, b] and D> v(1) + Fa(t, u(t)) = q(¢) for all ¢ € [a, b].

Thanks to Remark 4.3 and Lemma 3.1 for ¢ € [a, b], the considered solution (i, v) of the problem

DE2u(®) + Fi(t, (D) = p(t), t € [a,b],
DE2v(t) + Fy(t, u(n)) = q(t), t € [a,b],

u(b) + Aqu(a) = I°F5(T, v(b)), w' (@) = ... = u" V(a) = 0,
v(b) + Agv(a) = IZ2F (T, u(b)), V' (@) = ... = v V(a) = 0,

given by
b
u(t) = f [Galt. 1)
‘ b b
x Fy(r, f |Ga(r, DFa(s, (1)) + Ba(Dk(, u(r)| ' (g — f Gy(r, a9’ ()dy)
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+ W (r) Fa(r, f b |G, DF2(3, u(p)) + Wp()k (s, u(1))| 9 (g
-[ " G, DS DAL (P~ | 6ot PP (dr, 1€ La.b]
o= [ (Gyt.1)
b b
X Fy(r, f [Go(r, D17, V(D) + (DR, V()] O (D] — f Go(r, Dp(N)'(Nd))
Sreral " [Gulr DAY + DRG] &)
- " Gt PP DI (P~ [ Gyt S (Odr, 1 b, (42)
which satisfy the following inequalities
e - [ (Gutt. P | (G a0, ) + R )| &
-[ " G DS D + W) Frtr | (G a0 + Ok )| &

b
_ f Go(rs DaS QAN (Pdr] < € (@), 43)

and
b b b
lv(t) - f Gg(t, r)F(r, f [(Go(r, DF1 (7, v(D) + oD (DA, v(y) ] dj — f Go(r, Dp()d))

b b
+ (N9 (r) k(r, f [Go(r, DF1 (. v(D) + Yo (DD (DA, v(y) ] dj — f Go(r, pp(pdjdr|
< &%.1(a), (4.4)
for t € [a, b].

Theorem 4.4. Let (I))—(ls) be hold. Then the solutions of the CS (1.1) are UH stable and also
generalized UH stable.

Proof. Consider (u,v) be any solution of the inequality (4.1), then by Remark 4.3 and Lemma 3.1, the
pair (u, v) also satisfies the inequalities (4.2)—(4.4). Now assume that (iz, V) is the unique solution of the
CS (1.1), then

i —ull

b b
<l a- f [Go(, PFA(r, f |G, DF2(3, u(p)) + Wp()k (s, u(1))| 9 (g
b
- f Gp(r, Pa(ND'(Ndy) +¥olr)
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X Fa(r, f b |G, DF2(1, u(p)) + Wp(D)k (s, u(1))]| 9 (g

- f b Gp(r, Dg(NS' (NANIH’(rdr) ||

+llu- f " Gott. A f b |G, DF2(3, u(p)) + Wp()k(, u(1))]| 9 (g
- f b[Gﬁ(n DA’ (Nd ) + Yolr)

<Fa [ (G s ) + Ok )| &

-[ " G gD DI P |

SR f (Gt P f b |Go(r, P20, u(1)) + Pk, u(i)| &' (D
- f b Gp(r, Ng(NS' (Nd ) + Po(r)

<Fan [ (Gt DEs ) + ¥ DR (D] & o

- f Gy S NI ) |

+llu- f Gt P f b |G, P20, u()) + Wa(DRG, u()] S (el
- f b[Gﬁ(r, DAY’ (Nd)) + Ya(r)

<Fan [ (G s ) + DR ] & o

- [ "G DS DI P |

a [ (Gt A [ (G a0 50 + BRG] /)
+ Wo(r) Fa(r, f b |Go(r, DFa(1, (1)) + Ba(DK(, 7G| S (DI (rdr

b ‘ b
-1 f [Galt, PFA(r, f |Go(r, DF2(s, (1)) + P, u(1) | &' (D
b

b
- [ 6024 i) + 1) Fir, [ (Gt D000 + B k)] 5

b

- f Galr, Da()S QIS (dr] |
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“lhu- [ (Gt PF A | (G DA ) + ARG )| &

- " Ga(r DS ) + ¥l Folr | (Gt DA ) + By DR )] 5y
-[ " Gt DS DS (i |

<Qlla—u|l +Q f b Go(t, 9 (r)( f b Gp(r, Ng(NS' (DA pdr

b b
e f W19 ()( f Go(rs DS D )dr + 6P (@), @5)

Therefore from inequality (4.5)
la—ull<Qla—ull +(Q + Q)¥os1(@¥s1(a)e + €Fori(a),
Yorr (@1 + () + Q3)¥p1(a)] >0 (4.6)
1-M '

|| Uu—u ||S 6Cf, Cf =

By the same arguments, it is easy to prove that
Ppe1 (@1 + (€ + Q) ¥or1(a)] S
1-M

” V—v ”S Ecga Cg = 0. (47)

Therefore, from inequalities (4.6) and (4.7), we have
I (u,v) = (it,9) |I< emax{Cy, Cy} = €Crg. (4.8)

Therefore the solutions of the CS (1.1) are UH stable. Further, if ®/,(e) = €, hence (4.8) can be
expressed as

| (u, v) = (&, V) [|< Cy @y (6. (4.9)
Therefore, ®£,(0) = 01in (4.9) hold. Thus, results of the CS (1.1) are showed generalized UH stable.
This finishes the proof. |

5. Application

It is well-known that the Riemann-Liouville and Hadamard FD are frequently used as applications
on fractional systems. Let us firstly recall the following remark.

Remark 5.1. If we take $(¢) = ¢, then the FI and FD of a function u with respect to another function
9, is just the respective FI and FD due to Riemann-Liouville.

If H(¢) = Int, then the FI and FD of a function u with respect to another function £, is the Hadamard
FI and FD.

Example 5.2. Let the FDE is given by:
DIV () + Fi(tv(d) = 0, t€[0,1],
DEEY () + Pyt u() = 0, £ € [0, 1],

: (5.1)
u(1) = 0.5u(0) = I F3(1,v(1)), ' (0) = ... = u™(0) = 0,
v(1) = 0.5v(0) = IEV°k(1, 1(1)),V/(0) = ... = v=D(0) = 0,
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where $(7) = (¢ + 1)? is an increasing and positive monotone function on [0, 1] and $'(¢) = 2(¢ + 1) is
continuous and $’(¢) # 0 for each r € [0, 1].
The FI of a function u with respect to another function $H(¢) = (¢ + 1)? is given by
! 2(s + Du(r)dr

1
17D ) = . t>0.
0 UO) C(e) Jo [(t+1)>—(s+ 1)2]@ g

The FD of a function u with respect to another function $H(¢) = (¢ + 1)* is given by

w1y 1 1 d, f’ 2(s + Du(r)dr
Do = o= Gar ) J, [er =+ D

Let U = C([0, 1]), be the Banach space with || u ||= maxe 17 [u(?)|. Then the CS (5.1) has the integral
representation

t>0.

ut) = [ 20 + D[ Galt. IFL (o v(r) + 2T Fr vy dr, 1€ [0,1], 52
v(0) = [ 200+ D[ Galt, Fa(ru(r) + Bk ()|, 1 € [0, 11, '
where
2[4=(s+ DA [+ D2 =+ 1] O<r<t<l
Ga(t’ }") = 2[4—(r+1)2]""l r(a')
—fa 0<t<r<l,
and
2[4-(r+ 1P [+ 12— (r+ 1) 0O<r<t<l
Gp(t, 1) = {2[4—(r+1)21/3-1 v 0<t<r<l1
F—(,B)’ <tLr<l1.
The functions G, G satisty the following property:
1 2(30 1 2(3/5)
G,(t, ) (r)dr < , Gs(t, )9 (r)dr < .
fo (t, NS (ndr T+ D) fo 51, )9 (r)dr TG+
Also, we have , ,
2[4 — (r + 1)2]°! 2[4 - (5 + 1)*P!
W, (1) = W) = 2 .
[(@) I'p)
The CS (5.2) can be written as follows
1
ut) = f 2(r + D [Go(t, NF1(r,v(n) + Wo(r) F3(r,v(r)] dr
0
1 1
= [ 20+ DGR, [ 204 D ]G DU + BRG] )
0 0
1
+ Wo(PFs(r, f 27+ D) |G, DF2(1, u(p)) + Bk u() | d)ldr,
0
(5.3)

1
v = f 2r + 1| Gplt, PIF2(r, u(r) + Vs (rk(r, u(r)) | dr
0

1 1
=:1IKF+DK%OJWxnl:2U+1HGdnﬁFmLWﬁ)+TAﬁMLWﬁﬂdﬁ

1
+ Wp(r)k(r, fo 27+ D [Go(r, DF1(7,v() + Yo (DA, v()] d pdr.
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We define P : W — W where W c U = C([0, 1]) is an operator given by

1 1
P(u(t)) = fo 2(r + D[Go(2, r)F (1, fo 2(y +1)[Gﬁ(r,J)Fz(J,u(J))+‘P5(J)k(1,u(1))]dj)
(5.4)

1
+ P (rF5(r, fo 20 + D) Gar, Fa(.u(1)) + Bk, ()| d ).

Then P is an increasing operator that satisfies

43" Q1 + Q3)(Q + Q)

P(u;(t)) — P(u;(1)) |I< =
| P(ui(1)) — P(u;(0)) | Tat DG+ 1) Il ui = uj |l
Moreover, the operator P is continuous and also satisfies
23" (Q) + Q 23 CH(Q) + Q 2(3¢
| Pu(D) |< (377) (2 + 3)||u||+( )C2(Q) + 3)+ ( )(C1+C3)S ’
[+ DI@BG+1) [+ DIBG+1) [Na+1)

then the operator P is bounded.

By Lemma 3.6, if the conditions (/,)—(/s) are satisfied, then the solutions of the problem (5.1) can
be given iteratively by a convergent sequence which converges to an integral solution. Moreover, using
Theorem 3.7, the CS (5.1) has unique minimal and maximal results.

Example 5.3. Consider the following CS:

3,(+1)? v
Dy, u(n) + lOe’(tt+2)12 1|+|(vt()l)| =0,
$ 41y u
Dy, V(1) + 20(;@)8 1|+L(z?(|t) =0,v (5.5)
u() = 0.5u(0) = I3, Fa(1,v(1), ' (0) = ... = u*D(0) = 0,
v(1) = 0.50(0) = I, k(1 u(1),(0) = ... = v=D(0) = 0,
with 5 8
a/=§,,3=§, a=0,T=1,
V(o) t |u(1)]
F (. V(1)) = Fa(z, u(®)) =
1( ,V( )) 1061(1, + 2)12 1 + |V(t)|’ 2( ’ u( )) 20([’ + 3)8 1 + Mz(t)
Vi R0 VB o e
F3(l" V(t)) = F4(t’ M(t)) =

102(t + 2)10 1 + '@’ 20(t + 3)8 1 + ev®”

We can check easily that all the assumptions of Theorem 3.7 are satisfied with
n=3,0,=244x107, 0 =7.62%x107%, Q3 =6.63x 107%, Oy =5.17 x 107,

Y55(0) = 9.38117, ‘I’%(O) =24.8851, M =9.265x 107 < 1.

Then by Theorem 3.7, the CS (5.5) has unique minimal and maximal solutions respectively.
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The iterative sequences for the approximation of minimal and maximal solutions (u,, v,) and (u}, v;)
respectively are:

Uun(1) = fol 20r + D [Go(t, NF 1 (1, v () + Yo (r) F3(r, v (n)] dr (5.6)
val) = [} 200+ D[ Gplt. P2 o1 (1)) + ¥5(r) Falr, ()| dr ’
and 1
{u;;(t) = [ 200 + D) [Galt, IF (1, (1) + Walr) F3(rvi_, (M) dr, 57)

Va0 = [ 200+ DGyt IFa(r () + Ps(r) Falruis_ ()| dr.

Hence, we have
1
u() = lim u, (), v(p) = f 2(r + 1) |Gyt IF2(r,u(r) + Po(k(r, u(r) | dr,
n—eo 0
and 1
u'(t) = limuw,(¢), v = f 2(r+1) [Gﬂ(t, NF(r, u*(r)) + Ys(r)k(r, u*(r))] dr.
n—eo 0

Let (up,vo) = (=0.01,-0.01), and (x5, v;) = (0.01,0.01) is the minimal and maximal results of the
system (5.5) respectively, therefore, the corresponding maximum error estimates (n = 3) are given as:

3

lu—-us| < | uy = uo I< 7.95 x 10722 X sup |u;(£) + 0.01] < 7.95 x 107,
1-Q 1€[0,1]
3
lu —us |l < |y — u} |< 7.95 % 10722 x sup [0.01 — u}(¢)] < 7.95 x 107

T 1-Q 1€[0,1]
Since M < 1, the CS (5.5) is UH stable and then generalized UH stable.

6. Conclusions

In this paper, we investigate the existence of unique maximal and minimal solutions for a
differential coupled system involving some generalized fractional derivative of arbitrary order using
iterative technique. Moreover, the generalized Ulam-Hyers stability of the solution is also considered.
We present examples to demonstrate consistency to the main results.

Actually, by using green’s function and iterative technique, we considered a generalized fractional
system of arbitrary order together with a new type of nonperiodic boundary integral conditions. This
might be a novel approach that will provide substantial potential for developing more new ideas in this
field.

The results of this paper can be extended to multiple system of fractional equations with nonlocal
integrodifferential conditions. Indeed, this fractional system of multiple equations along with new
boundary conditions can be considered and discussed. Finally, the results of this paper can be extended
to by using proportional fractional derivative or conformable definitions. We leave such investigations
of these topics as future work for interested readers.
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