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Abstract: In this paper, we mainly study the following boundary value problems of fractional
discontinuous differential equations with impulses:

COY A1) = E@F (1, A1), ae. 1 € Q,
A=y, = OUAE)), k= 1,2, -+, m,
AA’lt:t,( = 09 K= 1’ 29 N ([

1
IANO0) — xA(D) = [ 01()A@)dv,

IN(0) = SA'(1) = [ 2()A)dv,

where d > y >0, { >6>0,d, € CR",R"),E, 01, 00>0a.e.onQ=][0,1],8, o1, 0» € L'(0,1) and
F:[0,1]xR* - R*, R* = [0, +0). By using Krasnosel skii’s fixed point theorem for discontinuous
operators on cones, some sufficient conditions for the existence of single or multiple positive solutions
for the above discontinuous differential system are established. An example is given to confirm the
main results in the end.
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1. Introduction

Fractional calculus has been widely and deeply used in many fields, for example, continuum
mechanics, control theory of dynamical systems, and so on. For this reason, fractional differential
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equations (FDEs, in short), as a useful tool to model the dynamics of numerous physical systems,
have gained considerable popularity in physics, population dynamics, chemical technology, control of
dynamical systems, etc. For further details on FDEs, see [1-3] and their references.

In the last few decades, as a significant branch of FDEs, impulsive differential equation (IDE, for
short), which provides a natural description of observed evolution processes, has been emerging as a
very meaningful research area. In addition, IDEs are also as important mathematical tools for better
understanding real-world problems (see, for instance, [4—8]). Hence, many authors have used IDEs to
describe some phenomenon with abrupt changes, such as, harvest, disease, control theory of dynamical
systems and so on. For example, [9-11] researched some different types IDEs, which are nonlinear
impulsive differential systems with infinite delays, impulsive neural networks, singularly perturbed
nonlinear impulsive differential systems with delays of small parameter, respectively. Moreover, [12]
studied persistence of delayed cooperative models by means of impulsive control method.

Meanwhile, boundary value problems (BVPs, for short) of IDEs have been researched extensively
and deeply. Correspondingly, many scholars have studied some BVPs of fractional differential
equations (FIDEs, for short) and obtain lots of important conclusions. For example, [13] researched
singular semipositive BVPs of fourth-order differential systems with parameters. [14] studied a class of
BVPs for nonlinear fractional Kirchhoff equations and obtained the existence of multiple sign-changing
solutions.

As far as we know, continuity is a fundamental assumption in degree theory. However, there are a lot
of discontinuous differential equations in many areas, such as, automatic control, neural network, etc.
Because of the corresponding operators are not continuous, general topological degree theory is invalid
to studying the existence of solutions for most discontinuous differential equations, such as, [20,21]. To
overcome this problem, a new definition of topological degree for a class of discontinuous operators is
introduced by R. Figueroa et al. Subsequently, a number of fixed point theorems for such operators are
derived in [16], such as, Schauder-type and Krasnoselskii’s theorem for discontinuous operators. Then
they are used to solve discontinuous differential systems. For example, [17] considered the existence
for a class of second-order discountious BVPs by constructing a closed-convex Krasovskij envelope
and Schauder-type theorem for discontinuous operators. [18] researched a class of BVPs of second-
order discontinuous differential equations with impulse effects by using the nonlinear alternative of
Krasnoselskii’s fixed point theorem for discontinuous operators on cones.

However, to our best knowledge, there are few studies on multiple solutions for integral boundary
value problems of fractional discontinuous differential equations with impulse effects. The purpose of
present paper is to fill this gap.

Motivated by the above discussions, this paper studies multiple solutions for the following boundary
value problem:

CON A1) = EOF (1, A1), ae.t€ Q'
A=, = (A1), k=1, 2, -+, m,
AN =, =0, k=1,2, .-+, m, (1.1)

PAO) ~ XA = [ 01IA@I,
IN(0) - SA'(1) = [ (A,

where DY, is the Caputo fractional derivative with 7, 1 < R < 2,9 >y >0, { > > 0,&; €
CR*"R"), &, 01, 02 = 0ae. onJ = [0,1], 0" = Q\{r, -+, tu}, & 01, 02 € LY0,1), F :
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OXR" > R, R" = [0,400),0 <1, <t < -+ <ty < 1. AA|=,, AN'|=, denote the jump of
A(t) and A’(¢) at t = 1, , respectively. This paper has the following innovations and features. Firstly,
BVP (1.1) is of fractional discontinuous differential equations with instantaneous impulse effects. The
nonlinearity ¥ here is discontinuous over countable families of curve [22]. Secondly, the boundary
value condition considered here is of integral type. It makes BVP (1.1) more widely applicable in
solving practical problems. Thirdly, the used approach in this paper has certain advantages over some
reference as above. In detail, the distinctive tool used here is multivalued analysis in the study of
discontinuous problems and the novelty is the use of multivalued analysis to obtain results for single-
valued operators. Compared with [18], we redefine the admissible continuous curves for the new
system (1.1). At the same time, a suitable cone is established by researching properties of Green’s
function deeply. Therefore, the positive solutions can be obtained by means of Krasnoselskii’s fixed
point theorem for discontinuous operators on cones.

The rest of this paper is organized as follows. Some basic definitions and notations are contained in
Section 2. Section 3 presents the main results. Finally, an illustrative example is given in Section 4.

2. Preliminaries

In this section, we first introduce some definitions and lemmas that are used in this paper.

Definition 2.1. ! The Riemann-Liouville fractional integral of order R € R* of a function F on
interval (a, ) is defined as follows:

(IR F)(7) = % f (t — V) F(v)dv.

Definition 2.2. ! The Caputo fractional derivative of order R € R* of a function F on interval (a, B)
is defined as follows:

Cq R _ 1 ft _ o \n—R-1p(n)
COWFO = po—gy | €= o PPy,
Let

PC(Q) = {A:[0,1] > R,A € C(Q"), and A(t)), A(t,) exists,
and A(t,) = A(t,), 1 <k <mj,

and

PCY(Q) = {A:[0,1] > R,A € PC(Q), DA € PC(Q), Dy 'AE)), CONAN(L])
exists, and ,CZ)?;_]A(t;) = ,CZ)g{f]A(tK), 1 <k <mj.

Obviously, they are Banach spaces with the norm

IAllo = supo<i<i|A(@)]

and
Al = max{||Allo, I€DF" Allo},
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respectively.
1
For the sake of simplicity, let %, = [ o,)dv, Q; = N (G = L2, % =
-X
1 (9 - )()v+)( Q, -
dv, I’y = (1 - 1-9)—P1Q and Qi = , .
fo ~ 0 =0° 0j(W)dv, Ty = (1 —P)( 1) — P, and Qy maX{F(g’—(S) F({—(S)}

Lemma 23. If (1 = B)(1 = Q) # P1Qy, for H € L(Q, RY), the following boundary value problem

COYA(@) = H(1), ae.t €,

ANz, = O(A@)), k=1, 2, -, m,

ANz, =0, k=1,2, -+, m, 2.1
IA0) - yA() = [ : 1Ql(u)/\(u)du,

{N0) = 6N (1) = [} 02()A(w)dv,

has a solution

A1) = f H,(t,V)H(v)dv + Z H (2, 1;)D;(A(1y)),

i=1

where ,
1
Hi(t,v) = R(t,v) + ) 9al0) f N, Noa(t)dr,
n=1 0
X o), 0<t<t<l;
v —-x
Hy(t,t;) =
ﬂi( 2o, 0<t<t<]l,
oty = EZO0=B2) e+ 0 = 011
: @& - B - )T, ’
oat) = (=B +[x + (@ -]l - Q)
? ® - x)( = )T '
and

x(1 —v)*! N 6 + (& — x)or](1 — v)* 2 N (t—v)?! <
Ny = 1@—0T® " @-AHEC-Or® -1~ TE®
’ x(1—v)"! N 6 + (& — Y)ér](1 — )2
(= x)I'RN) @ - -Hr®R-1) ’
Proof. Let A be a general solution on each interval (z,,#.1] («k =0, 1, 2, ---, m). By integrating
both sides of Eq (2.1), one can obtain that

A®) = % fo (t — )" 'DW)dv - ¢, — dt, fort € (te, teril, (2.2)
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where 1, = 0, t,,.1 = 1. Then,

N(t) =

t o \®-2 B
F(‘R—l)f(;(t V)" 7 H(W)dv —d, t € (L, L]

In view of Eq (2.1), we get

1 1 1
—tco - X[@ fo (1 - v)"'SW)dv - ¢, —d] = fo o1(W)A)dv, (2.3)
1 1 1
~d - 5[m fo (1-v)"?H)dv —d] = fo 02(V)A)dv, (2.4)
Ce-1 — € = P (A1), (2.5)
and 1
§
I oxwAw)dv + O L (1 - )" Hw)dv
d=— . (2.6)
[—6
From (2.3), (2.5) and (2.6), one can easily get that
1 1 9% 1
Co = - m[ fo o1 (WA)dv + % f (I- H(w)dv +XZ Di(A(t:)
e R
(ER
+ 70 5 I, (2.7)

and

Cx

co - Z O,(A(1)

1 m
o f oA+ 2 [ (1= v+ ) AW
i=1

(‘R)

Xy 02 A@)dv + m — f (1-0)"25w)dv)

0
* = 1~ Z} A1), 2.8)

Hence, (2.7) and (2.8) imply that

1
Co+dt = - m[f o1(WA@)dy + Tiﬂ)f (1 - ™' S)dv +XZ D(A(1)

x(fy e2w)A@)dv + = ER — f (1 -v)"2Hwdv) &
v (g — 1= 3 @A)
i=1
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7201

1
i exA@)dv + T fo (1= 0" 2 w)dy
+[- =6 ]t
1
oaWAWdv (9 - 1
R e [ eonos

el
e X)F(‘R)f (1 =)™ Sy

_Ol@ -t +x] 1 f e )
Q=)= TR-1) Jy (1 -v)""HW)dv

- A D AW - ) DUA®). (2.9)
X o i=1

fork =0, 1, 2, ---, m. Now substituting (2.9) into (2.2), for t € Qy = [0, #],

b o@Awdy @ -priy [
v —-x @ = x)¢ = 6) Jo

! 1
X %1 O — )t + x] 1 f e
NG =T f (=S = T J, 7 S

1 !
A = ) fo (t — )" H)du + 0>(V)A(v)dv

<r D (-0 5t gt (-
= d
f To T o—orm T -0 -0 Tm—1) PV
+f' [X(l — )l . X0 + (% — )t (1 —v)*2
@ —oT® " -0 -0) TE-1)

1
02()A(v)dv

19W)dv

-t +x
@ =) =6) Jo

+

1
f o1(W)A()dv +
-x Jo

1 ! @-t+x [
Y fo o1(WA(v)dv + G-0C=0J 0 (V)A(v)dv

1
= f(; R, $)H(W)dv + 3

X m
g 2, A,

i=1

Then,
1 1 . 1 1
f o1() f Nw, Dh(Ddidy = (1 - Q) f WA@Y — B f o)Ay
0 0 0 0
£ auam,
X T
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1 1 1 1
f 02(v) f N, Dh(Ddtdv = - f o1(WA@)dv + (1 = B,) f 22 WA@W)dy
0 0 0 0

1> duam,
X T

_5212 3

Hence,

1 1 1 1 . m
f oiWA)dv = —[(1 —P2)( f 01(v) f N, )9H(0dtdv + U, ad Z O;(A(1)))
0 Iy 0 0 o -x i=1

1 1 m
([ e [ SwDsGdy + Y o),
0 0 —X 5

1 1 1 1 o m
f WALy = —[Q f 01(v) f N, DS@drdv + W= 3" D)
0 I 0 0 d-x P

1 1 m
(1 - 2y f 0:(v) f N D90y + W2 N @A),
0 0 X O

which show that

1

G=0t+x " o)A@y

A 7 v
© G —0C=0 Jo

1 1
f N, v)H(w)dv + f o1(W)A(v)dv +
0 0

m
=1

v -x
X
0=y 4

1

+

DQ;(A(1))

1 1 1 m
- [ sevsers oo [ aw [ NeDs@d@ a2 Y om6)
0 0 0 —X 5

1 1 m
+o2(0) f ) f N, DS@didy + W2 DA1)]
0 0 X T

+

X m
(D,‘A i
i ,-; (A1)

1 2 1 1
= f R(t, VSV + ) @] f 0n(v) f N, DS didv
0 pr 0 0

U, DT AW+ 52— D OA®))
X i=1

U —x &

1 2 1 1
= f R(t, V)W)V + > (0 f (D f N(T, v)$)dvdi
0 o 0 0

XN XN
+?Inﬂ ; Q;(A1:)] + 9 —x ; D;(A(t))
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1 2 1 1
| Nevswidv e Yol [ Sw) [ NG e, @dits
0 - 0 0

U, DT A+ 52— D OA®)
—X T i=1

P — x 4
1 2 L _

f [N, v) + ) @) f NG ) (DN w)dv
0 pr 0

X
V- x

+[

2 m
+ (Z1 ﬂ"fxmn%(t))] Zl DAA))

1 m
[ s+ ) 0w,
0 i=1

Similar to the above process, for t € Q, = (¢, ty+1], we have

A1)

AIMS Mathematics

1

W0t x (7 )A@)d

(@ = x)(& = 6) Jo

1 1
f Rt 0)$()dv + — f o1 (WA@W)dv +
0 ﬁ 0

+

S D DA + Y DA
X i=1

1 1 1
f N, v)H(v)dv + 901(f)[f Ql(U)f N, N9(1)drdv
0 0 0

m K 1 1

(2 — 2, QA + D QAT + 9201 fo () fo N(, D9 Ddidv
i=1 i=1

(2 = 2, QiAW)+ ) OuAE)]
i=1 i=1

2D DA + ) D)

X i=1
1 2 1 1 .
f R(t,)S)dv+ ) (0] f 0u(v) f N, DD didy
0 ) 0 0
(A= AW + Y DUAGD] + 52— 3 AW + ) DA()
X i=1 X i=1

1 2 1 1
f R(t,v)S)dv+ ) @0 f 0n(1) f O, v)S(W)dudi
0 e 0 0

S D DAW) + ) DA
X o i=1

X m K
A Z] DA (L)) + Z] D(AL)))] +

1 2 1 1
[ Nevsw+ Yot [ sw) [ oGOy
0 p— 0 0

Volume 8, Issue 3, 7196-7224.
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X

DA (1) + )| DilA®)

i=1

X m K
(G Zl D;(A(1) + Z‘ QAE)] + ,

m
=1

1 2 1
f [N, v) + ) @) f (@, v)eu(DdNHw)dv
0 =1 0

2 m
X X
g+ (Zl 7] Q) @A)

i=k+1

) +
U -x

+[

2 ’0 K
(Zl 7= en()] Zl D;(A(t:))

1 m
[ Heoses+ Y Hatt A
i=1

The proof is completed. O

We assume that the following condition is satisfied in this paper:
HD Q) <1, B < I, (1 = QI = PB2) > P Q.

Lemma 2.4. The functions H, and H, have the following properties:
(1)forallt, ve[0,1], i=1, ---, m, H(t,v) >0, Hy(t,t;,) >0;
(2)forallt, vel0,1], > M) < m(v) < Hi(t,v) < M),
(3)forallt €[0,1], i=1, ---, m, 1 H,(1,0) < H(t,t;)) < H(1,0);

(4) for all v € [0, 1], maxco,1 ,CD?;:W‘G (t,v) < (v);

1
I3 - ER)M

e 1 .
(5) maxeo,1] tC‘D(J)?+ 17'{2(l, ti) < mﬂz(l,()), i=1,2, -, m,

where

2 1
M) = @) + > @all) fo N(v, Don(Ddr,
n=1

2 1
m) = 0i8) + ) ¢a(0) f N, Do (D,
n=1 0

_x(1 - . P6(1 — v)*2 N 1
T @-TR) @ - -Or®R-1) IR

a(v)

2
1+ 3 W, (0)

n=1

2
1+ 2 Wp,(1)
n=1

DU S ¢ (O ) e
@ =T~ @ = - &R -1

II =

I,

, I = minve[O,l][

AIMS Mathematics Volume 8, Issue 3, 7196-7224.
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XTI (BT, o = X711
e A
ITORI, + x 9

Proof. First, it is easy to see that

and d; =

Wl(l, S), 7’(2(t, fi) > 0,

forallz, ve[0,1],i=1, 2, ---, m. For given v € [0, 1], we can get N(, v) is increasing with respect
to ¢ for t € Q by the definition of N(¢, v). Then,
x(1 —v)*! P6(1 — v)*2 1

PV S G ot T @0 —orm -1 T te - oW

N(

and

x(1 —v)*! N xo(1 —v)*? (t—v)*!
Ney) o @G-l @G-l -1 I'(R)
g(v) y(1 —v)¥-! . 36(1 — v)*2 . 1
@ = IR) G- ){-O)R-1) TR
x(1 —v)*! N xo6(1 —v)"?
L G=T®) @ -0 -Ore- 1)
T (1 =)l N 36(1 — v)*2 N 1
@ —0T " =0 ~5Te ~1) " T
) T
; Y(1 — )™t . Yo(1 — )2
@ =R @ - -OIR-1)

= bl.

FR)[ ]

1
1

TR,

>
9
-+
X
Hence,
dig(v) < N(t,v) < g(v), forallt, ve [0,1],

and
IM®w) < m(v) £ Hi(t,v) < M(u), forallt, v e [0,1].

The proof of (3) is given below.
On the one hand, from the definition of H;(¢, ;) and ¢,(1)(n = 1,2), for 0 <t < t; < 1, it is easily to
see that

Hy(t, 1)
H>(1,0)

2
X X

+ A,y 0, (1)
9 - x ﬁ—»«;
9 9 <
—+—— ) Wyp,(1)

AIMS Mathematics Volume 8, Issue 3, 7196-7224.
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L+ 3 Wpn(0)

Z§PJ;——H
1+ 3 Wn(1)
n=1
X
= =II =0,.
19 2

On the other hand, for 0 <7 <t < 1, we get

2

Z,M@

2
W (1)
19 -X 19 21

1+ Z A, 04(0)

n=1

Hy(t, 1)
H>(1,0)

2
L+ 3 Wp,(1)
n=1
= I
Therefore,
0, Hr(1,0) < Hy(t,t;) < H(1,0),
forallte€[0,1],i=1, 2, ---, m.

Next, by calculation, one can obtain that

5(1 _ U)‘J?—2t2—9?

+1, 0< <
ot = | € O DTG

) 0<tr<
(=M - DHIG -x)

2 1
fﬁ?wmwhﬁbﬁwmw+§ﬁﬁﬁwmnfxwﬁ@®ﬁ
— 0

and
2
ﬂL Z‘Iln[ CON 0], 0<t<;<I;
f@omflq'{z(l‘, U) = ﬂX n;l
— ) WDy (0], 0<r<r<l
9 -X HZ:; t =0
Hence,

AIMS Mathematics Volume 8, Issue 3, 7196-7224.



7207

. 1
MaX,e[0.1] ,CZ)(J;+ l:~<(t, v) < mg(v), forallv e [0,1],

1
maxeo,y ; Dy Hit,v) < TGN forallveo. 1)

1 .
maXeo,1] ICD(V 7‘(2(1‘ t;) < m(]{z(l,()), i=1,2, -, m

Hence, (4) and (5) are valid. O

Lemma 2.5. %/ The set T c PC([0, 1], R") is relatively compact if and only if

(1) Y is bounded, that is, ||@|| < C for each ¢ € Y and some C > 0.

(2) Y is quasi-equicontinuous in (t,._1,t](k € N), that is to say, for any € > 0, there exists 6 > 0 such
that

(1) — p(r)l < €
fOV all deY t,t € (te1,t] with |t; — t2| < 6.

Let Q be a nonempty open subset of a Banach space (X, || - [|). T: Q — X is an operator, where T
may be discontinuous.

Definition 2.6. [15] The closed-convex Krasovskij envelope (cc-envelope, for short) of an operator
T : Q — X is the multivalued mapping T : Q — 2% given by

TA = ﬂ coT (B.(A) N Q) for every A € Q,

>0

where co means closed convex hull, B.(A) is the closed ball centered at A and radius &.

Lemma 2.7. 51 A € TA if for every € > 0 and every p > 0 there exist m € N and a finite family of

vectors A; € Bs(A) N Qand coefficients r; € [0, 1](i = 1,2,--- ,m) such that ), nr; = 1 and
i=1

IA= > mT Al < p.

i=1

Next, we introduce Krasnoselskii’s fixed point theorems for discontinuous operators on cones. Let
P be a cone of Banach space X. Then, P defines the partial ordering in given by A < A if and only if
A-A€P. For A, A € P, the set [A, A] {A eP:A<Ac< A} is an order interval with A < A.
Denote Pg = {A € P : ||A|| < R}, for given R > 0.

AIMS Mathematics Volume 8, Issue 3, 7196-7224.
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Lemma 2.8. 9/ Let R > 0, 0 € Q; C Py be relatively open subsets of P (i = 1,2). T : Px = Pisa
mapping, where T Py is relatively compact and it fulfills condition

ANTA C{TA} (2.10)

in ﬁR.

(a)For all A € 0Q(A > 1), if AN ¢ TA, then i(T, Q, P) = 1.

(b)For every € > 0 and all A € P with A € 0L, if there exists £ € P(€ # 0) such that A ¢ TA + {w,
then i(7T, £,, P)=0.

Lemma 2.9. /%! Assume that one of the following two conditions holds:
(i) A Z A for all A € TA with A € P and Al = 7.
(ii) ||A|| < ||Al| for all A € TA and all A € P with IA]l = 7.
Then, Condition (a) in Lemma 2.8 is satisfied.
Analogously, if one of the following two conditions holds:
(i) A £ AforallA € TA with A € P and ||A|| = r.
(ii) If||A|| > ||Al| for all A € TA and all A € P with Al = rs.
Then, assumption (b) in Lemma 2.8 holds.

For the discontinuous nonlinearities f, we define the admissible discontinuities curves.

Definition 2.10. We say thath : Q — R*, h € PC'(Q) is an admissible discontinuity curve for the
differential system (1.1) if i satisfies AR |=, = 0 = 1, ..., m), the boundary value conditions of (1.1)
and one of the following conditions holds:
(i)
{ CORN(t) = EQF (1, 7(D)), ae.t €, @.11)
A=y, = P (Ri(te)), k=1, -, m, '

(ii) there exist G, é e L'(J), G, é(t) >0ae forte[0,1,S,0cJ, mS NO)=0,m(S UO) >0,
and & > 0 such that

CONT(t) + G(t) < EWF(t,x), ace.t €O, x € [A(t) — & h(t) + &,
CON R - G() > EWOF(1, %), ae. t €S, x € [A(1) — & (1) + €],

COM () = EWOF (L (D), a.e.t€ Q' \ (S UO), (2.12)
ARz, = O (R(t)), k=1, ---, m,
(iii) there exist k € {1, 2, ---, m} such that
COL () = EOF (1, I(D), ae.t€ Q)
{ AR, # D (R(2)), (2.13)

(iv) there exists G, G € L'(®), G(t), G(t) > O a.e. fort € [0,1], S, ® € ©, m(S NB) = 0, m(S UB) > 0,
ande >0,k €{l, 2, ---, m} such that

AIMS Mathematics Volume 8, Issue 3, 7196-7224.
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,CZ)?)ﬂh(t) +G@) < EDF(1,AN), ae. 1 €O, x € [h?) — & k) + €],
,Cl)gjz(t) —G(t) > EDF(t,x), a.e.t €S, x € [h(t) — & () + €],
,CDgﬁ(t) = E(F(t, (1)), ae.t € Q' \ (S UO),

A=, # Du(Ni(t,)).

(2.14)

Then, we assert that h is viable for BVP (1.1) if (i) is satisfied; we say that h is inviable if one of
(ii)-(iv) is satisfied.

3. Existence results

Let E = PC'[0,1], P :={A € Z: A@®) = d||A]l, Yt € [0,1]}(d = T'(3 — R)d3, d3 = min{d;, d,}) and
P, :={A € P : ||All} < r}. In order to apply Krasnoselskii’s compression-expansion type fixed point
theorems for discontinuous operators to BVP (1.1), we recall that if A is a solution of the following
equation:

1 m
AW = f Hi(t, )ES)F(s, A@)dv + D Folt, ) DA, 3.1)
0 i=1

then A € Z is a solution of BVP (1.1).
Define an operator 7 : ¥ — E as follows:

1 m
TA®) := f H (2, HESF(s, AW)dv + D Halt, YDIA®)), A € P. (32)
0

i=1

For any A € P, T A is well defined by & € L(0, 1), the continuity of H; and the assumption of F.
One can see that the existence of positive fixed points of 7 implies the existence of positive solutions
for BVP (1.1).

Subsequently, let

1 1
Ny = (f M@)s)dv)™, Ny = (f m()gW)dv)™,
0 0

1 1
No = Gupany [ SO 00 N = nfiansy [ ED900, v
0 0

Ns = supieo 1y, ieq1, - myHo(t, 1), No = infiepon, iett, - mHo(t, 1),
C -1 - C -1
N7 = supieoy, iett, —my ¢ Dy Ho(t, 1), Ng = inficio1, ieqt, - my ¢ Doy Halt, 1;).

Now, we are in position to give the assumptions satisfied throughout the paper.
(H2)F : O xR* — R* satisfies:

(a)t € Q - F(-,A) is measurable for any A € R";
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(b)For a.e. t € Q and all A € [0, r], there exists R > 0 such that F(z, A) < R for each r > 0.
(H3) &(¢) > 0 almost everywhere for ¢ € [0, 1] and & is measurable.

(H4) Admissible discontinuity curves 7, : Q — R¥(n € N) satisfy that the function A — F(t, A) is
continuous in [0, 00) \ |, ni7,()} for a.e. t € Q.

.. . F@&N) 1 U lim oA 5 1 )
(HS) /\ll_)rl(;l+ tEl[r(l),f;] A > E[F + N6] A—>0+ A > E[FZ + N6]
F@t,A) O(A) )
(HO) lim sup —2 6[ /\/1 +mNsI™, lim = 6[ N1 sI
F@t,A) . D (A) _
H7) 1 1
(D) i Sop A 6[N1 AT, gy S8 < Gl el
F(t,A) 4 . DA 51
(H8) lim da% —A E[M HmNel™ lim == > gl el
Lemma 3.1. The operator 7 : P — P is well-defined and maps bounded sets into relatively compact
sets.
Proof. In view of the nonnegativity of F, H;, H,, O (k =1, ---, m)and E() > 0 fora.e. t € Q,

we conclude that 7A(f) > O for ¢t € [0, 1]. Hence, 7 : £ — P is well-defined.
Then, by calculation, for A € P, it is easy to see

R VINGE f [ D5 Hi(1, IEWIF (v, Aw))dv + Z[ r Doy Hot, 1)1 Di(A L)),

where NP
{(;SRU)II{3 R +1, O0<v<rt<l;
o = | € OTC = DTG =)
(1 —v)"
, <t<wv<l,
=R -DI'3G-N)
2 1
CON ' Hi(t,v) = CDYNEv) + ) [ CDN (1)) f R(v, Do, ()dt,
n=1 0
and

2

- DD 0], 0<r<h<;
(O Ay =1
—— ) WD ()], 0<t<t<].
9 py Z:; t 0
By Lemma 2.4, one can get that

1
df DG T Al = maxieponl f (F Dy Hu (1, v)EW)F (v, Aw))dv
0
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+ ) (CDYN o, 1) DA )]
i=1

IA

1 m
s f M@EWF, Aw)du + Y Ho(1,0)D,(A(1:)]
0 i=1

IA

1 m
f m(W)EW)F (v, A(v))dv + Z Hy(0, 1)D;(A(2;))
0 i=1
n’Iil’ltE[()’l]TA(T).

Thinking about it from the other side, we have

1 m
DT Al < f M@EWF@, Aw)dv + Y Ho(1,0)D(A(1:)]
0 i=1

IA

1 m
f m()EW)F (v, A(v))dv + Z H,(0, 1)D:(A(t:))
0 i=1
min,e[o,l]TA(t).

Therefore,
mineio T A1) = d(w) max{||T Allo, || Dy ' T Allo} = 2T Ally.

Next, we notice that there exists M, > O such that
DO (A) < M, for Ael0,r],

where k = 1, 2, ---, m for each r > 0. Therefore, 7 (#,) is bounded by (H2).
Moreover, we have
COLT AW = EOF(t, A1) < RE®),

forany A € P, and a.e. t € Q,.
Therefore,

3 1
PO (T M®) — DR (T M)l < ﬁ CDI(T A)(Pldr < ﬁ RE(rdr,

I3l 4]

where7;, 7, € Q. Hence, 7 (P,) is relatively compact. o

Lemma 3.2. Let T be the cc-envelope of the operator T : Pr — P. If (H4) is satisfied, then
ANTA C{T A}, forall A € Pp.

Proof. Let 33, = {t € O : A(¢) = h,(t)}(n € N). Fix A € Py and we think about three cases below.
Case 1: m(2,) = 0 foralln € N,
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If A, = A in Py, by (H4), it is easy to see that F(z, A(t)) — F(t, A(?)) for a.e. t € Q . This, together
with (H2) and (H3), implies that
T A — TAin Pyp.

Hence 7 is continuous at A. Hence, TA = 7 A.

Case 2: there exists n € N such that 7, is inviable and m(23,) > 0. Let B = {n : m(2W,) >
0, 7, is inviable}. Case 2 will be demonstrated in three subcases.

Case 2.1: The above 7, satisfies (i) in Diﬁnition 2.10. _
By (ii) in Definition 2.10, there exist G, G € L'(Q’), G(t), G(t) > 0 fora.e.t € [0,1],S,, ©, C O,
m(S,N0,) =0 mS,U, >0,and € > 0 such that

CORN() + G(t) < EOF(t,hy(D)), a.e.t €O, A € [h,(1) — & Ti(t) + £],
CON (1) — G(1) > E@F (1,1, (1)), a.e. t €S,, A€ [h(1) — & h,(1) + €],
CORN() = EQF (1, Ry (1)), a.e.t€ Q' \ (S, UB,),

A7/Lln|t:tk = CDK(hn(tk))» k=1, m.

(3.3)

M m{r e S, UO,A(F) =h,(1)}) =0foralln € B.

By m({t € S, U ®,|A() = h,(1)}) = 0, for a.e. t € W,,, one can obtain that
CONB(1) = EWOF(A, Ty (1))

This is,
COYAWM = EWF @A), te| |,
neB
For each k € N, on account of A € TA, there exist functions A,; € Bi(A) N Pr and coeflicients
p
A, €10,1]1G =1, 2,---, m(p)) such that

and
m(p)

1
1A= 2 AT Al < =
i=1

1
by Lemma 2.7 withe = p = —.
p
m(p)
Denote V, = 3 4,7 A,;. If p— ooin Q, we can see that V,, — A uniformly .
i=1

Fora.e.t € O\ |J 2, one can see that E(1)F (2, -) is continuous at A(7). Consequently, for any € > 0,
neB
there is some py = p(¢) € N such that, for all k € N, p > py, we have

IBOF (1, Ap (1)) = EOF (1, AD)] < €,
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forallie{l, 2, ---, m(p)}. Then,

m(p)

7 Dy V(1) = EWF (£, AD)] < Zﬁp,IS(t)F(t Api(1) = EOF (1, AD)| < &.

This is,
OV, (1) = E@)F(t, A(1)), when p — o,

forae.te Q\ | 2,.

neB

On the other hand,

IOV, - SDEAWD| = r(m)l f (t— )"V, (v)dv - f (t — )" T A@)d|

IA

Tgﬁ)fo(t—v)m_lle(v) — A)ldv

1 t R-1
81(r(gﬁ)fo(t—v) dv)
1

TR+1)"!

IA

IA

which guarantees that fZ)%ﬂA(t) = E@F(t,A) fora.e. t € O\ U W,. The process above implies
neB
A=TANif A e TA.

(II) There exists n € B such that m({r € S, U ©,|A() = #,(¢)}) > 0.

Suppose m({t € S ,|A(t) = h,(1)}) > 0. Now we are in position to prove
A ¢ TA.

For a.e. t € Q, by (H2), there exists Hy > 0 such that F(¢, A(t)) < Hg. Let F(t) = E(t)Hg and A = {t €
Sal A(t) = h,()}(n € N). There exists an interval Q, (ko € {1, - -+, m}) such that m(Qy, N A) > 0. Let
A = Oy, N A. On account of F € L(Q) and Lemma 3.8 in [15], there is a measurable set Ay C A with
m(Ag) = m(A) > 0 such that, we obtain

2 |- F(v)dv 2 F(v)dv
lim, g — =0 = lim, - LIS (3.4)

1 G()dv f Gw)dv

1o
for all 7, € Ay.
Moreover, by Corollary 3.9 in [15], there exists A; C Ay with m(Ag \ A;) = 0 such that,

— G()dv — . Gwdvu

lim, f[’“]t”‘"— =1 = lim, f”"”[“”— (3.5)
ﬁm Gw)dv ﬁm Gw)dv

forall7y € A;.
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Fix a point/tB € A;. By (34) and (3.5), we konw that 7_ < To, 1, > 1o exist with 7,, t- — To.

Moreover, t., t_ satisfies the following inequalities.

1 [
2 f Flwdv < = f G(v)du,
[f0.r*\A 4 Jq
1 (™
f Gw)dv > f Gw)dv > — f G(v)du,
.t A (7.1 4o 2 J5
1 (™
Zf Fw)dv < —f G(v)du,
[rToN\A 4 Ji

1 (™
f Gwdv > = f Gw)duv.
[~ ToInA 2 J.
Now we will prove that A ¢ TA.

(3.6)

(3.7)

(3.8)

(3.9)

Claim: For every finite family A; € B.(A) N Brand 7; € [0, 1] (i=1,2, ---,m), there exists p > 0

such that
my
1A= D" mT Al > p,
i=1
mi
where ), m; = 1.
i=1

my

Denote V = > 1;7 A;. Then for a.e. t € A, we have
i=1

COMVD) = ) m CORT AN = D mEWOF(t, A1),
i=1 i=1
Foreveryie {1, 2, ---, m;}and t € A, one can obtain that

IAi() = 1 (0] = |Ai() = A)] < &.

Then, for a.e. t € A, we have

my my

COMV() = ) mEDOF(EA) < ) m(EDRh (1) - ) = CDRAR) - G(0).

i=1 i=1

Now we compute

+

CONV(E) - SOV ()

to,tTINA

A

+ f F(v)dv
0.t I\A

r+ f
ﬁ DN 'Vw))dv = f [CDF.V(v)ldvu
0] 1o

f [CDY.V(v)ldv + f [CDY. V(v)ldv
(70 [70.*\A

f D A(v)dv — f G)dv
[to.t*1NA 0.t 1NA

(3.10)

(3.11)
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[fo,r " NA

—f g(s)dv+f F(v)dv
[fo.r*1\A [fo.r*1\A

< CONIA@EY) - SO A®) - ﬁ Gw)dv
[to,tT]INA
+2 f F(v)dv
[10./*\A
R R — o 1 [+
< CONIAET) - COF; lA(tO)—Z I G)duv.
fo

Choosing
1 ([ 1
p = min{— f GWw)dv, ~ f G(v)du}.
4 1 4 o

COFTAGT) - O Ato) - f O AW)dy

(3.12)

Hence, ||A = V|l > COFT'A@Y) — CDR'V() > p, provided that DN 'Aty) > CDN 'V (1o).

Using t_ instead of ¢,, we can get that
CyR-1A (T CqyR-1,,77
i Do Ato) < 7 Dy vlto),

by similar progress. Hence, we have ||A — V||; > p. The claim is proven.
By Lemma 2.7, one can see that A ¢ TA.

Case 2.2: The above #, satisfies (iil) in Definition 2.10. Let B; = {n
0, A, satisfies (iii) in Definition 2.10}.

Then, there exist k € {1, 2, ---, m} such that

CON n(r) = EOF(1, (1)), a.e.t € Q'
Ahn'l‘:l‘,( ;t (Dk(hn(tk))’ K= 1’ cee, M.

m(W,) >

(3.13)

We suppose that there exist ¥, & > 0 such that A%, |-, +Y < O (2), z € [A,(t,) — &, h,(2,) + €] by the

continuity of @,.

(D) A(t) # h,(2) or A(t]) # R, ().

By (3.13), for a.e. t € J,ep, W,, we have CDNA(r) = E(0)F(t, A(1)). Similar to the proof of (I)
in Case 2.1, itis easy tosee that A ¢ TAor A = T Aif A € TA. Hence, ANTA c {7 A} for all A € Px.

(II) When A(z,) = h,(t,) and A(t)) = K,(t)), we assert that A ¢ TA.
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Y
Claim: Lete > 0and p = > for every finite family A; € B{(A)NPrand x; € [0,1](i = 1,2, --- ,my)

my
with )} m; = 1, we have
i=1

ny
1A = > T Al > .

i=1

For simplicity, denote V = i T A;. In view of |A;(t,) — At = |Ai(t) — h,(t)| < €1, one can get

i=1
mp mi
AVley = ) m(aT Ally) = D T @(Ai(20))
i=1 i=1

O
> ) (Al + Y)
i=1

= Al +Y
= AAlt:t,( +7,

which implies that
V() = AQ) > V() — At + A > —|[V(t) - At + Y.

That is
Y
IA =Vl > 5

The claim is proven.
Case 2.3: The above 7, satisfies (iv) in Definition 2.10.
Hence, one can also obtain that

ANTA C{TA}, forall A € Pp.

by the process similar to proving Case 2.1 and Case 2.2.

Case 3: m({23,}) > O for n € N such that 7, is viable.
For eachn € Nand a.e. r € 15,

CONA®) = CDNT,(1) = E@F (1, T, (1)) = EE)F(t, AD)).

Therefore,
COLAM) = E@F (L A®) ae. inB = | | w,.
neN
If A € TA, we can obtain that

CONA®) = EWF(, A(D) ae.in Q\ B,

by the process of proving (I) in Case 2.1. Hence, A = TA. O
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Theorem 3.3. If (HI)—-(H6) hold, then BVP (1.1) admits at least one positive solution.
Proof. Claim 1: Forall A € TA and A € P, there exists r; > 0 such that A £ A, where ||[A|| = 1;.

In fact, the condition (H5) means that there exist g, r; > 0 such that

— — 6
F(t,A) > (A + &), P (A) > (A +e)A, t€][0,1], A €0, grl]. (3.14)
Suppose A € P with ||Al|; = ;. For every finite family A; € B{(A)NPandn; € [0,1]G =1, 2, ---, my),
with i m;=1,and € € [0, rs—l], one can obtain that
i=1
_ ny
AW = ) T A

i=1

2 1 m
= Yol f Hy (6, VIEWF @, Aiw)dv + ) Ho(t, ()i Ai(z:)]
i=1 0 i=1

my 1 m
> DmA f Hit, @A)y + 3 Fo(t, )AD)]
j i=1

b A
> Zm(/l ()” W AN
> d@)(JIAllL ~ (A + EO)WZ + mNG]
> 1 = Al

This implies that A £ A for all A € TA with A € P and IAll; = r;. By Lemma 2.8 and 2.9, we get
i(7,PNoB,,,P)=0. (3.15)
Claim 2: There exists ®; > 1; > 0 such that ||All; < ||All; for all A € TA and all A € P with
IAll, = Ry

In fact, the assumption (H6) implies that there exists 0 < g; < A such that

F(t,A) < (A— DA, ®(A) < (A—e)A, te[0,1], A > gﬂl.

4R,
Choosing R, > max{xy, 500 )} for A € 0P4,, one can see that

4
A() = d)|All = dW)R; > gR

ms3
Suppose A € P with |[|A|l; = Ry. Form; € [0,1]G =1, 2, ---, m3), with )} m; = 1 and every finite
i=1

family A; € B{(A) N P, € € [0, %1], one can see that

ms

AW = ) mTA)
i=1
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and

IA

m3 1 m
Dl f H (1, IEWF @, Aiw)dv + ) Ho(t, 1) Dl Ai(1:)]
i=1 0 i=1

m3 1 ~ nms .
D ol fo Hi (1, )s)A — e)A W) + > Ho(t, DI - e)A(L)
i=1 i=1

R, + €)(A - el)[Ni1 + mN5s]
Ry = [|All1,

m3
> m(EDN T AN D)

i=1

m3 1
= >omil f CONH, (1, VIEW)F (v, Ai(v))dv
i=1 0

CONTA®)

" Z CONT Hy(t, 1) D(A(1:))]

i=1

< AN - so[Ni} - mAG]

IA

) + (1 - sl)[Ai@ - mA]
< R = AL

Hence, ||K||1 < |All;, for all A € TA and all A € P with IIAll; = Ry. By Lemma 2.8 and 2.9, we get

i(7,PN0oBy,,P) = 1. (3.16)

Together with (3.15), we have
i(7T,P 0By, \B:,),P)=1-0=1. (3.17)
Hence, BVP (1.1) admits at least one positive solution. O

Theorem 3.4. Assume that (HIl)—(H4), (H7) and (HS8) hold. In addition, suppose that the following
condition is satisfied.

N m 1
(H9) There exist R > 0 such that F¥ < 71 and Y, O < —, where

=1 2N

Ou(A), & F(z, A)

D, = sup OsllAlls%{T}’ F™ = sup,o1), OSIIAIIS%{T}'

Then, BVP (1.1) admits at least two positive solutions.

Proof. We will prove that 7 has at least two positive fixed points.
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First, by the condition (H7), one can see that there exist 1, €, € (0, v). Moreover, 1,, &, satisfy
_ — 6
F(t,A) < (v—=&)A, O (N) < (v—g)A, t€]0,1], A €0, grz].

We claim that
A ¢ TA, VA €e PN IB,,, (3.18)

1f9r w1 > 1. In fact, on the contrary, if there exist A € £ N dB,,, u > 1 such that uA(t) = TK(I) for some
A€B(A)NP, ie.,

1 m
uA(@) = f Hi(t, )EWF (v, K(v))dv+z7{z(t, AIND))
0 =1

- 1
< (v-a)(lAll + 'E)[(V1 + mANs]

< Tr.

Then,

1 m
(e Dy A)) f COYH (1, EWF(, Aw)dv + ) CDY Ho(t, 1)@i(A(1:)
0 i=1

A

- 1
(v —&)IAll + 6)[/\—/3 + mN7]

IA

— 1
(v —&)(IAll + 6)[(V + mNs]
1
< Iy
Overt € [0, 1], we obtain
HlIAll = pry <1, (3.19)

by taking the supremum, which is a contradiction.

Then, to prove uA ¢ co(T(Bz(A)NP)), we consider two cases: u = 1 and u > 1. If u = 1, we obtain
by the reasonings done above that A # 7 A. This together with condition A N TA c {7 A} implies
A ¢ TA. If u > 1, by inequality (3.19), it is a contradiction.

Next, the condition (H8) means that there exist €5 > 0, R > r,. They satisfy

— — 4
F(t,A) > (V+&)A, O(A) > TV+&3)A, te[0,1], A > §R‘

Choosing R, > max{ry, }, for any A € 0P%y,, we have

AR

50(s)
4

A®0) = DA} = d(s)R, > 373.

We claim that
AN¢TA+pe, e(t)=1, te[0,1],
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forall A € PN OBy, and u > 0. _
In Ee}ct, on the contrary, suppose that there exist A € P N dBy,, 4 > 0 such that A = T A + pe for
some A € B{(A)NP, ie.,

A(r)

1 m
f H (1, IEF (v, Ay + > Fh(t, ) Di(A(L)) + 1
0 i=1

\%

(s = RO+ El - +mNel + 1
> Ry + .
This together with the definition of || - ||, guarantees that
Ry = [|All = maxe 0.1 A(F) > Ry + (3.20)

which is a contradiction for u > 0.

P —_
For p € N, one can see that A # ), m;T Aj+ue(u > 0) form; € [0,1](i =1, ---, p)andv; € Bs(A)NP,
i=1

p
where ), m; = 1. Hence, A ¢ co(7 (B.(A) N P)) + ue(u > 0).
i=1
Now we are in a position to prove that A ¢ TA + ue. If u = 0, we obtain by the reasonings done

above that A # 7 A.This together with condition A NTA c {7 A} implies A ¢ TA. If u > 0, in view of
inequality (3.20), it is a contradiction.
By Lemma 2.8, one can get that i(7, PN 0OB,,, ) =1 and i(7, P N 0By,, ) = 0. Hence,

(T, PN (By,\B,,, P)=0—-1=-1. (3.21)

mo_ 1
Third, (H9) implies that there exist R; > R, and € € [0, %2] such that F¥ < % and ), (I),Jf3 < ING
k=1 5

Similar to the process above, there exist Rz > R, such that
l(T, P N (9ng3, P) = 1
Hence, B
(7, PN (Bgr,\Bg,, ) =1-0=1.
Together with (3.21), BVP (1.1) admits at least two positive solutions in £ N (Bg, \Ez) and
P N (Bg, \By,), respectively. O

4. Example

Example 4.1. Consider the following BVP

COLSA() = F(t, A), a.e. t € [0,1],

AAlt:tl = (I)l(A(tl))’

AN|i=, =0, 4.1)
3A0) — A(D) = [ LA@)d,

3N(0)~ N(1) = [ A@)dv,
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AZ
where 0 <1, < 1, ®(A) = — and

103
TQSPE A2, TQ5) 2415
BEITA o &) oA T gcr<t
T 0 G rasn) T A ey 0=k
Ft,A) = A 2415
A= 0<r<l.
500 T(2.5)

Conclusion: BVP (4.1) has at least two positive solutions.
Proof. First, F satisfies condition (H2) by it’s expression. On the other hand, the function A — F(z, A)
1s continuous on

RO\ Jim o,
teQ
2[1'5 2t1.5
where for each n € Z \ {0} and a.e. t € Q. The curves 7,(t) = r2s) ~ n™" and h(r) = r2s) *©
admissible discontinuity curves satisfying
1= SOFR,() - 1 > F(t,2)
where z € [f,(1) — 1, h,(1) + 1], 1 € [0, 1].
1 1 1 1
By Lemma 2.3, one can obtain that 2; = 7 W = 1,P, =Q = 1 Po=Q, = bX I = 8 >0,
5
e1(t) =2t + 2, py(t) = 3t + >
— )05 — 4,05 — )03
G-y Ud-v~ d+2d -y ,0<v<r<l;
Nty = T(A3) 2I°(1.5) 41(0.5)
ZNA =005 (1 +20(1 - )0
N ,0<r<v<l,
2I°(1.5) 41°(0.5)
1 1
§+§(4t+%), 0<t<t<1;
Hy(t,t;) = “4.2)
3+3(4t+7) 0<fi<t<l1
22 27 T T
Thus, by calculation, we can get that (N;)™' =~ 10.458, (N,)™! =~ 4.375, (N3)"! =~ 5.333,
51 9 —
(N~ ~ 4333, Ns = R Ng = > N7 = 6, Ng = 2. Choosing v = 0.03 and v = 2, which satisfies

1 1
SV(V1 + mNs) < 4 and 3bv(}\—/2 + mNg) > 4.

Therefore,

@ (A) F(t,A)

lim =0<v lim sup 0<
A—0* A A—0* tE[O,l]
. DA . . F@, A —
lim (A = 400>V, lim inf @A) = 400 > V.
Ao+oo A A—+oore[0,1] A

51
Moreover, we have (N;)™! ~ 10.458, N5 = T and let R; = 10. Then, (H9) is satisfied.
Hence, all conditions in Theorem 3.4 are satisfied. The proof is completed.
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5. Conclusions

In this work, we studies the existence of positive and multiple positive solutions for a class of BVPs
of fractional discontinuous differential equations with impulse effects. The main results are obtained by
means of the multivalued analysis and Krasnoselskii’s fixed point theorem for discontinuous operators
on cones.

For our subsequent work, the following issues will continue to be focused on:

(1) The system is studied on this topic more extensive and complicated. Therefore, it is valuable to
investigate FDEs with generalized derivatives or hybrid FDEs with delay.

(i1) With the development of the theoretical study on FDEs, the application area of FDEs with
generalized derivatives in reality needs to be investigated in depth.
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