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1. Introduction

Let H be a real Hilbert space with its inner product -, -) and induced norm || - ||. Let @ # C C H be
a closed convex set, and P¢ be the metric projection (or nearest point) from H onto C. LetS : C - H
be a nonlinear mapping. Let the Fix(S) and R indicate the fixed-point set of § and the real-number
set, respectively. We denote by the — and — the strong convergence and weak convergence in H,
respectively. A mapping S : C — C is referred to as being asymptotically nonexpansive if 3{6,}?, C
[0, +o0) s.t. lim, o, 6, = 0 and O,|lu — V|| + |[u = V|| = ||S"u — S™V||, Vr > 1, u,v € C. In particular, if
6, =0, Yr > 1, then S is known as being nonexpansive.
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Let ® : C x C — R be a bifunction. The equilibrium problem (EP) for ® is to determine its
equilibrium points, that is, the set EP(®) = {u € C : O(u,v) > 0, Vv € C}. Under the theory
framework of equilibrium problems, there is a unified way to investigate a wide number of problems
arising in the physics, optimization, structural analysis, transportation, finance and economics. In order
to find an element in EP(®), one assumes that the following hold:

H1D) O, u) =0, VYucecdC,

(H2) ® is monotone, that is, @(u,v) + ®(v,u) <0, VYu,v e C,

(H3) lim_o+ O((1 — Du + Aw,v) < O(u,v), VYu,v,w e C;

(H4) v = O(u, v) is convex and lower semicontinuous (l.s.c.) for each u € C.

In 1994, Blum and Oettli [34] gave the following lemma, which plays a key role in solving the
equilibrium problems.

Lemma 1.1 ( [34]). Let ® : C X C — R satisfy the hypotheses (HI)—(H4). For any u € C and € > 0,
let S; : H — C be the mapping formulated below:

1
T?(u) ={weC:0wv)+ z(v—w,w—u) >0, YveC}

Then T? is well defined and the following hold: (i) T{@ is single-valued, and firmly nonexpansive, that
is, ||T§)u - T?vll2 < (Tf)u - T?v, u-v), Yu,v € H; and (ii) FiX(T?) = EP(®), and EP(®) is convex and
closed.

It is worth pointing out that the variational inequality problem (VIP) is a special case of the EP.
In particular, if O(u,v) = (Au,v — u), Yu,v € C, then the EP reduces to the classical VIP of finding
ueCst (Au,v —uy >0, Vv € C, where A is a self-mapping on H. The solution set of the VIP is
denoted by VI(C, A). It is well known that, one of the most popular techniques for solving the VIP is
the extragradient one put forth by Korpelevich [26] in 1976, that is, for any starting point u, € C, let
{u,} be the sequence constructed below

vy = Pc(uy, — pAuy),
Ups1 = Pe(u, — pAvy), Vp 20,

where u € (0, %) and L is Lipschitz constant of A. Whenever VI(C, A) # 0, the sequence {u,} converges
weakly to a point in VI(C, A). Till now, the vast literature on the Korpelevich extragradient technique
shows that many authors have paid great attention to it and enhanced it in different manners; see
e.g., [1-7,9,10,12-18,20-25,27-31,36—41] and references therein.

Let ®,0, : C x C — R be two bifunctions and let By, B, : C — H be two nonlinear mappings. In
2010, Ceng and Yao [35] considered the following problem of finding (u*,v*) € C X C such that

O, u) + BV, u—u)+ L —viu—u)>0, VYueC,
{1(14 u) + (Byv,u—u") m(u Vi u—u*) u (L.1)

O, (v, v) + (Bou*, v —v*) + #iz(v* —u,v—v)>0, VYve(C,
with uy, 1p > 0, which is called a system of generalized equilibrium problems (SGEP). In particular,

if @ = @, = 0, then the SGEP reduces to the following general system of variational inequalities
(GSVI) considered in [6]: Find («*,v*) € C x C such that

{(,ulBlv*+u*—v*,u—u*>20, Yu e C, (12)

B +v: —u',v—-v)>0, VveC.
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Note that SGEP (1.1) can be transformed into the fixed-point problem.

Lemma 1.2 ( [35]). Let ®,,0, : C X C — R be two bifunctions satisfying the hypotheses (HI)-
(H4) and let the mappings B\,B, : C — H be a-inverse-strongly monotone and f3-inverse-strongly
monotone, respectively. Let u; € (0,2a) and u, € (0,2p8), respectively. Then, for given u*,v* € C,
(u*,v*) is a solution of SGEP (1.1) if and only if x* € Fix(G), where Fix(G) is the fixed point set of the
mapping G = Tf?l‘(l —,ulBl)T,(ZZ(I — xBy), and v = ng(l — W By)u”.

On the other hand, suppose that the mappings By, B, : C — H are a-inverse-strongly monotone
and B-inverse-strongly monotone, respectively. Let f : C — C be contractive with constant ¢ € [0, 1)
and F : C — H be «k-Lipschitzian and n-strongly monotone with constants x,77 > 0 such that 6 < ¢ :=
1 — /1 =u@n—u?) € (0,1] for u € (0, %). Let § : C — C be an asymptotically nonexpansive
mapping with a sequence {6,} such that Q := Fix(S) N Fix(G) # 0, where Fix(G) is the fixed-point set
of the mapping G := Pc(I — u1By)Pc(I — pup By) for g € (0, 2) and p; € (0, 28). Recently, Cai, Shehu
and lyiola [13] proposed the modified viscosity implicit rule for finding an element of €, that is, for
any starting point x; € C, let {x,} be the sequence constructed below

up = Bpxp + (1 =By,

vp = Pc(u, — paBauy),

Yp = Pc(vp — 1 B1vy),

Xps1 = Pela, f(x,) + (I — apuF)T?y,], Vp2>1,

(1.3)

where {a,}, {8,} € (0, 1] s.t. () Z;"zl a1 — a,| < oo, Z;":l @, = oo; (ii) lim, o @, = 0, lim, o 2—" =

0; (i) 0 < & < B, < 1, X)L 1Bpe1 = Byl < 003 and (iv) X5 ITP*ly, — TPy,|l < oo. It was proved
in [13] that the sequence {x,} converges strongly to an element u* € €, which is a unique solution of
the hierarchical variational inequality (HVI): ((uF — f)u*,u —u*) > 0, Yu € Q. Very recently, Reich
et al. [29] suggested the modified projection-type method for solving the pseudomonotone VIP with
uniform continuity mapping A. Let {a,} C (0, 1) and f : C — C be contractive with constant ¢ € [0, 1).
Given any initial x; € C.

Algorithm 1.3 ( [29]). Initial step: Letv >0, £ € (0,1), A € (0, %).

Iterations: Given the current iterate x,, calculate x,.; as follows:

Step 1. Compute y, = Pc(x,—AAx,) and Ry(x)) := x,—y,. If Ry(x,) = O, then stop; x,, is a solution
of VI(C, A). Otherwise,

Step 2. Compute w, = x, — T,R\(x,), where T, := €’» and j, is the smallest nonnegative integer
j st RGP 2 (Ax, — Alx, — ORA(x,)), Ru(x,)).

Step 3. Compute x,y1 = a,f(x,) + (1 — a,)Pc,(x,), where C, := {x € C : h,(x,) < 0} and
hp(x) = (Awp,, x — Xx,) + ;—ZIIRA(xp)IIZ. Again set p :== p+ 1 and go to Step 1.

It was proven in [29] that under mild conditions, {x,} converges strongly to an element of VI(C, A).
In a real Hilbert space H, we always assume that the SGEP, VIP, HVI and FPP represent a system of
generalized equilibrium problems, a pseudomonotone variational inequality problem, a hierarchical
variational inequality and a fixed-point problem of an asymptotically nonexpansive mapping,
respectively. We introduce the modified Mann-like subgradient-like extragradient implicit rules with
linear-search process for finding a common solution of the SGEP, VIP and FPP. The proposed
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algorithms are based on the subgradient extragradient rule with linear-search process, Mann implicit
iteration approach, and hybrid deepest-descent technique. Under mild restrictions, we demonstrate the
strong convergence of the proposed algorithms to a common solution of the SGEP, VIP and FPP,
which is a unique solution of a certain HVI defined on their common solution set. In addition, an
illustrated example is provided to illustrate the feasibility and implementability of our suggested rules.

The architecture of this article is constituted below: In Section 2, we present some concepts and
basic tools for further use. Section 3 treats the convergence analysis of the suggested algorithms. Last,
Section 4 applies our main results to solve the SGEP, VIP and FPP in an illustrated example. Our
results improve and extend the ones associated with very recent literature, e.g., [13,17,29].

2. Preliminaries

Let H be a real Hilbert space and ) # C C H be a convex and closed set. Given a sequence {u;} C H.
We denote by the u, — u* (resp., uy — u*) the strong (resp., weak) convergence of {u;} to u*. For all
u,v € C, an operator ¥ : C — H is referred to as being

(a) L-Lipschitzian (or L-Lipschitz continuous) if 4L > 0 s.t. ||Yu — Pv|| < L|ju — v||;

(b) pseudomonotone if (Yu,v —u) > 0 = (Pv,v—u) > 0;

(¢) monotone if (Yu — ¥Yv,u —v) > 0;

(d) a-strongly monotone if Ja > 0 s.t. (Yu —Pv,u —v) > allu — v|[*;

(e) B-inverse-strongly monotone if 38 > 0 s.t. (Yu — Pv,u —v) > B||Pu — Pv||%;

(f) sequentially weakly continuous if V{v;} C C, the relation holds: vy — v = Yy, — WPv. Itis clear
that each monotone mapping is pseudomonotone but the converse is not true. Also, Vv € H, 1| (nearest
point) Pc(v) € C s.t. ||[v — Pc(v)|| < |[[v —w|| Yw € C. P¢ is called a nearest point (or metric) projection
of H onto C. The following conclusions hold (see [19]):

(@) (v —w, Pc(v) = Pc(W)) > |IPc(v) = PcW)I>, Vv, w € H;

®yw=Pc(v) o v—-w,u—-w)<0, Yve HucecC,

©) v =wl? = |lv = PcO)IP + llw = PcW)I?, Vv e H,w e C;

(d) [lv =wiP* = VP = WP = 2(v = w,w), ¥v,w € H;

@) llsv + (1 = Hw|*> = s|vlI® + (1 = )|w|l> = s(1 = s)|lv = w|l>, Yv,w e H, s €[0,1].

The following inequality is an immediate consequence of the subdifferential inequality of the
function 1| - |I*:

e+ vI* < |lull® +2(v,u+v), Vu,veH.
The following lemmas will be used for demonstrating our main results in the sequel.

Lemma 2.1. Let the mapping B : C — H be y-inverse-strongly monotone. Then, for a given A > 0,
(I = ABYu — (I — ABWII* < |lu — vII* — A2y — A)||Bu — B
In particular, if 0 < A < 2y, then I — AB is nonexpansive.

Using Lemma 1.1 and Lemma 2.1, we immediately derive the following lemma.

Lemma 2.2 ( [35]). Let ©,0, : C X C — R be two bifunctions satisfying the hypotheses (HI)—(H4),
and the mappings By, B, : C — H be a-inverse-strongly monotone and [3-inverse-strongly monotone,
respectively. Let the mapping G : C — C be defined as G := TS,‘(I — /JIBI)TI?ZZ(I — 2By). Then
G : C — C is a nonexpansive mapping provided 0 < pu; < 2a and 0 < pp < 2.
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In particular, if ®; = @, = 0, using Lemma 1.1 we deduce that T,?]‘ = Tfj = Pc. Thus, from
Lemma 2.2 we obtain the corollary below.

Corollary 2.3 ([6]). Let the mappings By, B, : C — H be a-inverse-strongly monotone and 3-inverse-
strongly monotone, respectively. Let the mapping G : C — C be defined as G := Pc(I — 1 B1)Pc(I —
B). If 0 <y <2aand 0 < uy <26, then G : C — C is nonexpansive.

Lemma 2.4 ( [6]). Let A : C — H be pseudomonotone and continuous. Then u € C is a solution to
the VIP (Au,v —u) > 0, Yv € C, if and only if (Av,v —u) > 0, Yv € C.

Lemma 2.5 ( [8]). Let {a;} be a sequence of nonnegative numbers satisfying the conditions: a;,; <
(1 —=A)a; + Ay, Y1 = 1, where {A;} and {y,} are sequences of real numbers such that (i) {A4;} C [0, 1] and
Yoy A =00, and (ii) limsup,_, .y, < 0 or 32, [yl < o0. Then lim;_,. a; = 0.

Later on, we will make use of the following lemmas to demonstrate our main results.

Lemma 2.6 ( [32]). Let H, and H; be two real Hilbert spaces. Suppose that A : Hy — H, is uniformly
continuous on bounded subsets of Hy and M is a bounded subset of H,. Then, A(M) is bounded.

Lemma 2.7 ( [33]). Let h be a real-valued function on H and define K := {x € C : h(x) < 0}. If K is
nonempty and h is Lipschitz continuous on C with modulus 6 > 0, then
dist(x, K) > 67! max{h(x), 0} Vx € C, where dist(x, K) denotes the distance of x to K.

Lemma 2.8 ( [11]). Let X be a Banach space which admits a weakly continuous duality mapping, C
be a nonempty closed convex subset of X, and T : C — C be an asymptotically nonexpansive mapping
with Fix(T) # 0. Then I — T is demiclosed at zero, i.e., if {u;} is a sequence in C such that uy — u € C
and (I — T)uy — 0, then (I — T)u = 0, where I is the identity mapping of X.

The following lemmas are very crucial to the convergence analysis of the proposed algorithms.

Lemma 2.9 ( [30]). Let {A,,} be a sequence of real numbers that does not decrease at infinity in the
sense that, {A\,,.} C {An} s.t. Ay, < A1 Yk > 1. Let the sequence {¢(m)}usm, Of integers be
formulated below:

o(m) = max{k <m: Ay < Mgy},

with integer mg > 1 satisfying {k < mgy : Ay < Ay} # 0. Then there hold the statements below:
(i) p(mg) < ¢p(mo + 1) < - -+ and ¢p(m) — oo;
(ll) A¢(m) < A¢(m)+l and Am < A¢(m)+1, Vm > my.

Lemma 2.10 ( [8]). Let A € (0,1) and Let S : C — C be a nonexpansive mapping. Let S* : C — H
be the mapping formulated by S*u := (I — AuF)Su Yu € C with F : C — H being «-Lipschitzian and
n-strongly monotone. Then S* is a contraction provided 0 < u < % e, ISu—SW| <A -A0)|u—-
V||, Yu,v € C, where t =1 — \/1 — u2n — ux?) € (0, 1].

3. Main results

In this section, let the feasible set C be a nonempty closed convex subset of a real Hilbert space H,
and assume always that the following conditions hold:

AIMS Mathematics Volume 8, Issue 2, 2961-2994.
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(1) § : C — C is an asymptotically nonexpansive mapping with a sequence {6,},and A : H — H is
pseudomonotone and uniformly continuous on C, s.t. [|Az|| < liminf,_ ||Au,|| for each {u,} C C with
Uy — 2.

(2) ®1,0, : C x C — R are two bifunctions satisfying the hypotheses (H1)-(H4), and By, B, : C —
H are a-inverse-strongly monotone and S-inverse-strongly monotone, respectively.

(3) Q = Fix(S) n Fix(G) N VI(C, A) # 0 where G := T/?l‘(l — ,ulBl)T,?j(I — o By) for u; € (0,2a)
and u, € (0,20).

(4) f : C — H is a contraction with constant ¢ € [0, 1), and F : C — H is n-strongly monotone and
«-Lipschitzian such that § < 7 := 1 — /1 — u(2n7 — ux?) for u € (0, %).

(5) {ou}, {a,} € (0,1] and {B,} C [0, 1] are three real number sequences satisfying

(i) Xp2y @ = 00, lim, e @, = 0 and lim, e 2 = 0;

(i) O < liminf, B, < limsup, By < 1;

(iii) limsup,_, , 0, < 1.

Algorithm 3.1. Initial step: Givenv >0, £ € (0,1), 1 € (0, %). Let x| € C be arbitrary.
Iterations: Given the current iterate x,, calculate x,.| below:
Step 1. Calculate w,, = o,x, + (1 — 0,)u, with

Vp = ng(wn - IUZBZWn)’

Uy, = Tgl(vn _,ulBan)-

Step 2. Calculate y, = Pc(w, — AAw,) and R,(w,) := w, — Y.
Step 3. Calculate t, = w, — T,R,(W,), where T, := /" and j, is the smallest nonnegative integer j
satisfying

(Aw, = AWy = UR (W), Wy = ) < g”R/l(Wn)HZ- (3.1

Step 4. Compute Zn = PCn(Wn) and Xn+1 = ﬁnxn + (1 - ,Bn)PC[a'nf(xn) + (I - a’nﬂF)SnZn], where
C,:={uecC:h,(u) <0}and

Tn
T (u) = (At u — wy) + ﬁ”Rﬁ(Wn)”2- (3.2)
Again put n := n + 1 and return to Step 1.

Lemma 3.2. The Armijo-type search approach (3.1) is well formulated, and the relation holds:
ANRAWDIP < ARy (W), Aw,y).

Proof. Since ¢ € (0,1) and A is of uniform continuity on C, it is clear that lim;_,..(Aw, — A(w, —
LR (W), Ry(wy)) = 0. If Ry(w,) = 0, one gets j, = 0. Otherwise, from R (w,) # 0, it follows
that 3 (integer) j, > O fulfilling (3.1). It is readily known that the firm nonexpansivity of P¢ implies
(u — Pev,u —v) > |lu — Pevll’, Yu € C,v € H. Setting v = w, — AAw, and u = w,, one has
Aw, — Pe(w, — AAwy), Aw,) > |w, — Pc(w, — AAw,)||>. Hence the relation holds. O

Lemma 3.3. Suppose that h, is the function formulated in (3.2). Then, h,(v) < 0 Vv € Q. In addition,
when R,(w,) # 0, one has h,(w,) > 0.
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Proof. 1t suffices to show the former claim of Lemma 3.3 because the latter claim is clear. In fact, pick
an arbitrary v € Q. By Lemma 2.4 one gets (At,, t, — v) > 0. Thus, one has

Tn
a() = (At v = ) + S5 IR0
= (At ty — Wa) + (At v — ) + ;—;nmwﬂ)uz (3.3)
Th
< (At Ry9,) + S5IR ).

Meanwhile, from (3.1) it follows that 3||R AW > (Aw, — At,,, Ry(wy,)). So, from Lemma 3.2 one gets

v v 1
(Aty, Ry(wy)) > _EHR/l(Wn)HZ + (Ra(wn), Aw,) > (—5 + Z)”R/I(Wn)nz- (3.4)
This along with (3.3), arrives at
T, 1
Tn(v) < == (5 = VIR I, (3.5)
Therefore, we derive the desired result. O

Lemma 3.4. Let {w,}, {x,}, {y.}, {z.} be the bounded sequences constructed in Algorithm 3.1. Assume
that x,— X1 — 0, X,—Gw, — 0, w,—y, = 0and x,—z, — 0. If S"x,—S"*'x, — 0 and Ax,, ) C {x,)
such that x,, — z € C, then z € Q.

Proof. From Algorithm 3.1, we get w, — x, = (1 — 0,)(u, — x,) Yn > 1, and hence |w, — x,|| =

(1 = o)llu, — x4l < lu, — x,,||. Utilizing the assumption u, — x,, — 0, we have
lim ||w, — x,|| = 0. 3.6)
Putting ¢, := a, f(x,) + (I — @,uF)S"z,, by Algorithm 3.1 we know that x,.; = B,x, + (1 = 8,)Pc(q,)
and g, — "z, = a, f(x,) — a,uFS"z,. Hence one gets
162 = S"zull < M0 = Xt Il + [1Xns1 — Szl
< ”xn - xn+1|| +ﬁn||xn - Snzn” + (1 _ﬁn)HQn - Snzn”
< ”-xn - xn+1|| +ﬂn||xn - Snzn” + an”f(-xn)” + an”:uFSnZn”-
This immediately ensures that
(1 _ﬁn)”xn - Snzn” < ”xn - xn+1|| + a’n”f(xn)” + a’n”/JFSnZn”
Since x,, — x,41 — 0, @, — 0 and liminf,_.(1 — 8,) > 0, by the boundedness of {x,}, {z,} we obtain
lim ||x, = S"z,|| = 0.
We claim that lim, e ||x, — Sx,|| = 0. In fact, using the asymptotical nonexpansivity of S, one
deduces that
”xn - an” < ”xn - Snzn” + ”Snzn - Snxn” + ”Snxn - Sn+1xn||
+ ||Sn+1xn - Sn+lzn|| + ||Sn+lzn - an”
< ”xn - Snzn” + (1 + gn)”Zn - xn” + ”Snxn - Sn+]xn||
+ (1 + s )lIxn = zall + (1 + OIS "2, — x4l
= 2+ 0Dl = S"zull + (2 + 6, + Oy )llzn — Xl + 18" 2x, = S™ x|l
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Since x, —z, — 0, x, = S"z, = 0 and S"x, — S""'x, — 0, we obtain
lim ||x, — Sx,|| = 0. 3.7

Also, let us show that lim,_,, ||x, — Gx,|| = 0. In fact, by Lemma 2.2 we know that G : C — C is
nonexpansive for u; € (0, 2a) and u, € (0,26). Again from Algorithm 3.1, we have u,, = Gw,.. Since

”gxn - xn” < ”gxn - gwn” + ”an - xn” < ”xn - Wn” + ”un - an,
Noticing u, — x, — 0 and x,, — w,, — 0 (due to (3.6)), we obtain

lim |Gx, — x,|| = 0. (3.8)

Next, let us show z € VI(C, A). Indeed, noticing x,, — w, — 0 and x,, — z, we know that w,, — z.
Since C is convex and closed, from {w,} Cc C and w,, — z we get z € C. In what follows, we consider
two cases. In the case of Az = 0, itis clear that z € VI(C, A) because (Az,y—z) > 0, Vy € C. In the case
of Az # 0, it follows from w,, — x, — 0 and x,, — z that w,, — z as k — oo. Utilizing the assumption
on A, instead of the sequentially weak continuity of A, we get 0 < ||Az|]| < liminf;_. [[Aw,||. So,
we might assume that |[Aw, || # 0 Yk > 1. On the other hand, from y, = Pc(w, — 1Aw,), one has
Wy — AAW, =y, x —yn) <0, ¥Vx € C, and hence

1
z(wn —Yn, X — yn> + <Awn’yn - Wn> < <Awn,-x - Wn)a YxeC. (39)

In the light of the uniform continuity of A on C, one knows that {Aw,} is bounded (due to Lemma 2.6).
Note that {y,} is bounded as well. Thus, from (3.9) we get lim inf;_,.(Aw,,, x = w,,) > 0Vx € C.

To show that z € VI(C, A), we now choose a sequence {y;} C (0, 1) satisfying y; | 0 as k — oo. For
each k > 1, we denote by [, the smallest positive integer such that

Because {y;} is decreasing, it is readily known that {/;} is increasing. Note that Aw; # 0 Vk > 1 (due
to {Aw;,} C {Aw,,}). Then one puts vj, = rrois, one gets (Awy,vy) = 1, Yk > 1. So, using (3.10)
k

one has (Aw;,x + yiv;, — wy) = 0, Yk > 1. Again from the pseudo-monotonicity of A one has
(A(x + yivy), x + yivy, — wy,) 2 0, Yk > 1. This immediately arrives at

(Ax, x —wy) > (Ax — A(x + yrvp), x + Yeuy, — wi) — YikAx, v), V> 1. (3.11)

We claim that limy_,, yxv;, = 0. In fact, from x,, — z € C and w, — x, — 0, we obtain w,, — z.
Note that {w; } C {w,,} and y; | 0 as k — oo. So it follows that

. . Yk lim sup; ., Yk
0 < lim sup ||y,v || = lim sup < — =0.
k— o0 ¢ k—o0 ||Awlk|| lim 1nfk—>oo ”Awnk”

Hence one gets y,v;,, — 0 as k — oco. Thus, letting k& — oo, we deduce that the right-hand side
of (3.11) tends to zero by the uniform continuity of A, the boundedness of {w;},{v;} and the limit
limy o yivy, = 0. Therefore, (Ax, x — z) = liminf;_,.(Ax,x —w;,) > 0 Vx € C. Using Lemma 2.4 one
has z € VI(C, A).
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Last, we claim that z € Q. In fact, because (3.7) yields x,, — S x,, — 0. By Lemma 2.8 one knows
that / — S is demiclosed at zero. So, from x, — z it follows that (/ — §)z = 0, i.e., z € Fix(5).
Besides, let us claim that z € Fix(G). Actually, by Lemma 2.8 we deduce that / — G is demiclosed
at zero. Thus, from (3.8) and x,, — z one has (I — G)z = 0, 1.e., z € Fix(G). Accordingly, z €
Fix(S) N Fix(G) N VI(C, A) = Q. This completes the proof. O

Lemma 3.5. Let {w,} be the sequence constructed in Algorithm 3.1. Then,

lim 7[R, (w)l? =0 = lim [|Ry(w,)|| = 0. (3.12)

Proof. We claim that limsup,_, _ [|[R,(w,)|| = 0. Conversely, suppose that lim sup,,_, . [|[R;(w,)ll = d > 0.
Then, Hn,} C {n} s.t. lim, o [[Ri(wy )l = d > 0. Note that lim,_, TnpllRA(w,,p)||2 = 0. First, if
liminf, . 7,, > 0, we might assume that 3¢ > 0s.t. 7,, > £ > 0, ¥Yp > 1. So it follows that

1 1 1
IR AW P = T—rnanﬁ(wnp)n2 < z Ty IR I = z T, IR I, (3.13)

which immediately leads to
2 _ 1 2 i) 2
0 <d® = lim [[Ry(w,)II” < hm{é—: Ty, [IR2A(W, )II7} = 0.
p—0 p—

So, this reaches at a contradiction.
If liminf,_,o Tp, = 0, there exists a subsequence of {Tnp}, still denoted by {Tnp}, s.t. lim,,_,o T, = 0.
We now set

1 1 1
Un, := ST, Y, + (L= =Ty Wy, =Wy, = <7, Wy, — Yi,)-

¢ ¢ ¢

Then, from lim,_, 7, [IR A(wnp)ll2 = 0 we infer that

I}ijlgollvnp —wy, II° = I}glolo 72T - T, IR2 (W, I = 0. (3.14)

Using the stepsize rule (3.1), one gets (Aw,, — Av,,,, Ra(w,,)) > %llR/l(wnp)llz. Since A is uniformly
continuous on bounded subsets of C, (3.14) guarantees that

lim [|Aw,, — Av, || = 0, (3.15)
p—

which hence attains lim,, . [|[Ry(w,,)ll = 0. So, this reaches a contradiction. Therefore, Ry(w,,) — 0 as
n — oo. This completes the proof. O

Theorem 3.6. Suppose that {x,} is the sequence constructed in Algorithm 3.1. Then x, — x* € Q
provided S"x, — S"' x, — 0, with x* € Q being only a solution to the HVI

((uF = fH)x*,y—x*) >0, Vy e Q.
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Proof. First of all, noticing 0 < liminf, .8, < limsup, B, < 1 and lim,_,. % = 0, we may
assume, without loss of generality, that {o,} C [a,b] C (0,1) and 6, < @, Vn > 1. We claim that
Po(I —uF + f) : C — C is contractive map. In fact, using Lemma 2.10, one has

|Po(l — uF + fiu — Po(I —uF + || <[1 =@ —-0)]llu—-v|, VYu,vecC.

This ensures that Po(/ — uF + f) is contractive. Banach’s Contraction Mapping Principle guarantees
that there exists a unique fixed point of Po(I — uF + f)in C. Say x* € C s.t. x* = Po(I — uF + f)x".
That is, 3 | (solution) x* € Q = Fix(S) N Fix(G) N VI(C, A) of the HVI

((WF = Hx',y—xy>0, VyeQ. (3.16)

Next we demonstrate the conclusion of the theorem. To the goal, we divide the remainder of the
proof into several aspects.

Aspect 1. We assert that {x,} is of boundedness. Indeed, for x* € Q = Fix(S) N Fix(G) N VI(C, A)
we have S x* = x*, Gx* = x* and Po(x* — AAx") = x*. We observe that

2 2 2 2
llzn = X°II” = [IPc,(wn) = X7II” < lwy, = X7 = llwn = Pc, (Wil

3.17
~ wy = X2 = disCwn, Co), G-17)

which hence leads to
lzn = x| < llwy = X7, Vn > 1. (3.18)

Using Lemma 2.2, one knows that G = Tg‘ I- ulBl)Tﬁi(I — 12 B5) 1s nonexpansive for y; € (0, 2a) and

1

> € (0,20). Thus, by the definition of w,,, one gets

W, — x*|| < ollx, — X'l + (1 = op)lIGwn — X7l
< O-n”xn - X*” + (1 - O-n)llwn - X*”,
which immediately yields
W, = X < llx, = x*|l, Vn>1.

This together with (3.18), yields
lzn = X1 < llwp, = X7 < Ml = X7Nl, V> 1 (3.19)
Thus, using (3.19), from Lemma 2.10 we obtain

1Xne1 = X7 < Ballxy = X7+ (1 = Bllanf (x,) + (I — @uuF)S "z, — Xl
= Ballx, — x|+ (1 = Bl (f(x0) — f(x) + (I — @uuF)S "z, — (I — apuF)x"
+ a,(f — puF)x|
< Ballx, = x|+ (1 = B)la,dllx, — X7 + (1 = @, 7)(1 + 6,)llz, — X7
+ a,ll(f = uF)xl}
< Ballxy = X1+ (1 = Bo)tland + (1 = 1) + G,]llx, — X7[| + @l (f — uF)x|1}
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. n - 6 % %
< Bullxa = X1l + (1= BT = an(r = 8) + %]uxn Xl + @ll(f - uF))
. n - 6 %
— Bl — ¥l + (1= B[] - %]nxn X+ all(f = )Xl

_a( =BT - 5)]”x — X+ ap(l = Bu)(T = 0) 2|I(f — uF)x7|
2 " 2 T—90
2||(f—,uF)X*II}
T—0

=1

< max{||x, — x|,

By induction, we get

2/(f = uF)x7||

}, ¥n>1.
T—0

llx, — x*|| < max{||x; — x|,

Thus, {x,} is bounded, and so are the sequences {w,}, {v.}, {z.}, {f(x)}, {At,.}, {GW,.}, {S "2}

Aspect 2. We assert that

(1 =B = 2220w, = 2,I? + lIgn — Pe(@IP} + Bu(l = BlIx, — Pe(gn)ll?
< Ml = P = xps1 — X + @, My,
for some M, > 0. In fact, noticing z, = P¢,(w,) and w,, = o,x, + (1 — 0,)u,, we obtain
2w = X712 < lwy — x| = lwy = zall?

112 2 2
< oyllx, = X7+ (1 = o)llu, = X717 = [Iw, = zll°.

Since x,+1 = Bux, + (1 = B,)Pc(g,) where g, = a,f(x,) + (I — a,uF)S"z,, by Lemma 2.10 and the

convexity of the function A(s) = 5%, ¥s € R we deduce that

[%0s1 — X I = Bullxy — X + (1 = BIPc(gn) — XIIP = Bull = Bollxs — Pe(gn)Il?
< Bullxy = x°IP + (1 = B)lIgn — x°1P = llgn = Pc(@n)IP} = Bu(l = Bllxy — Pe(g)ll®
= Bullxy = X7 + (1 = B)llen(f(x) = F(x)) + (I = @uuF)S "z, — (I — auuF)x*
+ a,(f = uF)xX|P = lIgn — Pe(@lP} = Bu(l = B)llx, — Pelgn)Il?
< Bullxy = X7 + (1 = B)lln(f(xa) — F(x)) + (I = uuF)S"z, — (I = uF)x*|?
+2,{(f = pF)X", @p — XY = g = Pe(g)l} = Bu(1 = BlIx, = Pe(gll*
< Bullxy = XN + (1 = B[l f(x) = FOON + 1T = @upeF)S "z, = (I — atuuF)x||]?
+2,{(f = uF)X", @y — X = lIgn = Pe(@)I} = Bu(1 = BlIxw — Pe(g)ll?
< Ballxy = XIP + (1 = B [@illx, — XN+ (1 — @,0)(A + 0,)lIz, — x|
+2,{(f = pF)X", @n — XY = lIgn = Pe(@)lI} = Bu(1 = Bllx, — Pe(gall?
< Bullxy = XN + (1 = B)[@nllx, — x| + [(1 = @, 7) + 6,]llz — XN
+2,{(f — uF)X", @y — XY = lIgn = Pc(g)I} = Bu(1 = BlIxw = Pe(g)ll?
< Bullxy = X°IP + (1 = B)taadlix, — XI* + [(1 = @,7) + 6,]llz, — 7|
+20,{(f — pF)X", @n — XY = Ign = Pe(@u)lI} = Bu(1 = BlIx, — Pe(ga)ll”
< Bullxy = X7 + (1 = B @llx, — x| + [(1 = @,7) + O,][0allx, — X7
+ (1 = o)ty = XN = Wn — zllP] + 2a((f — uF)x*, gy — x*)
—lgn = Pc(g)IP} = Bu(1 = BIIxw = Pe(gn)IP,

(3.20)
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(due to @, + (1 — @,7) + 6, < 1 — a,(r — 6) + 22 = | — 209 < 1), which together with u, = Gw,
and (3.19), ensures that

X051 — 2|1 < Bullx, — X*IF + (1 = B)@dllx, — x°|1* + 20,{(f — uF)x*, g, — x*)
+ (1 = a,7) + @
—wa = zallF1 = llgn = Pc(gI*} = Ba(1 = BIIxn — Pe(gn)ll?

(1 =BT -6 x
_a ( ﬂz)(T )]”xn —x ”2 -1 =B)Nlg. - Pc((]n)”2

n o
i = O P = Ba(l = Bl — Pe(gIl

2
4 2a,(1 = B(f — wF)x' gy — )
n o
< ey = 1P = (1= 1 - 22T

= Bu(1 = By = Pclgn)ll* + M,

112 2
Hoallx, = X*II7 + (1 = op)llx, — Xl

IA

[1
(3.21)

1w, = 2all* + 11gn = Pe(gnl?)

where sup,., 2||(f — uF)x*[lllg, — x*|| < M, for some M, > 0. This attains the desired assertion.
Aspect 3. We assert that

a,(t+90). T, . .
==RWIPT < llxy = X1 = %41 — X1 + @, M.

(1 =pll - — L

In fact, we claim that for some L > 0,

Tn

2/lz||Rﬂ(wn)||2]2- (3.22)

2 2
2w = X°I17 < Hlwy = X7II" = [

Noticing the boundedness of {At,}, one knows that AL > 0 s.t. ||At,|| < L, Yn > 1. This implies that
71, (1) = Tiu(W) = KAty, u = V)| < |Atllllw = VIl < Lllu = vll,  Yu,v e Cy,

which hence guarantees that 7,(-) is L-Lipschitz continuous on C,. By Lemmas 2.7 and 3.3, we have

1 T
dist(w,, C) = =h,(W,) = —=[IRa (W) 3.23
ist(wy, C,) 7 (wn) 2le” AWl (3.23)
Combining (3.17) and (3.23) yields
- %112 < ) — 112 _ Tn_ R n 2 2.
Iz, — X717 < [lw, — X7]| [2/1L” AWl

From (3.20), (3.19) and (3.22) it follows that

X1 = X117 < Bullx, = X II* + (1 = B @udllx, — x| + [(1 = a,7) + ,]llz, — x*|?
+ 20,((f = uF)x*, g, — x°)}
< Bullx, — x| + (1 = B @ndllx, — x|1* + [(1 — @, 7) + G,1[IIw, — x|
T”l

_ 212 _ * o
[Z/lzllRA(Wn)ll 11+ 200{(f = uF)X", g = X7)}
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W(T—=0
< Bullvs = X+ (1 = Bl ~ X + 101 = ar) + T, — P
_r tn 272 _ s ok
[ RO + 20,(F — ) gy =)
B U B ) W C e N .
1 4 B =1 = (1= g1t = 22 I T Ry
4 2a,(1 = B(f — uF)X' gy — )
n 6 n
<l =21 = (1 =gl = 2Ty T e o PP + anMy.

2 2AL

This hence leads to

a,(t+90). T, . .
=S IR WP < 1, = X = a1 — X1 + @, M.

(=gl - — L

Aspect 4. We assert that

%1 = XN < [1 = @u(1 = BT = D]lIxy = XI* + @, (1 = B)(T = 6)
U =~ pF)x' gy =) 6,
T—0 a,

(3.24)
X[

M
'T(S]

for some M > 0. In fact, from Lemma 2.10 and (3.19), one obtains

1 — X117 < Ballx — X°1P + (1 = Bo)llg, — X117

= Bullxy = X + (1 = Bl (f(xn) = F(X)) + @u(f — uF)x*
+ (I = auuF)S"z, — (I — auuF)x'|?

< (1= BAllan(f(x,) — F(X) + (I = uuF)S"z, — (I — @uuF)x*|
+ Bullxy = XI1P + 20,((f — uF)x", q, — x°)}

< (1= Btlanll f(x) = FOON + I = auuF)S "z, — (I = uutF)x*||1?
+ Bullxy = XIIP + 2a,{(f — uF)x*, g, — x*)}

< Bullx, — X IF + (1 = B[@adllx, — x|+ (1 = @, )(1 + 6,)llz, — x"[I1°
+ 2a,((f = pF)x", gn — x7)}

< Ballxn = X1 + (1 = B){[@llx, — x| + (1 = @7 + 6|z, — X1
+2a,{(f = uF)xX", gp — X"}

< Bullxa — 17 + (1 = B)@adllx, — XI1* + (1 — @7 + O)llz — X°II°
+ 2a,((f — uF)x", g — X}

< [1 = au(1 =BT = O)llx, — X IF + (1 = B)Oallx, — x|
+2a,{(f = uF)X", gn — X"}

<1 = au(1 =BT = O)llx, — X I + @u(1 = B,)(7 — 6)
X Y g =) 6 M

T—0 a, T—0

where sup,. | Ilx, — x*|*> < M for some M > 0.
Aspect 5. We assert that x, — x* € Q, which is only a solution of the HVI (3.16).
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In fact, from (3.24), we have

1 = 1P < [1 = @,(1 =BT = )l = x| + (1 = B,)(7 = 6)

2(f — uFH)x*, q, — x* 0, M 3.25

(R B G = 6 M (3.25)
T—0 a, -0

Setting A, = ||x, — x*||>, we demonstrate the convergence of {A,} to zero by the following two

situations.
Situation 1. 7 (integer) ny > 1 s.t. {A,} is nonincreasing. It is clear that the limit lim,_,, A, = k <
+o00 and lim,, (A, — A1) = 0. From Aspect 2 and {8,} C [a, b] C (0, 1) we obtain

; o
(1= B[ - %]Ilw 2P + llgn — Pelgnll} + a(l = B, — Pe(gnll?
n o
< (1=l - %ﬂ]nwn 2P+ llgn = PelgnlP) + Ba(l = Bl — Pe(gnlP

2 2
< ||xn - X*” - ||xn+1 - X*” +a,M;, = An - An+1 + a,M,.

Thanks to the facts that @, = 0 and A,, — A,,4; — 0, from %5 € (0, 1) one deduces that

lim [lw, =zl = lim llg, — Pe(g)ll = lim [lx, = Pc(g,)ll = 0. (3.26)
Hence it is readily known that
X = gull < %0 = Pc(gll + 1Pc(gn) = qull = 0 (1 — 00),

1Xn1 = Xall = (1 = BlIPc(gn) = Xull < llgn = Xull = 0 (n — 0),

and

”Snzn - xn” = ”Cln —Xn — a’n(f(xn) - ,UFSnZn)”
< 1gn = Xall + @n(lf Il + pllFS"zill) = 0 (n — ).

Next, we show that ||x, — u,|| — 0 as n — oo. Indeed, note that y* = T:?j(x* — U Byx*), v, =
Tfj(wn — WaBow,) and u, = T,?]l(vn — w1 Byvy,). Then u, = Gw,. By Lemma 2.1 we have

v = I < 1w = X1 = 1228 = o)l Baw,, — Box”|

and
iy — XN < v = ¥'IP = 1 Qe = u)liBiv, — Biy*II*.

Combining the last two inequalities, from (3.19) we obtain
ity = X < Nl = X = 1228 = )| Bowy — Box*|* — puy Qex — p)||Byvis — Bry'|I*.
This together with (3.20), implies that

a1 = XN < Ballo, — X1 + (1 = B){@adlix, — X7 + [(1 = @, 7) + 6, ][ allx, — x|
+ (l - O-n)”un - X*Hz] + za’n«f - IUF)X*’ qn — X*>}
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< Bullx, = x| + (1 = B)@adllx, — x| + [(1 — @,7) + @]

X [oallg, = X1 + (1 = o)l = X1 = p2(28 = )| Baw,, — Box”|I?
— mQa = p)lIB1v, = By IP)] + @, M}

a,(1 = B,)(7 - 96) (7 +6)
2

llx, = x> = (1 = B = o)1 - —

<[l-

X {t2(2B = u)lIBaw, — Box*|I?
+ 1 Qa — w)|Byv, — Biy*|I*} + a, M,

<ty = 1P = (1= B)(1 = o1 — 2T+

+ Qe = p)lIBiv, = By IP} + M,

{1228 = w)lIByw, — Box*|I?

which immediately arrives at

n 5 * *
(1= B0 = )l = T Y428 — B, — B + (2 = )lBuv, — Buy'IF)

2 2
< ”xn - X*” - ||xn+1 - X*” +a,M;, = An - An+1 + a, M.

Since B, < b < 1, u; € (0,2a), w € (0,26), lim,, @, = 0 and limsup,_, ., o, < 1, we obtain from
A, — A,y — 0O that

lim [Bow, = Box'[| =0 and  lim [|Byv, = B1y’ll = 0. (3.27)
On the other hand, by Lemma 1.1 one has
iy = XIP < (Vi = ¥ thy = X°) + 1 (B1y" = Byvy, ity — X°)
< %[Ilvn = Y12+ Nty = NP = Mva =t + X" = Y IP]+ puallBry* = Buvallllu, = x°1I,

which hence leads to

llty = X IP < NV = Y71 = 1vn = st + X = YIP + 2111B1y” = Bivallllay = 7).
Similarly, one gets

1va = Y IP < M = X1 = lwn = v + 5" = X1 + 2u2l1B2x" = Bowllllve = y'Il.
Combining the last two inequalities, from (3.19) we get

2 2 2 112
oty = X*N17 < Ml = X7 = [IWp = v + Y = X7 = [V =y + X" = Y|

+ 2u1[1B1y" — Byvallllu, — x7|| + 2u0l|Box™ = Bawllllve = ¥ I-
This together with (3.20), ensures that

%001 = 1P < Bullxy = X1 + (1 = B){@dll, = x|P + [(1 = @,7) + 6,]

X [oullx, = X7 |* + (1 = o)l — X1 + 20,((f — uF)x", g, — x*))
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a,(t —9)
2
+ (1= ) (Ixy = XIP = Wy = v + 5" = X = Ve =y + x* = Y|

< Balln = XIP + (1 = B)@abllx, — X' + [(1 = a,7) + loalle, = x|

+ 2w [1B1y" = Byvulllluy — X711 + 2ol |Box™ = Bowyllllve — y'ID] + @ M}
_ (1 = B)(T - 0) @n(7 +6)
2

<[l %, = XIP = (1 = B = o)1 = ————1{llwy = v,

2
+ 3" = XN+ v =y + X7 = YR} + 2111yt = Byv,lllle, — x|

+ 2/12”32)(:* - BZWn””Vn - y*” + aan

< ey = 1P = (1= B)(L = o)1 = @

2
+ Ve =y + X" = YT+ 2ul1Bry” = Byvllllu, — X7

%112
]{”Wn —Vn +y* - X ”

+ 2t0||Box™ = Bowyllllvy, = ¥l + @My,

which immediately leads to

a, (Tt +90)

(=1 = ol - —

2 2
<l = X717 = X = X717 + 201B1y™ = Byvillllu, — X7

2 %112
Hwn = v + " = XN+ ve —wn + X" = Y17}

+ 21||Bax™ = Bow|lllv,, = y'Il + @M,
= An - An+1 + 2/'11||Bly* - Blvn””un - X*” + ZIJZHBZX* - BZWn””Vn - y*” + Cl’an.

Since 8, < b < 1, lim, @, = 0, limsup,_,, o, < 1 and limsup,_, (A, — A,+1) = 0, we deduce
from (3.27) and the boundedness of {u,}, {v,} that

lim|w, —v,+y" —=x"|=0 and liml|v, —u, +x" —y*||=0.
n—oo n—oeo

Therefore,

||Wn - an” = ”Wn - un” ) ) ) ) (328)
SHwp=ve +y =X+ ve —ty + X =y > 0 (n — o0).
Noticing w, = o, x, + (1 — o,)u,, we get

”Wn - X*HZ = 0-n<-xn - X*’ Wp — X*> + (1 - O-n)<un - X*, Wy — X*>

< 0(X = X Wy = x7) + (1= o)llw, = 7P,
which immediately yields
1
2 112 2 2
lIwn = X717 < €y = X" W, — %) < S b = X717+ flw, = XN = o = wal 7.

So it follows that
2 2 2
W, — X" I7 < llx, = x*[I7 =[x, — will",

which together with (3.20), leads to
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X1 — X I1* < Bullx, = X*I* + (1 = B @udlix, — x*|1* + [(1 = @,7) + 6,]

X [0l = X + (1 = ollwy = XIPT + 200((f = wF)x", g = X))

< Bullx, = x| + (1 = B)@adllx, — xIP + [(1 — @,7) + @]
XLl = 1P + (1 = )l = 1 = b = w1+ )
<n-0 _ﬁz")(T =, = I = (1 =1 = ] - @

X ”Xn - Wn||2 + aan
. a,(T+0)
<l = X = (1 =B = o[l = ———

2
B ]”xn - Wn” + a’an-

This hence arrives at

a, (T +0) . .
(I =B8)1 =0ayll - (T]Hxn —wall? < Il = X1 = %41 — X117 + @, M,

= A, — At + @, M,

]

Since 8, < b < 1, lim, @, =0, limsup,_, o, < 1 and limsup,_, (A, — A,+1) = 0, we deduce from

™0 €(0,1) that
lim ||x,, — w,|| = O.

So it follows from (3.26) and (3.28) that
s = zall < 1y = will + [lwy = zall = 0 (n — o),
and
Xy = Gwall < llxp = will + [lwy = GWull = 0 (n — o0).
Meanwhile, from Aspect 3 we obtain

a,(t+9). T, . ;
(I=B0 - 7 ][MJ-JIIRa(wn)IIZ]2 < = XIP = Ml — X717 + @M,

=N, = Apyr + @, M.
Noticing 8, < b < 1, a, = 0and A, — A,;1 — 0, one gets
Jim 2R, IPP = 0.
which together with Lemma 3.5, yields
lim [, = y,l| = 0.
By the boundedness of {x,}, we know that 1 subsequence {x,,} C {x,} s.t.

lim sup{(f — uF)x", x, = x*) = im{(f — uF)x", x,, — x*).
pA)OO

n—oo
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Since H is reflexive and {x,} is bounded, we might assume that x,, — X. Thus, from (3.32) one has

lim sup{(f — uF)x*, x, — x*) = [}i_r){)lo((f — uF)X", x,, — x*) 3.33)
= ((f - pF)x", % = x°). '

Since x, — x,41 = 0, x, —Gw, = 0, w, =y, = 0, x, =z, > 0 and x,, — X, by Lemma 3.4 we infer
that X € Q. Thus, using (3.16) and (3.33) one has

lim sup{(f — uF)x*, x, — x*) = {((f —uF)x", x—x*) <0, (3.34)

n—oo

which together with (3.26), arrives at

lim sup{(f — uF)x*, g, — x*)

= lim Sup[((f - IUF)X*’ qn — PC(Qn) + PC(qn) - Xp) + <(f _IUF)X*’xn - X*>] (335)
< lim sup[l|(f = uF)xXN(lgn = Pc(gll + 1Pc(gn) = xall) + {(f = uF)x", x, — x)] < 0.

Note that {@,(1 — B,)(t =06} c [0,1], X7, @,(1 —B,)(T — ) = oo, and

2 - uF)x*, q, — x* 6, M
lim sup|[ Y /JT)_x(Sq x>+a_.r—5

1<0.

Consequently, applying Lemma 2.5 to (3.25), one has lim,_,, ||x, — x*||* = 0.
Situation 2. A, } C {A,}s.t. A,, <A, Yp € N, with N being the set of all natural numbers.
Let ¢ : N — N be formulated as

¢(n) :=max{p <n:A, <A}
Using Lemma 2.9, we have
A¢(n) < A¢(n)+1 and An < A¢(,,)+1.
By Aspect 2 one gets

a/¢(,,)(‘r+ 6)
(I =b)[1 - B —

+a(1 = b)l|xpm) — Pe(qom)II*

Q) (T +0)
< (1= B[l - ‘“T
+ Boon (1 = BseXsim) — Pe(qon)II”

12 %112
< lxgmy = X7 = xXpy+1 = XN + @gonyMi = Apimy — Apmy+1 + @M1,

2 2
Wy = Zomll™ + lggmy — Pce(qem)ll™}

3.36
MWt — Zsll® + oo — PeGao)I?) (3.36)

which immediately ensures that
}1_)11.}0 Wem) — 2ol = }1_)11; ggn) — Pc(qem)ll = }1_)11.}0 1xg(n) — Pc(qom)ll = 0.
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By Aspect 3 we have

Ay (T +0) . Tyn) . .
(1 = Byl — = 5 ][23E||RA(W¢(n))||2]2 < g — X1 = gt — X1 + g M,

= Ny — Nopoy+1 + QoM
which hence leads to
lim [~ IR y(wemIPT = 0.
n—oo 2L

Using the similar arguments to those of Situation 1, we infer that lim,,_,« [|Xg(m)+1 — Xpm)ll = 0,
}1_{{)10 ||x¢(n) - §W¢(n)|| = ’}1_)1{)10 ||W¢(n) - Y¢(n)|| = }1_{{)10 ||x¢(n) - Z¢(n)|| =0,
and

lim sup((f — uF)x*, ggmy — x*) < 0. (3.37)

n—oo

On the other hand, from (3.25) we obtain
(1 = Bp)(T = 6) Ay

2(f — uF)X", gy — X°) N Opn) M

< Agmy — Doyt + @iy(1 = By (T — 0)I p—- om T 6]
2(f —uF)X, qpmy — Xy Opy M
< ayan(1 = B = )l —— ol

which immediately attains

2(f — uF)x*, qpem — X* Osn M
lim sup A4,y < lim sup[ (= X, oty ) + 2 ]1<0.
n—oco n—oo T—0 Qpny T— 1)

Thus, lim,, e [|xs) — x*|I* = 0. In addition, observe that

2 2 2
IXpey+1 = X°N° = 1Xg0m) — X717 = 2¢Xpm+1 = Xpmys Xomy — X + 1 Xpe+1 — Xpm)|l

. ) (3.38)
< 2||x¢(n)+] - xqb(n)””x(/)(n) - x|+ ||X¢(n)+1 - X¢(n)|| .
Thanks to A, < Agg)+1, One gets
||x, — x*||2 < xgm) — x*||2 + 21xg0)+1 = XoallllXpemy — X1+ 1Xpe+1 — x¢(n)||2 — 0(n — o0).
That is, x, — x* as n — oo. This completes the proof. O

Theorem 3.7. If S : C — C is nonexpansive and {x,} is the sequence constructed in the modified
version of Algorithm 3.1, that is, for any initial x; € C,

Wy = 0y + (1 = o)y,

Vo = T2 (W, — paBaw,),

= T (V= 1 B1v,),

Yn = Pc(wy, — 1Aw,), (3.39)
tw = (1 = T)wy + Ty,

Zn = Pc,(wy),

Xpi1 = BuXy + (1 = B)Pcla,f(x,) + (I — a,uF)Sz,] Yn>1,
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where for each n > 1, C, and 7, are picked as in Algorithm 3.1, then x, — x* € Q with x* € Q being
only a solution to the HVI: {(uF — f)x*,y —x*) >0, Vye Q.

Proof. We divide the proof of the theorem into several aspects.

Aspect 1. We assert the boundedness of {x,}. Indeed, using the same reasonings as in Aspect 1 of
the proof of Theorem 3.6, one derives the desired assertion.

Aspect 2. We assert that

(1 =B = ayDlIwn = zll* + llgn — Pelgl*} + Bu(1 = Bllx, — Pe(gnll*
< = X7 = e — X1 + @, My,

for some M; > 0. In fact, putting 6, = 0, from (3.20) we get

%01 = XN < Ballxy = X112 + (1 = B a@udllx, — X1 + (1 = @, Dlollx, — x|
+ (1 = o)ty = XN = wn — zallP] + 2a((f — uF)x*, gy — x*)
—Ign = Pc(g)IP} = Bu(1 = BIIxn = Pe(gn)I?
<1 = a,(1 =BT = O)llx, — I = (1 = B — @, D)llw, — 2l
+1lgn — Pc(g)IP} + My = Bu(1 = BIxy = Pe(gn)I
< lxw = x*|P = (1 = B = @Dy — zall* + g = Pe(gn)II*)
+ a,M; — Bu(1 = Bllx, — Pel(gn)ll,

where sup,., 2||(f — uF)x*[lllg, — x*|| £ M, for some M, > 0. This attains the desired assertion.
Aspect 3. We assert that

T”l * *
(1=B,)(1 - anT)[mllRﬂ(Wn)llz]z < = X7 = Nltsr = X°|P + @, M.

Indeed, using the same reasonings as in Aspect 3 of the proof of Theorem 3.6, one deduces the desired
assertion.
Aspect 4. We assert that

st = X*F < [1 = (1 =BT = )llx, — x°|

- * g, — X 3.40
T R (340

Indeed, using the same reasonings as in Aspect 4 of the proof of Theorem 3.6, one obtains the desired
assertion.

Aspect 5. We assert that {x,} converges strongly to the unique solution x* € Q of the HVI (3.16).
Indeed, using the same reasonings as in Aspect 5 of the proof of Theorem 3.6, one gets the desired
assertion. O

On the other hand, we put forth another modification of Mann-like subgradient-like extragradient
implicit rule with linear-search process.

Algorithm 3.8. Initial step: Givenv >0, £ € (0,1), 1€ (0, %). Let x| € C be arbitrary.
Iterations: Given the current iterate x,, calculate x,., below:
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Step 1. Calculate w,, = o,x, + (1 — 0,)u, with
Vo = T2 (Wy — 2 Bawy),

U, = Tl?ll (Vn _:ulBlvn)‘
Step 2. Calculate y, = Pc(w, — AAw,) and R,(w,,) := w, — Y.
Step 3. Calculate t, = w, — T,R,(w,), where T, := /" and j, is the smallest nonnegative integer j
satisfying
‘ v
(Aw, — AWy, = ERy(Wn)), Wy — ) < EllR/l(Wn)llz-

Step 4. Compute z,, = Pc,(w,) and X,11 = Bawn + (1 = B)Pcla,f(z,) + U — a,uF)S"z,], where
C,:={ueC:h,(u) <0}and
-
= (Aty,u - IR %
hn(u) < tna u Wn> + 2/l|| A(Wn)”
Again put n := n+ 1 and return to Step 1.
It is worth mentioning that (3.16)—(3.19) and Lemmas 3.2-3.5 remain true for Algorithm 3.8.

Theorem 3.9. Suppose that {x,} is the sequence constructed in Algorithm 3.8. Then x, — x* € Q
provided S"x, — S""'x, — 0, with x* € Q being only a solution to the HVI: {(uF — f)x*,y — x*) >
0, Yye Q.

Proof. In what follows, under the assumption $"x, — S m1x, — 0, one divides the proof into several
aspects.

Aspect 1. We assert that {x,} is of boundedness. Indeed, for x* € Q = Fix(S) N Fix(G) N VI(C, A)
we have S x* = x*, Gx* = x" and Pc(x* — 1Ax") = x*. Using (3.19), from Lemma 2.10 we obtain

X1 = X°N < Ballwn = X711+ (1 = Bu)t@bllz, — x7I + (1 — @)1 + O)llzn — XN + @ull(f — pF)x"|I}
< ﬁnllxn - X*” + (1 _ﬁn){[a/né + (1 - a’nT) + en]”xn - X*” + a’n”(f _/JF)X*”}

W(T—0
< Ballxn = X7+ (1 = B[l — au(t - 6) + M]Hxn — x|l + all(f — pF)x|I}

2
_ o =Ba( _6)]||x X+ (1 =BT —06) 2|I(f — uF)x7|
2 " 2 T-90
2||(f—/lF)X*||}.

T—90

=1
< max{|lx, — x7|,

By induction, we get ||x, — x*|| < max{||x; — x7||, W} Vn > 1. Thus, {x,} is bounded, and so are

the sequences {wy}, {y.}, {za}, {f(z)}, {AL, 1, {G W} S "2}
Aspect 2. We assert that

(r+6 - ]
(1 =Bl = 22T, — 212 4+ 13~ Pe@IP) + B0 = Bl ~ Pe@lP

112 2
< lln = X°N7 = [lxner = X717 + @M,

for some M, > 0. In fact, it is clear that

2 2 2 2 2 2
2w = X717 < Hwp = X717 = lwn = zall” < ol = X717+ (1 = o)l = X717 = [Iwy — zall”
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Since x,+1 = B.w, + (1 = B,)Pc(g,) where g, = @, f(z,) + (I — @,uF)S"z,, Using Lemma 2.10 and the
convexity of the function A(s) = s* Vs € R, from (3.19) we obtain that

%1 = X117 = Bullwn = X1 + (1 = BINP(@n) — XI* = Bu(l = B)lwn — Pe(@n)IP
< Bullwn = X1 + (1= BIIGn — X*IP = 11@n = Pe@DIP} = Ba(1 = BlIwn = Pc@)II?
= Bullwn = XIP + (1 = BIlln(f(z0) = f(x)) + T = @uuF)S"z, — (I — @uuF)x*
+ @,(f = W)X NP = 1Gn — Pe(@DIP} = Bu(1 = BlIwn = Pe(gn)II?
< Ballwn = X7 + (1 = Bllan(f(za) = F(X5)) + (I — aupuF)S "z, — (I = auuF)x"|?
+2a,{(f = pF)X", Gy — XY = 1§ — Pc(@n)IIP} = Ba(l = Blw, — Pc(@n)IP
< Balw, = X + (1 = B[l f(z0) = FOON + U = aupuF)S "z, — (I — auuF)xM||] (3.41)
+20,{(f = pF)X", Gp — XY = 1§ — Pc(@n)lI*} = Ba(1 = Blw, — Pe(@n)IP
< Bullxa = X I + (1 = B)@dllx, — X1 + [(1 = @7) + G, ]llz, — x|
+20,{(f = pF)X", Gy — XY = 1§ — Pc(@n)II*} = Ba(l = Blw, — Pe(@n)IP
< Ballxy = X1 + (1 = B @idllx, — x| + [(1 = 1) + 6,1 [0llx, — X°IP
+ (1 = o)l — X*° = Wy — zallP] + 20(f = pF)x", G — X°)
—11Gn = Pc(@)IP} = Bu(l = BlIwn — Pe(@)II?

(due to @,0 + (1 — a,7) + 6, < 1 — @, (1 — §) + 22 = 1 — =9 < 1), which together with u, = Gw,,

2

guarantees that

a,(t —0)
2

+ (1 - O-n)”xn - X*Hz - ”Wn - Zn”Z] + 2aln<(f —/JF)X*, Qn - X*>

—11@n = Pc(@nI*} = Bu(1 = Bu)lwa = Pc(@n)I (3.42)

(r+6 -
<l — X = (1 = B[1 = %”mwn 2P+ 11 — Pe@)IP)

_18}1(1 _ﬁn)llwn - PC(QH)HZ + a“,l’lMla

%041 = X117 < Bullx, — X7 + (1 = B)f@,6llx, — X*|P + [(1 — @,7) + o allx, — x|

where sup,.; 2||(f — uF)x*[llg, — x*|| < M, for some M, > 0. This attains the desired assertion.

Aspect 3. We assert that

a,(t+0). T, N *
(1 =B)Il - 7 ][z/lzlll’h(wn)llz]2 < oty = XN = X1 = XN + @M.

In fact, using the similar arguments to those of (3.22) in the proof of Theorem 3.6, we can deduce
that for some L > 0,
Tn

1P < w1 = [ IR w)IPTE 3.43
llzn — X7|I° < [lwy — X7 [Z/ILH Aw)lI”] (3.43)

From (3.41), (3.19) and (3.43) it follows that
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o1 = XN < Ballo, = X117 + (1 = B){@adllx, — X7 + [(1 — @,7)
+ Hn]llzn - X*Hz + 2&’,1<(f _#F)x*’ Z]n - X*>}

< Bullxn = XIP + (1 = B){@adllx, = x| + [(1 = a7) + 6,1 [, — 7|
Tl’l

- [Z/lzIIRa(Wn)IIZ]Z] + 20, ((f = uF)X", Gn — X7}
an(1 = Ba)(T = 6) 2 an(T+6) - Ty 22
> by =27 = (1= Bl = —— ][z/lillRA(Wn)ll ]
+ 20,(1 = B){(f = HF)X", G — X7)

n 5 n
<l = 21 = (1 =Bl = 2Dy T e I + s,

2 2L

which hence yields the desired assertion.
Aspect 4. We assert that

%1 = X7 < [1 = @u(1 = BT = D]lIxy = XI* + @, (1 = B)(T = 6)
y [2((f - uF)x*, g, — x*) N @ . M | (3.44)
T—0 a, T—0

for some M > 0. In fact, from Lemma 2.10 and (3.19), one obtains

[x0s1 — X < Bullwy = X°IP + (1 = BIG, — x"IIP
= Bullw, = X7 + (1 = Bllan(f(z) = f(x7) + (I — auuF)S"z,
— (I — auuF)x" + a,(f — pF)x"|I?
< Bullwy = XIP + (1 = B)llaa(f(z0) = f(3) + (I = @uuF)S"z,
— (I — auuF)X|* + 20,((f — uF)X", G, — x°)}
< Bullw, = X7 + (1 = B [@adlizs — x| + (1 = @) + 6|z, — (1P
+ 2, ((f = uF)X", G — X"}
< Ballxy = X + (1 = B)@bllx, — x> + (1 = 7 + 6,)llz, — x*II°
+ 2a,((f — uF)X", Gn — X"}
< [1 - a,(1 =BT = )lIx, — xI* + (1 = B)(T = 6)
2~ G =) | 6 M
T—0 a, T—-0

X[

where sup,..; ||x, — x*||> < M for some M > 0.

Aspect 5. We assert that x, — x* € Q, which is only a solution of the HVI (3.16).
In fact, from (3.44), we have

101 = X1 < [1 = (1 = BT = O)]lx, = X1 + (1 = B,)(T ~ 6)

2U(Ff — uF)x*.a, — x* M 3.45

(ARG =X 6 M (3.45)
T—0 @, T—0

Setting A, = ||x, — x*||*, we demonstrate the convergence of {A,} to zero by the following two

situations.
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Situation 1. 7 (integer) ny > 1 s.t. {A,} is nonincreasing. It is clear that the limit lim, ., A, = k <
+o00 and lim,, oo (A, — A1) = 0. From Aspect 2 and {8,,} C [a, b] C (0, 1) we obtain

(r+6 o )

(1= )1 - @]nwn P + G = Pe@IP) + a(l = Bliw, — Pe(GnlP
(r+6 o )

< (1=l - %]nwn 2l 4 1 = Pe@DIP) + Ba(1 = Bl — Pe(@nIP

2 k112
< ”xn - X*” - ||xn+1 - X*” +a,M, = An - An+1 + a,M,.

Owing to the facts that @, — O and A, — A,.;; — 0, from %5 € (0, 1) one deduces that

lim [lw, = z,][ = lim ig, — Pc(@)ll = lim [lw, — Pc(ga)ll = 0. (3.46)
Hence it is readily known that

Wn = Gull < Wy = Pc(@ll + 1Pc(n) = Gull > 0 (n — ),

1xps1 = wall = (1 = BIPc(Gn) = wall £ Ign —will > 0 (n — o0), (3.47)
and

1S"z, = wall = 1Gn — wn — @ (f(z,) = uFS"2,)ll
< |1G@n = wall + @l f @Il + ullFS"z,l) = 0 (n — 00).

Next, we show that ||x, — u,|| — 0 and ||x, — x,41]] = 0 as n — oco. Indeed, note that y* =

T,%(x* — W Bx"), v, = ng(w,, — pBow,) and u, = T,?l‘(vn - w1 Byv,). Then u, = Gw,. Using

Lemma 2.1, from (3.19) we have
lltw = X' < 11xy = X' = 1228 = p2)1Baw, = Box'IP = pn 2 = p)lI1Byvi, = Biy'|I.
This together with (3.41), implies that

051 = X117 < Bullx, — X°I1P + (1 = B)f@,llx, — X*1F + [(1 = ,7) + 6,]

X [oallx, = X7 + (1 = o)y, — X7|*T + 22,{(f — uF)X", G, — x*)}
<ty = 1P = (1= Bo(1 - o1 = 2T+

+ w1 2a = p)lIBiv, = By IP} + @, M,

Hua(2B8 = p)l|Baw,, — Box™|I*

which immediately arrives at

(T +5 * *
(1= B)(1 = o[l - @]{m(zﬁ — ) IBawn — Box'IP + 11 e — ) 1Buve — Buy'IP)

2 2
< ”-xn - X*” - ||xn+l - X*” + aan = An - An+1 + Qan.
This hence ensures that

lim |Bow, — Box*|| =0 and lim ||Byv, — B1y"|| = 0.
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On the other hand, using Lemma 1.1, from (3.19) we get

2 2 2 2
lltn = X7 < oty = X717 = MW = v + " = X7 = [y =y + X" = y7|

+ 2u1[1B1y" = Byvallllun — x7I| + 20l|Box™ = Bawllllv, = ¥ I-
This together with (3.41), implies that

051 = X117 < Bullx, — X117 + (1 = B)f@,llx, — X117 + [(1 = @,7) + 6,]

X [0l = X' + (1 = o)l = XNPT + 20, ((f = uF)X", G — X))

< ey = 1P = (1= B)(L = o)1 — @

2
+ Ve =y + X" = YT+ 2u1Bry” = Byvllllu, — X7

(12
]{”Wn —Vn +y* - X ||

+ 20||Box” = Bawyllllv, — ¥l + @M,
which immediately leads to

(1= B0 =l - @

*112 2
<l = X7 = X1 = X7 + 20 1B1y* = Bivallllu, — x|

2 2
Hlwn = v +y" = X717 + llve =y + X" = y7II7)

+ 20||Box” = Bow,lllve — y'll + @M,
= Nn = Ayt + 211Bry" = Byvylllle, — x7I| + 240]|Box™ — Bowylllve — y'll + @M.

This hence ensures that

lim|w, —v,+y —=x"|=0 and liml|v, —u, +x" —y*||=0.
n—0o n—oo

Therefore,

||Wn - gwn” = ”Wn - un”

SUwp =vp + Y =X+ 1Vt + " =y > 0 (n — ).
Noticing w, = o, x, + (1 — o,)u,, we get

2 *
W, = x*II” = Xy = X", W, — Xy + (1 — 0 Uy — x*, W, — X7°)

< 0(X = X wy = X7 + (1= o)llw, = 1P

1 2 %112 2 2
= Eon[llxn = X7+ lw, = X7 = I, = will] + (1 = op)llw, — X717,

which immediately yields
2 2 2
Wi = X117 < v = X717 = 1126, = wall™.

This together with (3.41), arrives at

||-xn+1 - X*”Z < ﬁn”xn - X*HZ + (1 _ﬂn){an(s”xn - -X*H2 + [(1 - anT) + 9,,]
X [O_n”xn - X*Hz + (1 - o_n)”Wn - X*Hz] + 20’n<(f _,uF)X*’ C_In - X*>}

<, = X1~ (1= (1 — ol - 22020

2
2 ]”-xn_wnH +aan-

(3.48)
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So it follows that

n 1)
(1= = ol = T D,

k(12 2
< ”-xn - X*” - ”-xn+1 - X*” + CUan = An - An+l + CL’an,

which immediately yields
lim ||x, — w,|| = 0.

So it follows from (3.46)—(3.48) that

1, = zall < M0 = will + Wy = z,ll > 0 (n — 00), (3.49)
1, = X1l < M0 = will + [Iwy, = X1l > 0 (1 — 00), (3.50)

and
I, = Gwill < llx, = wyll +llw, = Gwyll > 0 (n — o0). (3.51)

Also, using the similar arguments to those of (3.31) in the proof of Theorem 3.6, we can obtain that
lim [|lw, = y,ll = 0. (3.52)
By the boundedness of {x,}, we know that 3 subsequence {x,,} C {x,} s.t.

lim sup((f — uF)x", x, — x*) = im{(f — puF)x", x,, — x7). (3.53)
p—oo

n—oo

Since H is reflexive and {x,} is bounded, we might assume that x,, — x. Thus, from (3.53) one has

lim sup{(f — uF)x*, x, — x*) = li_r)glo((f — uF)x", x,, — X7)
n—o0 b (3.54)
={(f —uF)x",x — x*).
Since x, — x,41 = 0, x, —Gw, > 0, w, -y, = 0, x, —z, = 0 and x,, = X, by Lemma 3.4 we infer
that x € Q. Thus, using (3.16) and (3.54) one has

lim sup{(f — uF)x", x, — x*) = {(f —uF)x",x —x") <0, (3.55)

n—oo

which together with (3.46), arrives at

lim sup{(f — uF)x*, g, — x*)

= lim sup[((f - ,UF)-X*, Qn - PC(Qn) + PC(Qn) —Wp+ W, — xn)
+{(f = )X 2 = 2] (3.56)
< limsup([I(f = uF)x"(NIGn — Pc(@nll + 1Pc(gn) = wall + lwn — xall)

+{((f —uF)x", x, —x")] <0.
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Note that {@,(1 — B,)(t — )} C [0,1], X7, @,(1 —B,)(T — ) = oo, and

2((f — uF)x*, g, — x* 0, M
lim sup[ {( =rH)x.q x>+—~—6]£0.
T_

n—sco T—0 a,

Consequently, applying Lemma 2.5 to (3.45), one has lim,_,, ||x, — x*||* = 0.
Situation 2. 3{A, } € {A,}s.t. A,, <A, ¥Yp € N, with N being the set of all natural numbers.
Let ¢ : N — N be formulated as

¢(n) :=max{p <n:A, <A}
Using Lemma 2.9, we get
A¢(n) < A¢(n)+l and An < A¢(n)+1.
In the remainder of the proof, using the same reasonings as in Situation 2 of Aspect 5 in the proof of

Theorem 3.6, we obtain the desired assertion. O

Theorem 3.10. If S : C — C is nonexpansive and {x,} is the sequence constructed in the modified
version of Algorithm 3.8, that is, for any initial x; € C,

Wy = Xy + (1 = 0ty

v, = T%(wn — 1 Bowy,),

Uy = T (v — (1 Bivy),

Yo = Pc(w, — 1Aw,,), (3.57)
th = (1 = T)Wn + TuYn,

Zn = Pc,(Wy),

Xnit = Bawn + (1 = B)Pclanf(zn) + (I — auuF)Sz,],  Yn 21,

where for each n > 1, C, and 7, are picked as in Algorithm 3.8, then x, — x* € Q with x* € Q being
only a solution to the HVI: {((uF — f)x",y —x") >0, Vye Q.

Proof. We divide the proof of the theorem into several aspects.
Aspect 1. We assert the boundedness of {x,}. Indeed, using the same reasonings as in Aspect 1 of
the proof of Theorem 3.9, one derives the desired assertion.
Aspect 2. We assert that
(1 = BHA = D)Wy = zal* + 130 = Pe(@nIP} + Bu(l = Bu)lWa = Pe(@n)I
< Ml = XN = e = X1 + @M,
for some M; > 0. In fact, putting 6, = 0, from (3.41) we get
X1 = XIP < Ballxy = X112 + (1 = B @b, = xIP + (1 = D)ol — x|
+ (1= op)llty = XN = e = 2l P] + 200((f = pF)xX", G — x°)
—11Gn = Pc(@)IP} = Bu(1 = BlIWn = Pe(@n)lI”
< [1 = a,(1 =B = O)llxy — x*I1° = (1 = B = @Dl — zall®
+11gn = Pc@nIP} + aaMy = By(1 = BlIWy = Pe(@n)l
<l = 1P = (1 = B = @)W = zall® + 11Gn = Pe(@n)ll*}
+ My = Bu(1 = Bllwn = Pc@n)II,
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where sup,., 2||(f — uF)x*[|llg, — x*|| < M, for some M, > 0. This attains the desired assertion.
Aspect 3. We assert that

Tl’l * *
(1-)0 - OznT)[2/1—£||1’?a(wn)||2]2 < Ml = X1 = 11 = X1 + M.

Indeed, using the same reasonings as in Aspect 3 of the proof of Theorem 3.9, one deduces the desired
assertion.
Aspect 4. We assert that

12001 = 1P < [1 = (1 = B)(T = 6)]llx, — x|

—HE)X, Gy — X 358
+ a’n(l _,Bn)(T - 6) . 2<(f /’tf)_x(; 4qn — X > ( )

Indeed, using the same reasonings as in Aspect 4 of the proof of Theorem 3.9, one obtains the desired
assertion.

Aspect 5. We assert that {x,} converges strongly to the unique solution x* € Q of the HVI (3.16).
Indeed, using the same reasonings as in Aspect 5 of the proof of Theorem 3.9, one gets the desired
assertion. O

Remark 3.11. Compared with the corresponding results in Cai, Shehu and Iyiola [13], Thong and
Hieu [17] and Reich et al. [29], our results improve and extend them in the following aspects.

(i) The problem of finding an element of Fix(§) N Fix(G) (with G = Pc(I — 1 B1)Pc(I — 12B5))
in [13] is extended to develop our problem of finding an element of Fix(S) N Fix(G) N VI(C, A) where
G = T,?ll I - ,u]B])T,?j(I — waBy) and § is asymptotically nonexpansive mapping. The modified
viscosity implicit rule for finding an element of Fix(§) N Fix(&) in [13] is extended to develop our
modified Mann-like subgradient-like extragradient implicit rules with linear-search process for
finding an element of Fix(§) N Fix(G) N VI(C,A), which is on the basis of the subgradient
extragradient rule with linear-search process, Mann implicit iteration approach, and hybrid
deepest-descent technique.

(i) The problem of finding an element of Fix(S) N VI(C,A) with quasi-nonexpansive mapping
S in [17] 1s extended to develop our problem of finding an element of Fix(§) N Fix(G) N VI(C, A)
with asymptotically nonexpansive mapping S. The inertial subgradient extragradient method with
linear-search process for finding an element of Fix(S) N VI(C,A) in [17] is extended to develop our
modified Mann-like subgradient-like extragradient implicit rules with linear-search process for finding
an element of Fix(S) N Fix(g) N VI(C, A), which is on the basis of the subgradient extragradient rule
with linear-search process, Mann implicit iteration approach, and hybrid deepest-descent technique.

(iii)) The problem of finding an element of VI(C,A) with pseudomonotone uniform continuity
mapping A is extended to develop our problem of finding an element of Fix(S) N Fix(G) N VI(C, A)
with both asymptotically nonexpansive mapping S and nonexpansive mapping G. The modified
projection-type method with linear-search process in [29] is extended to develop our modified
Mann-like subgradient-like extragradient implicit rule with linear-search process, e.g., the original
projection step y, = Pc(x, — AAx,) in [29] is developed into the modified Mann-like implicit
projection step w, = (1 — o,)x, + 0,Gw,, and y, = Pc(w, — 1Aw,); meantime, the original viscosity
step X1 = @, f(x,) + (1 = a@,)Pc,(x,) 1s developed into the composite viscosity iterative step
Xne1 = Pclanf(x,) + (I — auuEF)S"Pc,(wy)].
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4. Examples

In what follows, we provide an illustrated instance to show the feasibility and implementability of
suggested rules. Put @ =@, =0, u =2,y = pp = % v=1,A={(= %, o =0, = % and a, = 3(n1+1)'
We first provide an example of two inverse-strongly monotone mappings By, B, : C — H, Lipschitz
continuous and pseudomonotone mapping A and asymptotically nonexpansive mapping S with Q =
Fix(S) N Fix(G) N VI(C, A) # 0, where G := To' (I — u; B)) T2 (I — uaBs) = Pc(I — 1 B)Pe(I — iy By).
We set H = R and use the {a,b) = ab and || - || = | - | to denote its inner product and induced norm,
respectively. Moreover, we put C = [-2,3]. The starting point x; is arbitrarily chosen in C. Let

f(x) = F(x) = 1x Vx € C with

1 1 1
(5:§<T:1—\/1—#(27]—/,[K2):1—\/1—2(25—2(5)2):1

We let Bijx = Byx := Bx = x — %sinx, Vxe C. LetA: H— Hand S : C — C be formulated

as Ax := ﬁ — - and Sx := 2sinx. We now assert that B is 2-inverse-strongly monotone. In
sin x| 1+]x] 6 9

fact, since B is %—strongly monotone and %—Lipsohitz continuous, we know that B is %-inverse—strongly

monotone with @ = 8 = %. Let us assert that A is pseudomonotone and Lipschitz continuous. In fact,

for each a, b € H one has

IAa — Ab]| <| 1D]] = lall I+ ||51'n | ||sma!|
A+ 1bIDA + llalh)” (1 + [Isinb|(1 + || sinall)
lla — Il Isina — sin bl|

< + ; ;
(1 +lalh(L +1ibl}) -~ (1 +[[sinal[)(1 + || sin b]})
<|la - bl| + || sina — sin b|| < 2||a — b||.

This means that A is Lipschitz continuous with L = 2. Next, we assert that A is pseudomonotone. For
each a,b € H, it is readily known that

1 1
_ b—a)>0
Topsima 1?92

1 1
_ b—a)>0.
Trsimp]  1appl @20

(Aa,b—a) = (

= (Ab,b—a)=(

Moreover, it is easy to check that S is asymptotically nonexpansive with 6, = (%)", Vn > 1, such that
IIS™'x, — S"x,|| = 0 as n — oo. In fact, note that

5 5
1S"a - $"bll < EIIS”_la -8" bl < < (g)lla=bll < (1 +6,)lla - bll,
and
5 5 5 5 5
n+1 _Qn <_n—l 2. — (212 g T < “\n )
157 x = 8%l < (2" IS o = Sl = ()l sinS x) — = sin x| < 2(2)" — O

It is obvious that Fix(S) = {0} and

.0, (5/6)"
lim — = lim ———— =
n—oco @, n—oo 1/3(l’l + 1)
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Accordingly, Q = Fix(S) N Fix(G) N VI(C, A) = {0} # 0. In this case, noticing

1
G = Pc(I — uB)Pc(I — 2By) = [Pc(l - §B)]2,
we rewrite Algorithm 3.1 as follows:

w, = %xn + %un,

Vo = Pc(I = 1 B)wy,

Uy = Pc(I = 3B)v,,

Yn = Pc(wy, — 3Aw,), 4.1)
th = (1 = T)Wy + Ty,

Zn = Pc,(Wn),

— 2 1 1
Xni1 = 5% + 3Pcl

3(n+1)

. %xn + (1 - 3(n1+1))S”zn], VYn>1,

where for each n > 1, C,, and 7, are chosen as in Algorithm 3.1. Then, by Theorem 3.6, we know that
{x,} converges to 0 € Q = Fix(S) N NFix(G) N VI(C, A).

In particular, since Sx := % sinx is also nonexpansive, we consider the modified version of
Algorithm 3.1, that is,

w, = %xn + %un,

Vva = PcI = $B)w,,

u, = Pc(I = 1By,

Y = Pc(w, — 3Aw,), 4.2)
tn = (1 = T)Wy + TpYn,

in = PCn(WVL)’

2 1 1 1 1
Xurt = 3%+ 3Pelsgm 3% + (- 58zl Y2,

where for each n > 1, C, and 7, are chosen as above. Then, by Theorem 3.7, we know that {x,}

converges to 0 € Q = Fix(§) N Fix(G) N VI(C, A).
5. Conclusions

In this paper, we introduce the modified Mann-like subgradient-like extragradient implicit rules
with linear-search process for finding a common solution of the SGEP, VIP and FPP. The proposed
algorithms are on the basis of the subgradient extragradient rule with linear-search process, Mann
implicit iteration approach, and hybrid deepest-descent technique. Under mild restrictions, we
demonstrate the strong convergence of the suggested algorithms to a common solution of the SGEP,
VIP and FPP, which is a unique solution of a certain HVI defined on their common solution set. In
addition, an illustrated example is provided to show the feasibility and implementability of our
proposed rule.
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