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1. Introduction

In recent years, neural networks (NNs) have been extensively investigated due to their wide
applications in many areas, such as signal processing, fault diagnosis, combinatorial optimization,
pattern recognition, and so on [1–3]. Compared with real-valued neural networks (RVNNs), complex-
valued neural networks (CVNNs) have more complex characteristics, which can simulate more
practical situations and deal with some problems that RVNNs cannot solve, such as XOR problem,
symmetry detection, electromagnetic wave imaging, etc. [4–6]. Moreover, due to the inherent
information transmission between neurons and the finite switching speed of actuators in NNs, time
delays are always inevitable, which may lead to undesirable dynamical behaviors and seriously affect
the performance of the systems [7,8]. Consequently, the study of CVNNs with time delays has become
an active research topic and some significative results have been reported in [9, 10].
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Synchronization, as a significant dynamic index of NNs, has received great attention because
of its potential applications. Up to now, a wide variety of synchronization phenomena have
been investigated, including finite-time synchronization [11], cluster synchronization [12], projective
synchronization [13], lag synchronization [14] and others. In particular, lag synchronization is
characterized as the coincidence of the states of two coupled systems in which one of the systems
is delayed by a given finite time, and it has been proved to be a reasonable strategy from the viewpoint
of engineering applications in secure communication and parallel image processing. However, it
is worth noting that the existing results on lag synchronization mainly focus on RVNNs. There
are few reports on the lag synchronization problem of CVNNs. On the other hand, because of the
complex topology of NNs, appropriate external controllers are needed to realize synchronization, such
as feedback control [15], adaptive control [16], intermittent control [17], impulsive control [18, 19],
and so on. Among them, impulsive control has been widely used in control areas due to its lower
control cost, higher confidentiality and stronger robustness [20]. Some interesting works on the
impulsive synchronization problem of delayed CVNNs have been proposed in recent years. The
global exponential synchronization of complex-valued memristor-based NNs with time-varying delays
was investigated via impulsive control in [21]. Under hybrid impulsive controllers, [22] gave the
results of the exponential synchronization for drive-response time-varying delayed CVNNs. In [23],
some sufficient conditions were obtained for the exponential synchronization of CVNNs with time-
varying delays by an impulsive controller. In fact, it is hard to require the process of sampling,
processing, and transferring impulse information to achieve immediately [24, 25]. Hence, delayed
impulsive control is perceived as a better way to model many practical problems. In [26], authors
investigated the synchronization problem of CVNNs via a delayed pinning impulsive controller. By
designing a delayed impulsive control scheme, some new sufficient conditions for the exponential
synchronization of complex-valued complex dynamical networks with multiple time-varying delays
were obtained in [27]. However, the delayed impulsive controllers in the above mentioned literatures
only considered discrete delays, not distributed ones. The distributed delayed impulsive control, as
another type of delayed impulsive control, can stabilize a system based on the accumulation of the
states over a history time period, which is more applicable for many industrial and biological systems
such as network connection, the spread of disease and epidemic model [28–30]. To our best knowledge,
such impulsive control has not been studied for the synchronization problem of CVNNs.

As we know, since NNs have many parallel pathways with different axon sizes and lengths,
delays may be distributed during a certain time period [31–33]. Therefore, besides discrete delays,
distributed delays should be also incorporated in the models. In addition, model errors and parameter
fluctuations are unavoidable in the modeling process of CVNNs, which will lead to poor performance
and asynchronization of the systems [34]. It is very significant to study interval NNs whose parameters
values are unknown but bounded in given compact sets [35,36]. However, there are very few developed
achievements on the synchronization problem of complex-valued interval NNs with mixed delays,
especially with distributed delayed impulsive control, which motivates our present study. Moreover, to
deal with complex variables in CVNNs, the method of separating real-imaginary parts was extensively
used in most of the existing literatures. Nevertheless, an explicit separation of complex-valued
activation functions of CVNNs into their real and imaginary parts is needed when applying this
kind of method, which may cause the theoretical results to be more conservative and disheveled.
Therefore, how to take the model as a whole to develop theoretical results in complex domain for
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the synchronization of CVNNs with mixed delays and uncertain parameters is a very interesting and
challenging work.

Based on the above discussions, this paper aims to investigate the exponential lag synchronization
for complex-valued interval neural networks with both discrete and distributed delays via delayed
impulsive control. The main contributions in our work can be summarized as follows: (i) The model
of CVNNs under discussion is quite comprehensive, which takes mixed time-delays and uncertain
parameters into simultaneous consideration. (ii) To realize lag synchronization of the drive and the
response systems, a distributed delayed impulsive controller that depends on the accumulation of the
states over a history time period is designed. (iii) A novel impulsive differential inequality is employed
to deal with the mathematical difficulty caused by mixed time-delays and distributed delayed impulses,
which makes our results less conservative than the existing ones. (iv) Instead of the separation
approach, a uniform research framework in complex domain is developed and some synchronization
criteria are derived in the form of complex-valued LMIs, which are easily checked by using the Matlab
LMI toolbox. The rest of this paper is organized as follows. Model description and preliminaries are
introduced in Section 2. The main results are obtained in Section 3. Section 4 provides an example to
verify the validity of the derived results. The summary of this paper is given in Section 5.
Notations. Let C, Cn and Cn×n be the set of complex numbers, n-dimensional complex space and n×n-
dimensional complex space, respectively. Correspondingly, let R, Rn, Rn×n and Rn2×n2

denote the set of
real numbers, n-dimensional real space, n×n-dimensional real space and n2×n2-dimensional real space,
respectively. The set of positive integers is denoted by Z+. For a matrix A, A > 0 (A < 0, A ≥ 0, A ≤ 0)
denotes that A is a positive definite (negative definite, positive semi-definite, negative semi-definite)
matrix, λmax(A) (λmin(A)) stands for the maximum (minimum) eigenvalue of matrix A, A−1 represents
the inverse of A and A∗ means the conjugate transpose of A. Unless otherwise specified, I is the identity
matrix with appropriate dimensions. The maximum value of α and β is defined as α ∨ β. Let i be the
imaginary, i.e., i =

√
−1. Re(x) and Im(x) denote the real part and the imaginary part of a number

x ∈ C. For x, y ∈ C, x � y means that Re(x) ≤ Re(y) and Im(x) ≤ Im(y). ‖x‖ =
√

xx∗, where x∗ is the
conjugate transpose of x. x represents the conjugate of x. For any J ⊆ R and S ⊆ Ck(1 ≤ k ≤ n, k ∈ Z+),
set PC(J, S ) = {ϕ : J → S is continuous everywhere except at a finite number of points t, at which
ϕ(t+), ϕ(t−) exist and ϕ(t) = ϕ(t+)}. ‖ϕ‖ρ = sup

t∈[−ρ,0]
‖ϕ(t)‖. ? is the conjugate transpose of a suitable block

in a Hermitian matrix and Λ = {1, 2, · · · , n}, n ∈ Z+ is an index set.

2. Preliminaries

In this paper, we consider the following complex-valued interval neural networks : ẋ(t) = −Cx(t) + A f (x(t)) + B f (x(t − τ(t))) + D
∫ t

t−β(t)
f (x(s)) ds + J(t), t > 0,

x(t) = φ(t), t ∈ [−ρ1, 0],
(2.1)

where x(t) = (x1(t), . . . , xn(t))T ∈ Cn is the state vector of the complex-valued interval neural networks;
f (x(·)) = ( f1(x1(·)), . . . , fn(xn(·)))T ∈ Cn is the neuron activation function; C = diag{c1, c2, · · · , cn} ∈

Rn×n denotes the self-feedback connection weight matrix with c j > 0, j ∈ Λ; A, B and D ∈ Cn×n

are the connection weight matrices; J(t) ∈ Cn is an external input vector; τ(t) is discrete delay and
β(t) is distributed delay satisfying 0 ≤ τ(t) ≤ τ and 0 ≤ β(t) ≤ β, where τ and β are constants;
φ(·) ∈ PC([−ρ1, 0],Cn) is the initial condition for ρ1 = τ ∨ β.
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Throughout this paper, we make the following assumptions.

Assumption 1. For all u, v ∈ C, there exists a positive diagonal matrix L = diag{L1, L2, · · · , Ln},
L j ∈ R, j ∈ Λ, such that

‖ f j(u) − f j(v) ‖≤ L j ‖ u − v ‖ .

Assumption 2. Matrices C, A, B and D in the model (2.1) are bounded in the following intervals

C ∈ CI , A ∈ AI , B ∈ BI , D ∈ DI ,

where

CI = [Č, Ĉ] = {diag(c j) | 0 < č j ≤ c j ≤ ĉ j; j ∈ Λ},

AI = [Ǎ, Â] = {(apq)n×n | ǎpq � apq � âpq; p, q ∈ Λ},

BI = [B̌, B̂] = {(bpq)n×n | b̌pq � bpq � b̂pq; p, q ∈ Λ},

DI = [Ď, D̂] = {(dpq)n×n | ďpq � dpq � d̂pq; p, q ∈ Λ},

with Č = diag(č1, . . . , čn), Ĉ = diag(ĉ1, . . . , ĉn), Ǎ = (ǎpq)n×n, Â = (âpq)n×n, B̌ = (b̌pq)n×n, B̂ = (b̂pq)n×n,
Ď = (ďpq)n×n and D̂ = (d̂pq)n×n.

We refer to system (2.1) as the drive system, and the corresponding response system is characterized
by  ẏ(t) = −Cy(t) + A f (y(t)) + B f (y(t − τ(t))) + D

∫ t

t−β(t)
f (y(s)) ds + u(t) + J(t), t > α,

y(t) = ϕα(t), t ∈ [−ρ1, 0],
(2.2)

where ϕα(t) = ϕ(α + t), ∀t ∈ [−ρ1, 0], ϕα(t) ∈ PC([−ρ1, 0],Cn), where α > 0 is response time delay
between the drive system (2.1) and the response system (2.2), and u(t) is the control input that needs
to be designed.

To achieve lag synchronization between the drive system (2.1) and the response system (2.2), a class
of distributed delayed impulsive controller can be given as follows

u(t) =

∞∑
n=1

(K
∫ t

t−rk

e(s) ds − e(t))δ(t − tk), k ∈ Z+, (2.3)

where rk are the distributed delays satisfying 0 ≤ rk ≤ r with r is a constant; e(t) = y(t) − x(t − α) is
the lag synchronization error for α < ρ and ρ = τ∨ β∨ r; δ(·) is the Dirac delta function; K ∈ Cn×n is a
gain matrix to be designed. Then, one can obtain the following error system

ė(t) = −Ce(t) + Ah(e(t)) + Bh(e(t − τ(t))) + D
∫ t

t−β(t)
h(e(s)) ds, t > α,

e(t) = K
∫ t

t−rk
e(s) ds, t = tk,

e(t) = ϕα(t) − φ(t), t ∈ [−ρ, 0],

(2.4)

where h(e(t)) = f (y(t)) − f (x(t − α)), h(e(t − τ(t))) = f (y(t − τ(t))) − f (x(t − α − τ(t))).
Furthermore, let

L � {diag(δ11, . . . , δ1n, . . . , δn1, . . . , δnn) ∈ Rn2×n2
; |δpq| ≤ 1, p, q ∈ Λ},
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C0 =
Ĉ + Č

2
, A0 =

Â + Ǎ
2

, B0 =
B̂ + B̌

2
,D0 =

D̂ + Ď
2

,

HC =
Ĉ − Č

2
= diag(γ1, . . . , γn),HA =

Â − Ǎ
2

= (αpq)n×n,HB =
B̂ − B̌

2
= (βpq)n×n,HD =

D̂ − Ď
2

= (ηpq)n×n,

where C0, A0, B0 and D0 are reference matrices of interval matrices C, A, B and D, respectively. Define

Θ1 = [
√
γ1ε1, . . . , 0, 0,

√
γ2ε2, . . . , 0, . . . , 0, . . . ,

√
γnεn]n×n2 ,

Θ2 = [
√
α11ε1, . . . ,

√
α1nε1, . . . ,

√
αn1εn, . . . ,

√
αnnεn]n×n2 ,

Θ3 = [
√
β11ε1, . . . ,

√
β1nε1, . . . ,

√
βn1εn, . . . ,

√
βnnεn]n×n2 ,

Θ4 = [
√
η11ε1, . . . ,

√
η1nε1, . . . ,

√
ηn1εn, . . . ,

√
ηnnεn]n×n2 ,

Φ1 = [
√
γ1ε1, . . . , 0, 0,

√
γ2ε2, . . . , 0, . . . , 0, . . . ,

√
γnεn]T

n2×n,

Φ2 = [
√
α11ε1, . . . ,

√
α1nεn, . . . ,

√
αn1ε1, . . . ,

√
αnnεn]∗n2×n,

Φ3 = [
√
β11ε1, . . . ,

√
β1nεn, . . . ,

√
βn1ε1, . . . ,

√
βnnεn]∗n2×n,

Φ4 = [
√
η11ε1, . . . ,

√
η1nεn, . . . ,

√
ηn1ε1, . . . ,

√
ηnnεn]∗n2×n,

where ε j ∈ R
n, j ∈ Λ represents the jth unit column vector. Then the system (2.4) can be rewritten as

ė(t) = −[C0 + Θ1∆1Φ1]e(t) + [A0 + Θ2∆2Φ2]h(e(t)) + [B0 + Θ3∆3Φ3]h(e(t − τ(t)))
+ [D0 + Θ4∆4Φ4]

∫ t

t−β(t)
h(e(s)) ds, t > 0,

e(t) = K
∫ t

t−rk
e(s) ds, t = tk,

e(t) = ϕα(t) − φ(t), t ∈ [−ρ, 0],

which is equivalent to
ė(t) = −C0e(t) + A0h(e(t)) + B0h(e(t − τ(t))) + D0

∫ t

t−β(t)
h(e(s)) ds + ΘΨe(t), t , tk,

e(t) = K
∫ t

t−rk
e(s) ds, t = tk,

e(t) = ϕα(t) − φ(t), t ∈ [−ρ, 0],

(2.5)

where Θ = [Θ1,Θ2,Θ3,Θ4]n×4n2 , ∆ j ∈ L, j = 1, 2, 3, 4,

Ψe(t) =


∆1Φ1 0 0 0

0 ∆2Φ2 0 0
0 0 ∆3Φ3 0
0 0 0 ∆4Φ4


4n2×4n

×


e(t)

h(e(t))
h(e(t − τ(t)))∫ t

t−β(t)
h(e(s)) ds


4n×1

.

Remark 1. The robust stability of complex-valued interval neural networks has been studied in [9],
where the interval parameters are processed by dividing them into real and imaginary parts. Here,
without the separation method, we directly use matrix transformations in the complex field to deal with
the interval parameter uncertainties.

Based on the above analysis and description, the following definitions and lemmas are needed.

Definition 1 ( [37]). If sequence {tk, k ∈ Z+} satisfies
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0 ≤ t0 < t1 < · · · < tk with tk → +∞ as k → +∞,

thenA0 = {tk} is called impulse time sequence. Furthermore, for any constant ζ > 0, defineAζ as the
set of impulse time sequences inA0 such that tk − tk−1 ≤ ζ, ∀k ∈ Z+.

Definition 2 ( [38]). The drive-response system (2.1) and (2.2) are said to be exponentially lag
synchronized under the impulse setAζ , if there exist constants M ≥ 1 and ε > 0 such that

‖y(t) − x(t − α)‖ ≤ M‖ϕα − φ‖ρ exp(−ε(t − α)),∀t ≥ α,

where ϕα, φ ∈ PC([−ρ, 0],Cn), and ε is called the degree of exponential lag synchronization.

Lemma 1 ( [39]). Consider the following impulsive differential inequality, D+g(t) ≤ σ1g(t) + σ2ḡ(t), t , tk,

g(t) ≤ µk

∫ t

t−rk
g(s) ds, t = tk,

(2.6)

where D+ is the right-upper Dini derivative, g ∈ PC(R,R+), ḡ(t) = sup
s∈[t−ρ,t]

g(s). If there exist constants

σ1 ∈ R, σ2 > 0, µk > 0, k ∈ Z+, ζ > 0 and δ > 1, such that the following conditions hold:

σ1 + σ2δ <
ln δ
ζ
, (2.7)

inf
k∈Z+

{− ln(µkrkδ)
rk

}
= η > 0, (2.8)

then the solution of the inequality (2.6) over the setAζ satisfies

g(t) ≤ δḡ(0) exp (−λt) , t ≥ 0,

where λ ∈ (0, η) is a positive constant satisfying θ(λ) > 0 for θ(λ) = ln δ
ζ
− σ1 − σ2δ exp (ρλ) − λ.

Lemma 2 ( [40]). For any positive definite Hermitian matrix E ∈ Cn×n, any function u(s) : [a, b]→ Cn

with scalars a < b such that the integrals concerned are well defined, then(∫ b

a
u(s) ds

)∗
E

∫ b

a
u(s) ds ≤ (b − a)

∫ b

a
u∗(s)Eu(s) ds.

Lemma 3 ( [26]). For any vector x, y ∈ Cn and positive definite Hermitian matrix R ∈ Cn×n, it holds
that

x∗y + y∗x ≤ x∗Rx + y∗R−1y.

3. Main results

In this section, with the help of the Lyapunov method and the delayed impulsive differential
inequality technique, we get some criteria of exponential lag synchronization of complex-valued
interval neural networks by designing the distributed delayed impulsive controller.

AIMS Mathematics Volume 8, Issue 3, 5502–5521.



5508

Theorem 1. Under Assumption 1 and Assumption 2, if there exist constants σ1 ∈ R, σ2 > 0, ζ > 0,
δ > 1, 0 < µ < 1 and positive definite Hermitian matrix P, positive diagonal matrices Q j ∈ R

n×n

( j = 1, 2, 3), Q j ∈ R
n2×n2

( j = 4, 5, 6, 7), matrix Z ∈ Cn×n such that (2.7) and the following inequalities
hold 

Ω11 PA0 PB0 PD0 PΘ

? −Q1 0 0 0
? ? −Q2 0 0
? ? ? −Q3 0

? ? ? ?


−Q4 0 0 0

0 −Q5 0 0
0 0 −Q6 0
0 0 0 −Q7




≤ 0, (3.1)

(
−P
δ

rZ
? −P

)
< 0, (3.2)

L(Q2 − Φ∗3Q6Φ3)L ≤ µσ2P, (3.3)

β2L(Q3 − Φ∗4Q7Φ4)L ≤ (1 − µ)σ2P, (3.4)

where Ω11 = −PC0 −C∗0P − σ1P + LQ1L + Φ∗1Q4Φ1 + LΦ∗2Q5Φ2L, then the drive system (2.1) and the
response system (2.2) are exponentially lag synchronized over the setA(ζ) with control gain

K = P−1Z∗.

Proof. Choose the Lyapunov function

V(t) = e∗(t)Pe(t). (3.5)

Taking the derivative of V(t) along the trajectory of the system (2.5) on t ∈ [tk−1, tk), k ∈ Z+, we have

D+V(t) = ė∗(t)Pe(t) + e∗(t)Pė(t)
= e∗(t)(PC0 + C∗0P)e(t) + e∗(t)PA0h(e(t)) + h∗(e(t))A∗0Pe(t)

+ e∗(t)PB0h(e(t − τ(t))) + h∗(e(t − τ(t)))B∗0Pe(t)

+ e∗(t)PD0

∫ t

t−β(t)
h(e(s)) ds +

∫ t

t−β(t)
h∗(e(s)) dsD∗0Pe(t)

+ e∗(t)PΘΨe(t) + Ψ∗e(t)Θ∗Pe(t)

By Lemma 3 and Assumption 1,

D+V(t) ≤ −e∗(t)(PC0 + C∗0P)e(t) + e∗(t)PA0Q−1
1 A∗0Pe(t) + h∗(e(t))Q1h(e(t)) + e∗(t)PB0Q−1

2 B∗0Pe(t)
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+ h∗(e(t − τ(t)))Q2h(e(t − τ(t))) + e∗(t)PD0Q−1
3 D∗0Pe(t)

+

∫ t

t−β(t)
h∗(e(s)) dsQ3

∫ t

t−β(t)
h(e(s)) ds + e∗(t)PΘΨe(t) + Ψ∗e(t)Θ∗Pe(t)

≤ −e∗(t)(PC0 + C∗0P)e(t) + e∗(t)PA0Q−1
1 A∗0Pe(t) + e∗(t)LQ1Le(t) + e∗(t)PB0Q−1

2 B∗0Pe(t)
+ e∗(t − τ(t))LQ2Le(t − τ(t)) + e∗(t)PD0Q−1

3 D∗0Pe(t)

+

∫ t

t−β(t)
h∗(e(s)) dsQ3

∫ t

t−β(t)
h(e(s)) ds + e∗(t)PΘΨe(t) + Ψ∗e(t)Θ∗Pe(t). (3.6)

Applying Lemma 3 again to the last term of inequality (3.6), it can be seen that

e∗(t)PΘΨe(t) + Ψ∗e(t)Θ∗Pe(t) ≤ e∗(t)PΘ


Q−1

4 0 0 0
0 Q−1

5 0 0
0 0 Q−1

6 0
0 0 0 Q−1

7

 Θ∗Pe(t)

+ Ψ∗e(t)


Q4 0 0 0
0 Q5 0 0
0 0 Q6 0
0 0 0 Q7

 Ψe(t) (3.7)

Moreover, according to the definition of Ψe(t), we can derive that

Ψ∗e(t)


Q4 0 0 0
0 Q5 0 0
0 0 Q6 0
0 0 0 Q7

 Ψe(t)

=


e(t)

h(e(t))
h(e(t − τ(t)))∫ t

t−β(t)
h(e(s)) ds


∗

×


Φ∗1∆1Q4∆1Φ1 0 0 0

0 Φ∗2∆2Q5∆2Φ2 0 0
0 0 Φ∗3∆3Q6∆3Φ3 0
0 0 0 Φ∗4∆4Q7∆4Φ4


×


e(t)

h(e(t))
h(e(t − τ(t)))∫ t

t−β(t)
h(e(s)) ds


≤ e∗(t)Φ∗1Q4Φ1e(t) + h∗(e(t))Φ∗2Q5Φ2h(e(t)) + h∗(e(t − τ(t)))Φ∗3Q6Φ3h(e(t − τ(t)))

+

(∫ t

t−β(t)
h(e(s)) ds

)∗
Φ∗4Q7Φ4

(∫ t

t−β(t)
h(e(s)) ds

)
≤ e∗(t)Φ∗1Q4Φ1e(t) + e∗(t)LΦ∗2Q5Φ2Le(t) + e∗(t − τ(t))LΦ∗3Q6Φ3Le(t − τ(t))
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+

(∫ t

t−β(t)
h(e(s)) ds

)∗
Φ∗4Q7Φ4

(∫ t

t−β(t)
h(e(s)) ds

)
. (3.8)

It follows from (3.6)-(3.8) that

D+V(t) ≤ e∗(t)
{
− PC0 −C∗0P − σ1P + LQ1L + Φ∗1Q4Φ1 + LΦ∗2Q5Φ2L

+ PA0Q−1
1 A∗0P + PB0Q−1

2 B∗0P + PD0Q−1
3 D∗0P

+ PΘ


Q−1

4 0 0 0
0 Q−1

5 0 0
0 0 Q−1

6 0
0 0 0 Q−1

7

 Θ∗P
}
e(t)

+ e∗(t − τ(t))[LQ2L + LΦ∗3Q6Φ3L]e(t − τ(t)) + σ1e∗(t)Pe(t)

+

(∫ t

t−β(t)
h(e(s)) ds

)∗
(Φ∗4Q7Φ4 + Q3)

(∫ t

t−β(t)
h(e(s)) ds

)
. (3.9)

Next, we deal with the last two terms of the above inequality. From (3.3), we have

e∗(t − τ(t))[LQ2L + LΦ∗3Q6Φ3L]e(t − τ(t))
≤ µσ2e∗(t − τ(t))Pe(t − τ(t))
≤ µσ2 sup

s∈[t−ρ,t]
e∗(s)Pe(s). (3.10)

Based on Lemma 2, Assumption 1 and (3.4), we get(∫ t

t−β(t)
h(e(s)) ds

)∗
(Φ∗4Q7Φ4 + Q3)

(∫ t

t−β(t)
h(e(s)) ds

)
≤ β(t)

∫ t

t−β(t)
h(e(s))∗(Φ∗4Q7Φ4 + Q3)h(e(s)) ds

≤ β(t)
∫ t

t−β(t)
e∗(s)L(Φ∗4Q7Φ4 + Q3)Le(s) ds

≤ β2 sup
s∈[t−ρ,t]

e∗(s)[LQ3L + LΦ∗4Q7Φ4L]e(s)

≤ (1 − µ)σ2 sup
s∈[t−ρ,t]

e∗(s)Pe(s). (3.11)

Applying the Schur complement lemma to (3.1), together with (3.9) − (3.11), we can obtain

D+V(t) ≤ σ1V(t) + σ2V̄(t).

On the other hand, at t = tk, k ∈ Z+, we have

V(tk) = e∗(tk)Pe(tk)

=

(∫ tk

tk−rk

e(s) ds
)∗

K∗PK
(∫ tk

tk−rk

e(s) ds
)
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≤ rk

∫ tk

tk−rk

e∗(s)K∗PKe(s) ds. (3.12)

Meanwhile, it follows from (3.2) that there exists a constant δ̃ > δ such that −P
δ̃

+ r2K∗PK ≤ 0. Then,

K∗PK ≤
P

r2δ̃
≤

P
r2

k δ̃
.

It can be obtained that

V(tk) ≤ µk

∫ tk

tk−rk

e∗(s)Pe(s) ds = µk

∫ tk

tk−rk

V(s) ds,

where µk = 1
rk δ̃

. Noting that µkrkδ = δ
δ̃
< 1, we have

inf
k∈Z+

{
−

ln(µkrkδ)
rk

}
=

ln δ̃
δ

r
> 0.

Therefore, the conditions of Lemma 1 are satisfied and we get

V(t) ≤ δV(0) exp (−λt) < δλmax(P)‖ϕα − φ‖2ρ exp (−λ(t − α)) , t ≥ α,

where λ ∈ (0, ln δ̃
δ

r ). From (3.5), one can derive that

V(t) ≥ λmin(P)‖e(t)‖2 = λmin(P)‖y(t) − x(t − α)‖2, t ≥ α.

Hence,

‖y(t) − x(t − α)‖ ≤ M‖ϕα − φ‖ρ exp
(
−
λ

2
(t − α)

)
, t ≥ α,

where M = ( δλmax(P)
λmin(P) )

1
2 . This means that the drive system (2.1) is exponentially lag synchronized with

the response system (2.2) over the setA(ζ), which completes the proof. �

Remark 2. Recently, there have been a lot of interesting works on the impulsive control
synchronization of CVNNs [21–23, 26]. However, these results are concerned with either delay-
independent impulsive control or delayed impulsive control involving discrete delays. In this paper,
the distributed delayed impulsive control is proposed to synchronize the driver and response systems.
It is an important type of delayed impulsive control that can be employed to stabilize a system based
on the accumulation of the states over a history time period, not just the states at certain history
instant. This feature enables the distributed delayed impulsive control to be more applicable for many
industrial and biological systems such as network connection [28], the spread of disease [29] and
epidemic model [30].

Remark 3. It should be mentioned that three types of delays τ(t), β(t) and rk are involved in the closed-
loop systems (2.5), which brings certain difficulties to the research. In Theorem 1, a novel impulsive
differential inequality combined with Lyapunov function is adopted to overcome these difficulties. The
obtained results require neither the differentiability of time-varying delays nor the restriction on the
relationship between delays τ(t), β(t) and rk, which makes our results posses better applications.
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Remark 4. By the separation approach, the impulsive control synchronization problem for CVNNs
has been discussed in [10, 21, 22, 41]. However, this kind of approach is invalid when the
activation functions cannot be divided into their real parts and imaginary parts in an analytical
form. Here, instead of the separation approach, we retain the complex nature of NNs and explore
the synchronization criteria by utilizing the Lyapunov function in the complex field. Only the Lipschitz
condition on the activation functions is assumed, which broadens the applications of our results.

Remark 5. In [10, 26, 41, 42], the synchronization of delayed CVNNs have been investigated via
impulsive control. While in this paper, using a different impulsive control scheme, we extend the
previous results from the following aspects: Firstly, the mixed time-delays in the models and the
distributed delays in the impulsive controller are considered simultaneously in our work. Secondly,
by introducing a novel differential inequality with the distributed delayed impulsive effects, the
synchronization conditions are obtained in terms of complex-valued LMIs, which are less conservative
than the existing ones. Finally, to govern more general real-world applications, the influence of interval
parameter uncertainties and the lag effects of signal transmission during synchronization are also
considered in our models.

Remark 6. It can be observed from Theorem 1 that the size of delays rk may affect the convergence rate
of synchronization. As the delays rk increase, the convergence speed of synchronization will become
slower.

If the system considered only contains discrete time-delays, i.e. D = 0 in the system (2.1), we have
the following corollary.

Corollary 1. Under Assumption 1 and Assumption 2, if there exist constants σ1 ∈ R, σ2 > 0, ζ > 0,
δ > 1, 0 < µ < 1 and positive definite Hermitian matrix P, positive diagonal matrices Q j ∈ R

n×n

( j = 1, 2), Q j ∈ R
n2×n2

( j = 4, 5, 6), matrix Z ∈ Cn×n such that (2.7), (3.2), (3.3) and the following
inequalities hold 

Ω11 PA0 PB0 PΘ

? −Q1 0 0
? ? −Q2 0

? ? ?


−Q4 0 0

0 −Q5 0
0 0 −Q6




≤ 0,

then the drive system (2.1) and the response system (2.2) are exponentially lag synchronized over the
setA(ζ) with control gain

K = P−1Z∗.

In particular, if C, A, B and D are known constant matrices in the system (2.1), then we can get the
following corollary based on Theorem 1.

Corollary 2. Under Assumption 1, if there exist constants σ1 ∈ R, σ2 > 0, ζ > 0, δ > 1, 0 < µ < 1,
and positive definite Hermitian matrix P, positive diagonal matrices Q j ∈ R

n×n ( j = 1, 2, 3), matrix
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Z ∈ Cn×n such that (2.7) and the following inequalities hold
Ω11 PA PB PD
? −Q1 0 0
? ? −Q2 0
? ? ? −Q3

 ≤ 0,

(
−P
δ

rZ
? −P

)
< 0,

LQ2L ≤ µσ2P,

β2LQ3L ≤ (1 − µ)σ2P,

where Ω11 = −PC −C∗P − σ1P + LQ1L, then the drive system (2.1) and the response system (2.2) are
exponentially lag synchronized over the setA(ζ) with control gain

K = P−1Z∗.

4. Numerical example

In this section, a numerical example is given to verify the effectiveness of our main results.
Consider the complex-valued interval networks (2.1) with the following parameters:

C ∈
(

[1, 1.2] 0
0 [0.8, 1.2]

)
,

A ∈
(

[0.9 − 0.01i, 1.1 + i] [−0.2 − 0.01i, 0.01i]
[−6 − 5.2i,−4 − 0.03i] [3 − 0.03i, 3.2 + 2.1i]

)
,

B ∈
(

[1.2 − 0.01i, 1.5 + 1.3i] [−0.2 − 0.1i, 0.04i]
[−0.2 − 0.1i, 0.04i] [−4.2 − 3.8i,−3.3 + 0.14i]

)
,

D ∈
(

[−0.5 − 0.45i,−0.4 + 0.17i] [−1 − 0.5i, 0.1i]
[−4 − 3i,−2 + 1.3i] [−3.5 − 3.41i,−3.3 + 0.22i]

)
,

and the initial conditions φ1(t) = 1 + i, φ2(t) = −1 − i, t ∈ [−0.4, 0]. Select the activation functions
f1(s) = f2(s) = tanh(Re(s))+i tanh(Im(s)), time-delays τ(t) = 0.39−0.01 sin(t), β(t) = 0.38+0.01 cos(t)
and the external input J = (0, 0)T . The initial conditions in the response system (2.2) are chosen as
ϕα1(t) = −1.5 − 1.5i, ϕα2(t) = 2 + 2i, t ∈ [−0.4, 0]. Then it is easy to obtain that L = I2×2,

C0 =

(
1.1 0
0 1

)
, A0 =

(
1 + 0.495i −0.1
−5 − 2.615i 3.1 + 1.035i

)
,

B0 =

(
1.35 + 0.645i −0.1 − 0.03i
−0.1 − 0.03i −3.75 − 1.83i

)
, D0 =

(
−0.45 − 0.14i −0.5 − 0.2i
−3 − 0.85i −3.4 − 1.595i

)
,

Θ1 =

( √
0.1 0 0 0
0 0 0

√
0.2

)
,
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Θ2 =

(
0.5544 + 0.4554i 0.3166 + 0.0158i 0 0

0 0 1.3733 + 0.9412i 0.7647 + 0.6963i

)
,

Θ3 =

(
0.6411 + 0.5109i 0.3332 + 0.105i 0 0

0 0 0.3332 + 0.105i 1.1115 + 0.8862i

)
,

Θ4 =

(
0.4266 + 0.3633i 0.7359 + 0.2038i 0 0

0 0 1.2983 + 0.828i 0.9792 + 0.9268i

)
,

Φ1 =

( √
0.1 0 0 0
0 0 0

√
0.2

)T

,

Φ2 =

(
0.5544 − 0.4554i 0 1.3733 − 0.9412i 0

0 0.3166 − 0.0158i 0 0.7647 − 0.6963i

)∗
,

Φ3 =

(
0.6411 − 0.5109i 0 0.3332 − 0.105i 0

0 0.3332 − 0.105i 0 1.1115 − 0.8862i

)∗
,

Φ4 =

(
0.4266 − 0.3633i 0 1.2983 − 0.828i 0

0 0.7359 − 0.2038i 0 0.9792 − 0.9268i

)∗
.

We consider the control input u(t) with distributed delay rk = 0.4 and impulsive interval tk+1 − tk =

0.03, k ∈ Z+. Choose σ1 = 70.3, σ2 = 92, δ = 2.65, µ = 0.8, β = 0.39, ρ = 0.4 and α = 0.2. Based on
Theorem 1 and Matlab LMI toolbox, the following feasible solutions can be obtained

P =

(
0.0557 0

0 0.0535

)
, Q1 =

(
1.0153 0

0 1.0153

)
,

Q2 =

(
1.1931 0

0 1.1931

)
, Q3 =

(
1.0285 0

0 1.0285

)
,

Q4 =


1.0802 0 0 0

0 1.0802 0 0
0 0 1.0802 0
0 0 0 1.0802

 ,

Q5 =


0.8167 0 0 0

0 0.8167 0 0
0 0 0.8167 0
0 0 0 0.8167

 ,

Q6 =


1.031 0 0 0

0 1.031 0 0
0 0 1.031 0
0 0 0 1.031

 ,

Q7 =


1.0157 0 0 0

0 1.0157 0 0
0 0 1.0157 0
0 0 0 1.0157

 ,
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Z =

(
0.0167 − 0.0006i 0.0013 − 0.0053i
0.0073 − 0.0028i 0.0214 − 0.0059i

)
.

Then impulsive control gain matrix K is designed as follows

K = P−1Z∗ =

(
0.3 + 0.01i 0.13 + 0.05i

0.025 + 0.1i 0.4 + 0.11i

)
.
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Figure 1. State trajectories of real parts of the drive system (2.1) and the response system
(2.2) without impulsive control.
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Figure 2. State trajectories of real parts of the drive system (2.1) and the response system
(2.2) with impulsive control (α = 0.2).

Take C = C0, A = A0, B = B0, D = D0. When the control input u(t) = 0, we can see that the
drive system (2.1) and the response system (2.2) cannot achieve exponential lag synchronization from
Figure 1, Figure 3 and Figure 5. Under the distributed delayed impulsive control, when α = 0.2, the
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state trajectories of the real parts and the imaginary parts of vectors x and y are illustrated separately
in Figure 2 and Figure 4, while the state trajectories of the error system (2.5) is shown in Figure
6. According to the above simulation results, it can be clearly seen that the drive system (2.1) and
the response system (2.2) can be exponentially lag synchronized by an appropriate delayed impulsive
controller over the setAξ (ξ = 0.03).
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Figure 3. State trajectories of imaginary parts of the drive system (2.1) and the response
system (2.2) without impulsive control.
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Figure 4. State trajectories of imaginary parts of the drive system (2.1) and the response
system (2.2) with impulsive control (α = 0.2).
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Figure 5. State trajectories of real parts and imaginary parts of the error system (2.5) without
impulsive control.
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Figure 6. State trajectories of real parts and imaginary parts of the error system (2.5) with
impulsive control (α = 0.2).

5. Conclusions

In this paper, the exponential lag synchronization of complex-valued interval neural networks has
been investigated under distributed delayed impulsive control. Both discrete and distributed time-
varying delays were considered in the model, which is more general than the previous works. A new
impulsive differential inequality was applied to resolve the difficulties caused by the mixed time-delays
and distributed delayed impulse effects. Instead of the separation approach, some synchronization
criteria were derived based on the complex Lyapunov method, where only the Lipschitz condition on
the activation functions need to be assumed. All the synchronization criteria were formulated in the
form of complex-valued LMIs, which were easily checked by using the Matlab LMI toolbox. Finally,
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a numerical example was given to illustrate the validity of the proposed results. In the future, we will
consider finite-time synchronization problem of complex-valued interval neural networks via delayed
impulsive control.
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