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1. Introduction

Modern problems of natural science lead to the need to generalize the classical problems of
mathematical physics, as well as to the formulation of qualitatively new problems, which include non-
local problems for differential equations. Among nonlocal problems, problems with integral conditions
are of great interest. Integral conditions are encountered in the study of physical phenomena in the
case when the boundary of the process flow region is inaccessible for direct measurements. Inverse
problems arise in various fields of human activity, such as seismology, mineral exploration, biology,
medical visualization, computed tomography, earth remote sensing, spectral analysis, nondestructive
control, etc. Various inverse problems for certain types of partial differential equations have been
studied in many works. A more detailed bibliography and a classification of problems are found in
[1-5]. Inverse problems for one-dimensional pseudo-parabolic equations of third-order were studied
in [6]. The existence and uniqueness of the solution of the inverse problem for the third order
pseudoparabolic equation with integral over-determination condition is studied in [7]. Khompysh
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[8] investigated the reconstruction of unknown coefficient in pseudo-parabolic inverse problem with
the integral over determination condition and studied the uniqueness and existence of solution by
means of method of successive approximations. Studies of wave propagation in cold plasma and
magnetohydrodynamics also reduce to the partial differential equations of fourth-order. To the study
of nonlocal boundary value problems (including integral conditions) for partial differential equations
of the fourth-order are devoted large number of works, see, for example, [9,10]. It should be noted
that boundary value problems with integral conditions are of particular interest. From physical
considerations, the integral conditions are completely natural, and they arise in mathematical modelling
in cases where it is impossible to obtain information about the process occurring at the boundary of
the region of its flow using direct measurements or when it is possible to measure only some averaged
(integral) characteristics of the desired quantity.

In this article, we study the an inverse boundary value problem for a fourth order pseudo parabolic
equation with periodic and integral condition to identify the time-dependent coefficients along with the
solution function theoretically, i.e. existence and uniqueness.

Statement of the problem and its reduction to an equivalent problem. In the domain Dy = {(x,?) :
0 <x <1, 0<1t< T}, weconsider an inverse boundary value problem of recovering the timewise
dependent coeflicients p(7) in the pseudo-parabolic equation of the fourth-order

(X, 1) = bty (%, 1) + a(OU (X, 1) = p(Ou(x, 1) + f(x, 1) (1.1)

with the initial condition

u(x,0)+ou(x, T)=¢(x) (O<x<1), (1.2)
boundary conditions
u(0,6) = u(1,1),uy(0,1) = u,(1,1), u, (0, 1) = u,,(1,1)  (0<t<T), (1.3)
nonlocal integral condition
1
j; u(x,)dx=00<1t<T) (1.4)

and with an additional condition
!
u(0,1) = f y@u(l,t)dr+ h(t) (0<t<T), (1.5)
0

where b > 0, 6 > 0-given numbers, a(t) > 0, f(x,1), ¢(x), y(1), h(t) -given functions, u(x, t) and p(r)
- required functions.
Denote
CH'(Dr) = {u(x,1) 2 u(x,1) € C*'(Dr), tyess s € C(D1)}.

Definition.By the classical solution of the inverse boundary value problem (1.1)-(1.5)we mean the
pair {u(x, 1), p(t)} functions u(x, t) € C*' (D7), p(¢) € C [0, T] satisfying equation (1.1) in D7, condition
(1.2) in [0,1] and conditions (1.3)-(1.5) in [0,T].

Theorem 1. Letbe b > 0, 6 > 0, ¢(x) € C[0,1], f(x,t) € C(D7), fol fx,dx =0, 0 <a(r) €
C[0,T], h(t) e C'[0,T], h(t) #0 (0 <t < T),y(t) € C[0,T],6y(t) =0 (0 <t <T)and

1
f e(x)dx = 0,¢(0) = h(0) + 6h(T).
0
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Then the problem of finding a solution to problem (1.1)-(1.5) is equivalent to the problem of
determining the functions u(x, t) € C*!'(Dr) and p(¢) € C[0, T], from (1.1)-(1.3) and

ueex(0,0) = uex(l, 1) (0 <1 <T), (1.6)
y(Ou(l, 1) + 1’ (#) = bur(0, 1) + a(Our(0, 1) =

= p(t) (f y(@u(l, T)dt + h(t)) + f(0,1) (0<t<T). (1.7)
0

Proof. Let be {u(x,t), p(t)} is a classical solution to problem (1.1)-(1.5). Integrating equation (1.1)
with respect to x from O to 1, we get:

1
dit f u(x, t)dx - b(utx(l, t) - utx(()’ t)) + a(t)(uxxx(l’ t) - uxxx(o’ t)) =
0

1 1
= p(t)f u(x, t)dx + f S, dx (0<t<T). (1.8)
0 0

Assuming that fol f(x,Hdx = 0, taking into account (1.3) and (1.4), we arrive at the fulfillment of (1.6).
Further, considering i(f) € C'[0, T] and differentiating with respect to ¢ (1.5), we get:

u,(0,0) = y(u(l, )+ (@) O0<t<T) (1.9)
Substituting x = 0 into equation (1.1), we have:
M;(O, t) - butxx(o’ t) + a(t)uxxxx(o’ t) = p(I)U(O, t) + f(o, t) (0 <t< T) (110)

Now, suppose that {u(x, 1), p(t)} is a solution to problem (1.1)-(1.3), (1.6), (1.7). Then from (1.8),
taking into account (1.3) and (1.6), we find:

d 1 1
Ef u(x, t)dx — p(t)f u(x,)dx =0 0<t<T). (1.11)
0 0
Due to (1.2) and fol @(x)dx = 0, it’s obvious that
1 1 1
f u(x, 0)dx+6f u(x, T)dx :f p(x)dx = 0. (1.12)
0 0 0
Obviously, the general solution(1.11) has the form:
1 't
f u(x, dx = ce”h P (0 <t < T). (1.13)
0
From here, taking into account (1.12), we obtain:
1 1 p
f u(x, 0)dx + & f u(x, T)dx = c(1 + 6e~ b P47y = 0, (1.14)
0 0
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By virtue of 6 > 0, from (1.14) we get that ¢ = 0,and substituting into (1.13) we conclude, that
fol u(x,)dx =0 (0 <t <T). Therefore, condition (1.4) is also satisfied.
Further, from (1.7) and (1.10), we obtain:

i [u(O, r) — (ft y(@u(l, T)dt + h(?) )] =

= p(t) [u(O, 1) — (f v(T)u(l, 7)dt + h(t))] O<er<?). (1.15)
0

Let introduce the notation:
y(t) = u(0,1) — (f y(@u(l, T)dt + h(t)) O<ts?) (1.16)
0

and rewrite the last relation in the form:
Y@+ p)y)=0 (0<t<T). (1.17)

From (1.16), taking into account (1.2), 6y(¥) =0 (0 <t < T) and ¢(0) = h(0) + 6h(T), it is easy to see
that

T
¥(0) + oy(T) = u(0,0) — h(0) + 6 |u(0,T) — (f y(@u(l, v)dr + h(T) )] = u(0,0)+
0

T
+0u(0,T) — (h(0) + 6n(T) ) - 5f y(@u(l, v)dt = ¢(0) — (h(0) + 6h(T)) = 0. (1.18)
0
Obviously, the general solution (1.17) has the form:
Y(t) = ceh PP (0 <1< T). (1.19)

From here, taking into account (1.18), we obtain:

T ap(1) dr

Y(0) + 69(T) = ¢(1 + e b am@?™y = 0. (1.20)

By virtue of 6 > 0, from (1.20) we get that ¢ = 0, and substituting into (1.19) we conclude that
y(t) =0 (0 <t<T). Therefore, from (1.16) it is clear that the condition (1.5). The theorem has been
proven.

2. The existence and uniqueness of the classical solution of the inverse boundary value
problem.

It is known [5] that the system
1,cos A1 x, sin Ay x, ..., COS Az x, SIn Aix, ... 2.1)
forms the basis of 1,(0, 1), where A, = 2kn (k=0,1,..).
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Since system (2.1) forms a basis in L,(0, 1), it is obvious that for each solution {u(x, #), a(t)} problem
(1.1)—(1.3), (1.6),(1.7):

u(x, t) = Z w1 (f) cos Ax + Z 1o (1) sin ux (A, = 27tk), 2.2)
k=0 k=1

where 1 1
up(t) = f u(x,Ndx ,u;(t) = 2[ u(x,t)cos yxdx (k=1,2,..),
0 0

1
uy(t) = 2f u(x, ) sin 1xdx (k=1,2,..).
0

Applying the formal scheme of the Fourier method, to determine the desired coefficients u.(f) (k =
0,1,...) and uy () (k=1,2,...) functions u(x, ¢t) from (1.1) and (1.2) we get:

uy(t) = Fio(t;u,p) (0<t<T), (2.3)

(1 + bADU, () + aO)Aug(t) = Fyp(t;u, p) (i=1,2,0<t < T; k=1,2,..), (2.4)
u10(0) + ouyo(T) = @10 (2.5)

up(0) + oup(T) =y (i=1,2;k=1,2,..), (2.6)

where
Fu(t,u,a,b) = p(Oup () + fu@ (k=0,1,..),

1 1
Jfio(t) = f fx,tdx , fu(t) = 2f f(x,t)cos xdx (k=1,2,...),
0 0

1 1
Q10 = f p(x)dx, ik = 2f p(x)cos {xdx (k=1,2,..),
0 0
Fou(t;u,a,b) = p(Duu(t) + fa(2),
1 1
fu(t) = 2f f,)ysinyxdx (k=1,2,..) ,p% = 2f e(x)sin xdx  (k=1,2,...).
0 0

Solving problem (2.3)-(2.6), we find:

T t
uio(t) = (1 +5)_1(9010—5f Fo(t; u,p)df)+f Fio(tiu,p)dt (0<t<T), 2.7)
0 0
% g ]
o 1+M% 1 s _ft a(s)ﬁlé s
uy(t) = i+ Fu(t;u, p)e ™ "% dr—
0 T T fo (s, p)

1+5€_ 0 122"

T a(s))2

t a(s)/lﬁ

5 o T2 1 T _ s

- Fy(t;u,p)e ™ "% dr (i=1,2,0<t<T;k=1,2,..). (2.8)
e T2 Jy

1+5e 1+bA
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After substituting the expression u(f) (k = 0, 1,...), un(t) (k = 1,2,...) in (2.2), to define a
component u(x, t) solution of problem (1.1)-(1.3), (1.6), (1.7), we obtain:

T t
u(x,t) = (1+6)" (900 - (5f Fo(t; u, p)dr) + f Fo(t;u, p)dr +
0 0

. a(s)/l;:
- |y —=5ds
© e 0 l+bA]%
+ + —
Zk 1 rao T b
= “Jo T2
1+ e k k
T a(s)/lz
o 2
oe k 1

raott 1+ bA2

t -_—
fFlk(T; u, pe b
0

! -
f Flk(T; u, P)e ’
0

" a(s)ﬂz

Sd‘['—

¢ a9}

5] A
ML dTy cos Agx+

1+6e ™
tu(s)/l;: ,
iy TJo ezt t t als)d
e k 1 - Lds
+ + —— | Fu(tiu,ple = " dr—
kzzll _ OT a(s)ﬂg dss 902/{ 1 + b/li L 2k( p)
1+6e l+bﬂk X
Tt ;
S 0 11512 1 T a9y ds
_ o : - > f Fy(t;u, ple fr O dr b sin . (2.9
T T+ ba; Jo
1 +6e ™ %
Now from (1.7), taking into account (2.2), we have:
!
p(0) = [h(n] {h'(t) = f(0, 1) + y(Duio(1)— p(2) f y(@u,, (T)dt+
0
[eS] !
+ Z (b/liu’lk(t) + a(t) Au(t) + y(Oup(t) — p(t) f y(T)u,k(T)dT). (2.10)
k=1 0
Further, from (2.4), taking into account (2.8), we obtain:
bAU, (1) + a(®) Auy (D) + y(Our(t) = Fui(ts u, p) — ), (1) + y(Ouy () =
P Y (o S P
= — t;u, + + y() | u(t) =
I I PR )
BECL )
Y g+ (2O 0 o +
tvo PP\ TR
k k 1 +Se 0 b2
Sl
1 ¢ _fr a(s)/llé s
+ Fy(tsu,pe ™ "% dr—
o [ Futap
a(s)a
56_ OT l+h,{§ ds 1 T B f, a(s)/lg :
- f Fu(tsu,ple " "% dr| 0<t<T;k=12,..). (2.11)
0

a(s)1* 2
1+ 6e_f°T e L+ bd
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p@) = [h(®)]™ {h’(t) — f(0, D)+

T t
+y(1)) (1+5)_1(9010—5 f Fo(T;u,p)dT)+ f Fio(T; u,p)df]—
0 0

—p(1) f Y@, ()dT + Z

t a(s)ﬂ

Fu(tu, p) +

b/l2

t a(s)A]

a(t)/ljf e ~h |+1;42 1 t o) gds
+ | —— +v( + Fu(tsu,p)e ™ " dt—
( 5+ )) - P+ T b I) (T u, p)

als 4
1+ b/?.k _ OT ()/Ilé'dSS
1 + Se 14612

(s)l
1 ! ﬁt a 2d‘
Fu(tsu, p)e ™ "% dr—
0

" 1+bA]
5e_f°T T(:b)jg 1 fTF - : f T(:;% Sd .
- “““2 1+ b/lz UATs i pe 4
1+68e & "
!
+p(1) fo y(r)ulk(r)df] } (2.12)

Thus, the solution of problem (1.1)—(1.3), (1.6), (1.7)is reduced to the solution of system (2.9),
(2.12) with respect to unknown functions u(x, ) and p(z).

To study the question of the uniqueness of the solution of problem (1.1)—(1.3), (1.6), (1.7) the
following plays an important role.

Lemma 1. If {u(x, r), p(t)}-any solution of problem (1.1)—(1.3), (1.6), (1.7), then the functions

1 1
uo(t) = f u(x,ydx ,uy(t) = 2f u(x,t)ycos ixdx (k=1,2,...),
0 0

1
uy(t) = Zf u(x,t)sin xxdx (k=1,2,..)
0

satisfy the system consisting of equations (27), (28) on [0, T'].

It is obvious that if uio(f) = [ u(x, Hdx , u(®) = 2 [ u(x,)cos hxdx (k= 1,2,..),
uy(t) =2 fol u(x,t)sin Lxdx (k=1,2,...)is asolution to system (2.7), (2.8), then the pair {u(x, t), p(t)}
functions u(x, 1) = Yo u1x(t) cos Aex + Yoy uo(?) sin Lx (A = 2mk) and p(¢) is a solution to system
(2.9), (2.12).

Consequence. Let system (29), (32) have a unique solution. Then problem (1.1)—(1.3), (1.6), (1.7)
cannot have more than one solution, i.e. if problem (1.1)-(1.3), (1.6), (1.7) has a solution, then it is
unique.

In order to study the problem (1.1)—(1.3), (1.6), (1.7) consider the following spaces.

AIMS Mathematics Volume 8, Issue 2, 2622-2633.
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Denote by BS,T [6] the set of all functions of the form

u(x, f) = Z w1 (f) cos Ax + Z o (£) sin ex (A, = 27tk),
k=0 k=1

considered in Dy, where each of the functions u;;(r) (k=0, 1,...), uy(t) (k=1,2,...) continuous on
[0,T] and

1 1

&) ) 2 <) ) 2
J<u>:||ulo<t>||qo,n+{2 (Aznulk(t)ncm,n)} #3 (W les®lleory) ¢ < +oo,
k=1 k=1

a > 0. We define the norm in this set as follows:
laCx, Dllge, = J(w).
Through E7. denote the space B ;. X C[0, T'] vector - functions z(x, #) = {u(x, 1), p(#)} with norm
llzCx, Dllge. = llux, Dllgg, + POl cro,ry -

It is known that B} ;. and E7 are Banach spaces.
Now consider in space E3 operator

q)(u’ p) = {(Dl(u’ p)’(DZ(u’ p)} »

operator
i, p)) = i(x, 1) = Z fiyi () cOS A x + Z fioi (1) sin Ax , D (u, p) = p(2),
k=0 k=1
(), oy () (i=1,2; k=1,2,...), p(t) are equal to the right-hand sides of (2.7), (2.8) and (2.12),
respectively.

It is easy to see that

T a(s)/l;:

1+b/1i>b/li, 1+6>1,.1+08e ° "4 S 1

Then, we have:

T 2
llito(Dllcro.r) < ol + (1 +5)‘/7(f fo@)P dT) + A+ T lpOllego,r leroDlleory > (2.13)
0

1

\ : N L VAL 46 T & :
(Z(ﬂillaik(t)llcm,n)z) <V3 (Z(/l,f |¢ik|)2] +¥ﬁ[ fo S A dT] N
k=1 =1 =
3(1+6 0 5
+ —\/_(b-i_ )T lPOllero,r) [Z(/li ||Mik(t)||c[o,T])2) i=1,2), (2.14)
k=1

15O ero.ry < [[UO1 | g {100 = O, Dllcgor +

AIMS Mathematics Volume 8, Issue 2, 2622-2633.
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T >
+ly®llcror) |900|+(1+5)\/T(f |fo(T)|2dT) + (1 +OT lpOllego,r) leollero,ry | +
0

+T Iy Ollcgo.ry 1POleo.ry [0l o 7, +

1 1

(Z RGN T]] +lPOllco.ry (Z(f e @llegor) )

[Z(ﬂi |<p1k|)2} , Y0+ ( f Z(ﬂkmk(rm dT] +
k=1

bl

1

1
+ (ny(t)nqo,n +y ||a(l)||C[0,T])

1

T(l +6)

++T ||7(t)||c[oj] ”p(t)”c[()j] [Z(/lz ”Mlk(t)”c[o,TJ)z) ]} .

k=1

POl o1 [Z(/ls et 1 (Ollcpo.77) ]

(2.15)
Let us assume that the data of problem (1.1)—(1.3), (1.6), (1.7) satisfy the following conditions:

Lo(x) € W20, 1), ¢(0) = ¢(1),¢'(0) = ¢'(1),

¢"(0) = ¢"(1), ¢"'(0) = ¢ (1), $P(0) = (1)
270, fullx, D), fu(x,0) € C(Dr), fux(x,1) € Lo(Dr),
f0,0= f(L,n, 0,0 = f(l,0), fu(0,0) = fu(l,5) (O0<r<T)
36>0, 6>0, y(1), a(t) € C[0,T], h(t)€C'[0,T], h(H)#0 (O<t<T).
Then from (2.10)—(2.12), we have:

ICx, Dllgg, < AT + BT Ip@lpozr laCx, Dl (2.16)

||]5(t)||c[oj] < Ax(T) + By(T) ”p(t)llc[oj] |lue(x, t)”B;T s (2.17)

where
ANT) = lle@ll, 00 + A + ) VT Do,y +2 V3 [P0, 0 +

243 3
+T\/_(l + 6) \/T”fxxx(x’ t)HLz(DT) ’ Bl(T) = (1 + 6) (1 + 7\/_) T’
As(T) = TAOT |y {1 @) = O, Dllerory +

+lyOllcgor (”‘P(x)”Lz(o,]) +(1+9) \/T”f(x, t)”Lz(Dr)) +

1
0o 2
+ [Z /11:2] [H”fx(x’ f)||C[0,T]||L2(o,1) +
k=1

1 T(l+6
+ (”?’(t)”cw,ﬂ +3 ua(t)ncm,n) (II¢<3><x>IIL2<o,1> * # Ificx t>nL2<DT>)]},
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By(T) = (|11 | 0.7y (252 42) [(IOllegory + 3 la®llerorry) T52+

+T ||7(t)”C[0,T] +1

From inequalities (2.16), (2.17) we conclude:

|lae(x, I)HB;T + ”ﬁ(l)”c[oj] <A(T)+ B(T) ”p(t)”c[oj] [[ze(x, t)”B;T 5 (2.18)

A(T) = A((T) + Ax(T), B(T) = B\(T) + Bx(T).

We can prove the following theorem.
Theorem 2. Let conditions 1-3 be satisfied and

(A(T) +2)*B(T) < 1. (2.19)

Then problem (1.1)—(1.3), (1.6), (1.7) has in K = KR(llzllE; < R = A(T) + 2) in the space EST only
one solution.
Proof. In space E3. consider the equation

7= dg, (2.20)

where z = {u, p}, components P ®@,(u, p), ©,(u, p) of operators ®(u, p) are defined by the right-hand
sides of equations (2.9) and (2.12).

Consider the operator ®(u, p) in a ball K = K from E3. . Similarly to (2.18) we obtain that for any
z=A{u, p}, 21 = {u1, p1}, 22 = {ua, p2} € Kg :

ID2llgs < ACT) + B p@lcgo;ry laCx, Dllgs, (2.21)

[Pz) = @zaflgs < BDRIp1(®) = paDlicrory + ler (x, 1) = ua(x, Ollgs)- (2.22)

Then from estimates (2.21), (2.22), taking into account (2.19), it follows that the operator ® acts in
a ball K = Ky and is contractive. Therefore, in the ball K = Ky operator ® has a single fixed point
{u, p}, which is the only one in the ball K = Ky solution of equation (2.20), i.e. is the only one solution
in the ball K = Ky of system (2.9), (2.12) in the ball.

Functions u(x,t), as an element of space B;T is continuous and has continuous derivatives
I/tx(X, t)’ uxx(xa t)7 uxxx(x’ t)’ uxxxx(x, t) in DT-

From (2.4), it is easy to see that

1 1

o0 2 5 ©0 2
> (4 u;k(t)||qm)2) < %na(t)ucm,n (Z (A8 Naeolleror) | +
k=1 k=1

V2 .
== G0 + pOu . Dllego il 0, (= 1.2

Hence it follows that u,(x, ) and u,,, continuous in D7.
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It is easy to check that equation (1.1) and conditions (1.2), (1.3), (1.6), (1.7) are satisfied in the usual
sense. Consequently, {u(x, 1), p(¢)} is a solution to problem (1.1)—(1.3), (1.6), (1.7). By the corollary of
Lemma 1, it is unique in the ball K = K. The theorem has been proven.

With the help of Theorem 1, the unique solvability of the original problem (1.1)—(1.5) immediately
follows from the last theorem.

Theorem 3. Let all the conditions of Theorem 1 be satisfied, fol f,Hdx=00<t<T),oy()=0
(0 <t £ T) and the matching condition is met:

1
f o(x)dx = 0, (0) = h(0) + 6h(T).
0

Then problem (1.1)—(1.5) has in the ball K = KR(IlzllE; < R = A(T) +2) from E; the only classical
solution.

3. Conclusions

The article considered an inverse boundary value problem with a periodic and integral condition,
when the unknown coefficient depends on time for a linear pseudoparabolic equation of the fourth
order. An existence and uniqueness theorem for the classical solution of the problem is proved.
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