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1. Introduction and preliminaries

Translation hypersurfaces are special Monge hypersurfaces. Many studies have been carried out
with these hypersurfaces until today [1-11].

In [1], Lima presented a complete description of all translation hypersurfaces with constant scalar
curvature in the Euclidean space. In [2], they showed that every minimal translation and homothetical
lightlike hypersurface is locally a hyperplane. In [3], the minimal translation hypersurfaces of E*
were studied. Yang, Zhang and Fu obtained a characterization of a class of minimal translation
graphs which are the generalization of minimal translation hypersurfaces in the Euclidean space [4].
In [5], the authors studied a characterization of minimal translation graphs in the semi-Euclidean space.
Recently, homothetical and translation lightlike graphs, which are generalizations of homothetical and
translation lightlike hypersurfaces were investigated in the semi-Euclidean space RZ*Z [6]. Moreover
Saglam proved that all homothetical and all translation lightlike graphs are locally hyperplanes and
according to this fact, both of these graphs are minimal. In [7], Seo gave a classification of the
translation hypersurfaces with constant mean curvature or constant Gauss—Kronecker curvature in the
Euclidean space and the Lorentz— Minkowski space. Moreover the author characterized the minimal
translation hypersurfaces in the upper half-space model of the hyperbolic space. In 2019, Aydin and
Ogrenmis studied translation hypersurfaces generated by translating planar curves and classified the
translation hypersurfaces with constant Gauss-Kronecker curvature and constant mean curvature in the
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4-dimensional isotropic space [8]. In [9], Ruiz-Hernandez investigated translation hypersurfaces in
the (n+1)-dimensional Euclidean space whose Gauss-Kronecker curvature depends on its variables. In
[10], Sousa, Lima and Vieira studied the geometry of generalized translation hypersurfaces immersed
in Euclidean space equipped with a metric conformal to Euclidean metric and obtained results
that characterize such hypersurfaces. In [11], Lima, Santos and Sousa gave a classification of the
generalized translation graphs with constant mean curvature or constant Gauss—Kronecker curvature
in the Euclidean space.

In the semi-Euclidean space RZ”, a translation hypersurface M" is a semi-Riemannian manifold
with codimension 1 given by

(X1 %) = (X1 X PO 50) FOr o, 3) = D fi(60)
i=1

where fi, f>,...,f, are smooth functions. Each function f; depends on the real variable x; and is
different from zero for 1 <i < n. Or else it is a hyperplane.

In [1], Lima gave the parameterization of translation hypersurfaces with zero scalar curvature into
R™! for n > 3. Moreover they showed that every translation hypersurface with constant scalar
curvature must have zero scalar curvature in the Euclidean space R"*! for n > 3 and proved the
following theorem.

Theorem 1.1. Let M" be a translation hypersurface of R"*! given by ¢ = (xi,..., x,, F) forn > 3.
Then M" has zero scalar curvature iff it is congruent to the graph of the following functions:

1. F(x1,...,x,) = Z:’;ll a;x; + fu(x,) + b, on R"! x J, for some interval Jand f, : J CR — Risa
smooth function, which defines, after a suitable linear change of variables, a vertical cylinder.

2. A generalized periodic Enneper hypersurface given by

b
n_3 VB cos (_aaTb Bx, + c)
F(xy,...,x,) = Zaix,- + —1n
P a cos (a VBXp_o + ao)

+b
b cos (b VBXu_1 + bo)

b
cos (_a_ Bx, + c)
a

+d, (1.1)

on R"3 x I, x I, x Iy, where a,ay,...,a,3,b,by,c,d are real constants with a,b,a + b # 0,8 =
1+ Z;’j af and I, I, I; are the open intervals defined, respectively, by the conditions |a VBXu_n + ao| <

b
712, |b\Bxs 1 + bo| < /2 and —a“Tb Bx, + ¢ < 7/2.

In this paper, we obtain the parameterization of translation hypersurfaces with zero scalar curvature
into RZ“. In addition we prove that translation hypersurfaces with constant scalar curvature must have
zero scalar curvature in the semi-Euclidean space RZ” forn > 3.

2. Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature

Let M" be a semi-Riemannian manifold and g;; be the components of the metric tensor of M" and
g" be inverse of the functions g;; for 1 < i, j < n. The Christoffel symbols or the affine connection of
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M" are given by

1 & ag im 6g agl
== ¢ - = 2.1
Y ZZg (8xl~ - ox;  Oxy 2.1

m=1

for 1 < i, j,k < n. The Components of the Riemannian curvature tensor R of a semi-Riemannian

manifold M" are given by

ary, o, 2

for 1 <1, j,k,1 < n. The Components of the Ricci curvature tensor Ric of a semi-Riemannian manifold
M" are given by

Rij= > R, (2.3)
m=1
for 1 < i, j < n. The scalar curvature S of a semi-Riemannian manifold M" are given by
S =Y g'Ry= > g'RY,. (2.4)
i,j=1 i, jk=1

Theorem 2.1. Let M" be a n—dimensional translation hypersurface of the semi-Euclidean space
Rg“ with a natural orthonormal basis {ey, ... e,;} determined by the following equations

(X1, X0) = (X1 oo X, F(X1, 005 X)), F(Xy,..0,x) = Z Jfi(x). (2.5)
i=1
Then the scalar curvature of M" given by

AN

2 ,
S = > aeif f e+ D &k, 2.6)

2 " ? I<i<j<n 1<k<n
Ens1 + 2 Eif; - ki, j
i=1

where g, = {e;,e;) = 1 for1 <i<n+1.
Proof. It is easy to check that

B [ st e f? fori=j
8i = <¢i’ ¢j> B { &+1f{f}, fori # j 2.7)

and their inverse

g/ =1 & = , fori=j (2.8)
eieif; f;
0

, fori#j
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with Q =¢g,.1 + X & fk'2 and i, j = 1, ..., n. By the direct calculation from the equations (2.1)—(2.4), we
k=1

get (2.6).
Theorem 2.2. Let M" be a n—dimensional translation hypersurface of the semi-Euclidean space
RZ” for n > 3 determined by the following equations

(X1 ) = (51 X P X)) Flx ) = ) filn).
i=1

Then M" has zero scalar curvature iff it is locally a hyperplane or it is parameterized by one of the
following functions.
1.

n—1

Fxi,..X) = ) aixi+ f,(6) + b, (2.9)

i=1
on R"™! x [, for some open interval I, where a;,b e R, 1 <i<n-1and f, : I C R — Ris asmooth
function. With a appropiate translation, it is a vertical hypercylinder.

2.
n—2
Fxi,. . %) = ) aixi+ fui(Ga1) + f0) + b, (2.10)
i=1
on R"2 x I} X I, for some open intervals I, I, where a;,b € R, 1 <i < n—2 with Y/} &;a> = —g,4

and f, 1 : [ cR - R, f, : I, c R — R are smooth functions.
3. Leta ao,al,...,an_3,b,bo,c0,dbe real constants witha # 0,b # 0,a+b #0,b—a # 0,8 =
sl + Z, ] ela > 0and Iy, I, I, 14,15 be some open intervals defined, respectively, by the conditions

ab
|a VBXu_n + ao| < /2, |b VBXu_1 + b0| < /2, \/_xn + ¢ 7r/2 — —— \Bx, + ¢

b
ac:_ p \VBx, + co‘ <n/2.

a.Ifg,_16,=1and g,_,&, = 1, then

w3 cos( ab VBx, + co)
1 a

+b
F(xp,...,x,) = ;aix,-+5hl cos(a\/an—2+a0)

cos( ab VBx, + co)

1 a+b

+ —1In +d, 2.11)
b cos (b VBxpo1 + bo)

< m/2 and

on R"3 x I x I, X I3.
b. If g,_16, = =1 and ¢,_»¢, = 1, then

b

n-3 COS( . VB, +Co)

a

F(xy,...,x, a;x;

i=1 Cos (a VBXy2 + ao)
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1 b
- Incos (b“_ ~ VB, + co) cos (b Bt + bo)| +d, (2.12)
on R"3 x I X1, X I4.
c.Ifg,.16, = 1 and g,.5¢,, = —1, then
&8 1 ab
F(xi,...,x,) = ;aix,- - ;ln cos(b_a \//_fx,, + ¢ cos(a\/ﬁxn_z +a0)
b
. cos (ba VBx, + co)
-a
+ —1In +d, (2.13)
b cos (b VBXu_1 + bo)

on R"3 x I X1, X I4.

—ab
CoS (a j b \/an + C()) COS (Cl \/an_g + a())

1 —ab
-3 In |cos (a j b \/,Ex,, + co) cos (b \/an—1 + bo) +d, (2.14)
on R"3 x I X I, X Is.
If B = 0, then M" is locally a hyperplane.
Proof. From Theorem 1.1, M" has zero scalar curvature iff
Z siajfi”f]/-, Ep+1 t Z skﬁz =0. (2.15)
1<i<j<n 1<k<n
kti,j

We will examine the proof according to the following cases.

Case 1. Letg, .1 + ), & fk'2 =0forall 1 <i < j < n, then the functions fk are constant for all

1<k<n
ki)

1 < k < n. Consequently M" is locally a hyperplane.
Case 2. Let fl (x;) =0foralli=1,...n— 1, then M" is parameterized by the equation (2.9).
Case 3. Let f,(x;,) =Oforalli=1,...n -2, then f/(x;) = a;, a; € R. Also we can rewrite (2.15) by

the following equation
n-2
7’ 1’ 2
Sn—lgnfn—lfh (8n+1 + Z skak) .
k=1

According to this equation, we have the following cases:
1 If fn_1 = 0, corresponding to Case 1.

ii. If £ = 0, corresponding to Case 1.
n—-2

iii. If €, + 2 ska;f = 0, then M" is parameterized by the equation (2.10).
k=1

AIMS Mathematics Volume 8, Issue 2, 5036-5048.



5041

Cased. Let f, (x;) =0foralli=1,...n -3, then f,(x;) = a;, a; € R. Also we can rewrite (2.15) by
the following equation

4 ’/ /2 /1’ /7 ’2 1’ 4 /2
En-28n-1Sa Sy B+ 1,7) + En2&nfy oS B+ f,20) + Enr&nf, 1 S B+ 1,2 =0,

n-3

where 8 = €, + 2, ska%. If we multiply both sides of the above equation by &,_,&,-1&,, then we obtain
k=1
EntyafyrB+ 1D+ &t fuafy B+ 2D+ €nafysfy B+ f22) = 0. (2.16)

According to the assumption, the functions f;_z, f,;'_l and f, are different from zero. Also we get
B+ f,;z # 0fork =n-2,n—-1,n. Hence we rewrite (2.16)

Z 7z

&n ]2_2 Lt e J,C;"Zf” — + & Q"lﬁ’ —=0. 2.17)
B+ LB+ 1,2 B+ 12DB+ 12 B+ LB+ 1)
Differentiating the equation with respect to x,,_, and x,,_;, we find
( fn—2/2 ) — 0 or ( fn—l]z ) — 0
B+ 1, B+ 1.2
If (f"—_zz] = 0, then there is a constant a # 0 such that
B+ 1o
fia=a(B+12). (2.18)
Substituting this equation into (2.17), we obtain
g,,f"—‘{Za RPN —a+ &, Z"lﬁ’ —~=0 (2.19)
B+ 1.2 B+ f, B+ 1ZDB+ 15
Differentiating the equation with respect to x,_; and x,, we find
( fn_l/z ) =0 or ( Jn ,2) =0
B+ 12 B+ 1,
If ( f”_l,z ] = 0, then there is a constant b # 0 such that
B+ 1o
fla=b(B+12). (2.20)
Substituting this equation into (2.19), we obtain
A _
g,ab + (g,-1a + €,0b) = 0. 2.21)

B+ 1P
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Since ab # 0, from (2.21), then €,_1a + €,_,b # 0. If we rearrange the equation, then we get

Jo  _ &ab
B+ f? Ey_10 + €4_2b

(2.22)

If we integrate the equations (2.18), (2.20) and (2.22), then we obtain
f ,;_2 (xn—Z)

arctan (—) = a+/Bx,_» + ay,

VB
arctan (L\/g’_l)J = aBx,_1 + by,
ﬂ(xn)) ___ &uab+P

VB g, 1a+&,9b

where ay, by and ¢\ are constants. From these equations, we get

arctan( X, + Co,

f;,l_z(xn_z) = —é In |cos (a \/an_z + ao)‘ + aq,

f,,_l(x,,_l) = —%ln CcoS (b \/an—l + bo)‘ + bl,

&,-10 + €,_2b . g,ab\B
——  Infcos | ——
g,ab Ey-10 + €,_0b

fn(xn) =

+ Cq,

X, + Co)

where ay, by and c; are constants. Therefore M" is parameterized by the equation

n-3

(X, ey Xy) = (xl,...,xn,z ixi—éln'cos(a\/ﬁxn_2+ao)’

i=1

- éln 'cos (b Bx,_1 + b0)|

. (gn_2gn . sn_lsn)ln ‘C . S( _&abVB vd) (223)

a b &,-10 + &,_0b

X, + Co)

where d = a; + b; + ¢ is a constant. According to the values of g,_,, €, and &,, if we rearrange the
equation (2.23), then we get the following parameterizations.

i. If&,.1&, = 1 and ¢,.,&, = 1, then the translation hypersurface M" is given by (2.11).

ii. If £,_16, = —1 and g,_,¢, = 1, then the translation hypersurface M" is given by (2.12).

iii. If ,_1¢, = 1 and g, ¢, = —1, then the translation hypersurface M" is given by (2.13).

iv. If ,_1&, = —1 and g,_,&, = —1, then the translation hypersurface M" is given by (2.14).

Case 5. Let fl."(x,-) =0forl <i<k<n-4,and f;(xj) # 0 for any j > k. We prove that this is not
possible. Also we can rewrite (2.15) for any fixed [ > k + 1 by the following equation

1’ 1’ /2 1’ 1’ /2
Z 81'3]'](;'](‘] Entl1 T Z Emfm 3lﬁ Z 3jfj Epyl T+ Z ‘9mfm

1<i<j<n 1<m<n k+1<j<n 1<m<n
m#i, j j#l m#l,j
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1’ 1’ 12
+ Z gi€ifi fi |&nr1 + Z Emfm |-

k+1<i<j<n 1<msn
i,j#l m#l,

Differentiating the equation (2.24) with respect to x;, we obtain

I ’’ l2 / 7’ ’’ 7’ _
1 E gifi | &nr1 + E emfu |+ 21 11 E gi€f; f; =0.
k+1<j<n I<m=<n k+1<i<j<n
J#l m#l, i,j#l

According to the equation (2.25), we define

"’ /2 1’ 1’
A[: Z ijj Ep+1 T Z gmfm , Bl: Z gigjfifj‘

k+1<j<n I<m<n k+1<i<j<n
j#l m#l j ij#l

A; and B, are not dependent on x;. From (2.25) and (2.26), we have
Al‘fll// + 2Blf;‘fll/ — 0.

Also there are two cases.
i. Let A, =0for/ > k + 1. From (2.26), we get

7’ /2
Z sjfj Epil + Z Emfn |=0.

k+1<j<n 1<msn
J#l m#l, j

Differentiating the equation (2.28) with respect to x, for p > k+ 1 and p # [, we find

117 /2 / 7’ 7’ _
fp |&ne1 + E Emfm |+ 21,1, E gif; =0.
1<m<n k+1<j<n
m#l,p jELp

According to this equation, one must have

Ep+1 t Z <9,,,f,;l2 # 0.

1<m<n
m#l,p

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

Otherwise the functions f, are constant and we conclude that f, = 0 for 1 <m < n,m # [, p. This is a

contradiction with the assumption in Case 5. Since A; = 0, according to (2.25), we get

2afif ). sl f] =0.
k+1<i<j<n
i j#l

(2.31)
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Since g # 0 and fz # 0, we have
> asif £ =0 (2.32)

k+1<i<j<n
i,j#l

Differentiating the equation (2.32) with respect to x,, for p > k+ 1 and p # [, we obtain

£ ) &if =0. (2.33)

k+1<j<n
J#Lp

an

Differentiating the equation (2.33) with respect to x, for ¢ > k+ 1 and g # [, p, we find f, f,° = 0.
Therefore, at most one of the indexes p > k + 1 and p # [ is nonzero, denoted by p. Also we can get
fy #0and f" =0forallg > k+1and ¢ # [, p. From f,” # 0 and the equation (2.33), we have

D &t =0 (2.34)

k+1<j<n
J#Lp

Substituting this equation into (2.29), since &,,1+ 3. &u.f.> # 0, we get fp = 0. This is a contradiction
1<m<n
m#lp

with fp # 0. Also we get fI7 =0forall p >k +1and p # [. From (2.29), we conclude that

> et =0, (2.35)

k+1<j<n
J#Lp

forall p > k+ 1 and p # [ The above linear system has unique solution such that f; = 0 for all
k+1 < j<mnand j# [ This is a contradiction with the assumption in Case 5. Consequently, if A; = 0,
then Case 5 is not possible.

il. Let A; # O for [ > k + 1. Since A; # 0, from (2.27), we get

11

" +2aif f =0, (2.36)

B
where ; = Xl is a constant for [ > k + 1. Substituting this equation into (2.25), we find
!

i /! ) e "o
ozzf,f, E 8jfj Eny1 T E Smfm — ﬁfl E sigjfi f] =0.
k+1<j<n 1<m<n k+1<i<j<n
J#l m#l,j i,

Since fl"(xl) # 0for/ >k + 1, we obtain

7’ I2 7’ 7’ _
a Y e e+ > anfit|- > aeff] =0. (2.37)
k+1<j<n 1<msn k+1<i<j<n
j#l m#l,j i,j#l
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Differentiating the equation (2.37) with respect to x; for s > k + 1 and s # [, we obtain

7 /2 / 7 7 1 7’ _
alf? Ept1 t+ § gmf;n +2alfva E gjfj _fv E i gjfj = 0.
1<mzn k+1<j<n k+1<j<n
m#l,s J£ls J#ELs

From (2.36), f.  +2a,f.f. =0 for s > k + 1. Also we can rewrite the above equation

)

—a S |+ D el |+ afif, Y sif] vaufifl Y. &f] =0.

1<m<n k+1<j<n k+1<j<n
m#l,s J#ls J#ls

Since fs"(xs) #0fors>k+ 1, we get

/2 ’’ ’’ _
— | & + E Emfy |+ E gif; +as E gif; =0. (2.38)
1<m<n k+1<j<n k+1<j<n
m#l,s J#Ls J#Ls

Differentiating the equation (2.38) with respect to x, for > k+ 1 and ¢ # [ and t # s, we obtain

2aia,f, f, +aif, +a,f, =0.

From (2.36), f” +2a,f, f, = Ofort > k + 1. Since f, (x,) # O for t > k + 1, we obtain the above
equation
aa, + aa; + aga;, =0, (2.39)

with ¢t # [, ¢ # s and [ # s. From [1], in a similar way to the proof of Theorem 1.2, this equality imply
that at most one of the constants a; is nonzero for [/ > k+ 1. We assume thata; = O fork+1 </ <n-1.

117

From (2.36), f," = 0, then f," is constant for k + 1 <[ < n — 1. From (2.37), we obtain
Z 8,'8jf;-,,f;, =0
k+1<i<j<n
il

for I # n. Therefore f, is constant and so @, = 0. Thus, from (2.37), we get

> et f =0
k+1<i<j<n

ij#l

According to the equality, at most one of the functions fz is nonzero for k + 1 < [ < n. This is a
contradiction with the assumption in Case 5. Consequently, if A; # 0, then Case 5 is not possible.
Theorem 2.3. Let M" be a n—dimensional translation hypersurface of the semi-Euclidean space

RZ” for n > 3 determined by the following equations
w(-xla'- -’xl’l) = (.X],.. ',xl’l,F(-xla"~7xn))’ F(X],. "axn) = Zﬁ(xl)'
i=1
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5046

Assume further that M" has constant scalar curvature. Then its constant scalar curvature must be zero.
Proof. We assume that a translation hypersurface M”" has nonzero constant scalar curvature S. From
(2.6) the scalar curvature of M" is given by

2 /ot ’
S = = Z giEif; fj Ept1 + Z Eksz (2.40)
Q 1<i<j<n llfk.S."
#1,]

n
where Q = g,41 + X &if; 2, Differentiating the equation (2.40) with respect to x;, we obtain
i=1

1 i ’’ /2 U ’’ ’’ ’’
0 = S| Do e+ D akl |+ 268 D st f;
1<j<n 1<k<n 1<i<j<n
Jj#l k#l,j i,j#l

4f},‘f}” 17 17 /
2
_7 Z gigjﬁ f‘] En+l + Z Sk‘f}{ .
1<i<j<n 1<k<n
k#i,j

If we rearrange this equation, then we get

U ’’ 1 1’ ’’ /2 U ’’ ’’ ’’
2188 =5 |1 Do e+ D ak |+ 268 D aeif £ (2.41)
1<j<n 1<k<n 1<i<j<n
j#l k#l,j i, j#l

Differentiating the equation (2.41) with respect to x; and s # [, we find

1 ua ua l2 ua ’ ’’ /! U ’7 ua ’r
0 = G| K et 2 e [+ 2071 D if] 4201 ) e,
1<k<n 1<j<n 1<j<n
ktls j#Ls j#ls
2f/ft/ i 7’ /2 ’ 7’ 7’ 7’
5| D eiff e+ D a4 266 D seif f].
1<j<n 1<k<n 1<i<j<n
j#l kL, j i, j#l
From this equation, we get
/ 7’ / 7’ 1 1’ /2 7’ / 7’ / 7’ 1’ 7’
ARELES = 11 e+ D e |+ 2087 £ + K7 LD D &l (242)
1<k<n 1<j<n
k#l,s J#Ls

Differentiating the equation (2.42) with respect to x;, t # [ and ¢ # s, we have

e /ANl A AN]

Lol il v 0 B K + s e il =0 (2.43)
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111

We assume that f, f, f, # O and f,” = 0. According to (2.43), we get f; = O or f, = 0. From (2.42),

we have 4f, f, f, f. S = 0. This contradicts f, f, f, # 0and S # 0. Also f,” # 0 and likewise f, # 0

NN

and f," # 0. From f" f, f/ # 0 and (2.43), we find

/17 2 111

Lk N 5t N L

J‘}/f;/ ‘f;f;/ ]‘;ﬁ” J‘;/f;// ‘f;/‘f;/ f:ﬁ”
From (2.44), we get f, = o, f, f,, with a nonzero constant ¢;. Substituting this equation into (2.41),
we find

= 0. (2.44)

250=a; Y &if] [ewi+ ) afl|+2 ) aeif f. (2.45)
1<j<n 1<k<n 1<i<j<n
J#l k#l,j i,j#l
Differentiating the equation (2.45) with respect to x;, we have fz fl”S = (. This contradicts fz £ f+0
and § # 0. Hence, it must be fz £, f" = 0. Also, at most two of the functions fz are nonzero for
1 < [ < n. Without loss of generality, we assume that f, | # 0, f, # Oand f, =0for1 </ <n-2,

then fz =q; for 1 <[ < n-2 and we arrange (2.6)

0+ QS =f_fa, (2.46)

n-2
where a = 2g,_1¢, (s,m + X ska,f) is a nonzero constant. Differentiating the equation (2.46) with
k=1

respect to x,_;, we have

0# de,1fo 1 foy0S = fo f, @ (2.47)
Differentiating the equation with respect to x,, we get
0 # 8 18nf. S0 fo LS = fi LS . (2.48)

Also, there is a nonzero constant 8 such that f};il =p f,;_l f,;'_l # 0 and from (2.47)
0 # 4e,.,0S = f, ap. (2.49)
Differentiating the equation (2.49) with respect to x,_;, we get

Sf;;—lfr;l—ls =0.

This is a contradiction with fn g , # 0. Thus the constant scalar curvature must be zero.
3. Conclusions

Translation hypersurfaces are special Monge hypersurfaces defined by the following equations

(X1 %) = (X1 X P X)) FOx ) = ) fil6).
i=1

In this paper, we obtain the parameterization of translation hypersurfaces with zero scalar curvature
into RZ“. Moreover we prove that translation hypersurfaces with constant scalar curvature must have
zero scalar curvature in the semi-Euclidean space R’q“‘ forn > 3.
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