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1. Introduction

In recent years, fractional calculus (FC) has been successfully applied to describe the mathematical
issues in real materials [1, 2]. For instance, [3] provided the representation of the constitutive
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relationship (RCR) of the fractional mechanical element with fractional derivative (FD) of the
Riemann-Liouville type, and [4] presented its generalised form. In [5], the RCR with FC of the
Liouville-Caputo type was taken into consideration. It has been demonstrated that the local fractional
derivative is a wonderful mathematical tool for addressing fractal issues and some challenging natural
phenomena [6, 7]. The Caputo-Fabrizio type’s RCR through fractional derivative was introduced
in [8]. The study of fractional differential equations has expanded owing to the Caputo-Fabrizio
fractional derivative. The nonsingular kernel of the new derivative [9], is what makes it so beautiful.
The Caputo-Fabrizio derivative has the same additional motivating characteristics of heterogeneity
and configuration [10, 11] with different scales as it does in the Caputo and Riemann-Liouville
fractional derivatives despite being created through the convolution of an ordinary derivative and an
exponential function. In the past two years, numerous studies related to the the new Caputo-Fabrizio
fractional derivative have been published. It has been shown that modelling using the fractional
derivative of the Atangana-Baleanu has a brief random walk. Additionally, it has been found that the
Mittag-Leffler function is a more significant and practical filter tool than the power and exponential
law functions, making the Atangana-Baleanu fractional derivative in the sense of Caputo an effective
mathematical tool for simulating more difficult real-world problems [12, 13].

Using partial differential equations, it is possible to express a specific relationship between its partial
derivatives (PDEs) and an unknown function. PDEs may be found in almost every field of engineering
and research. In recent years, the application of PDEs in fields such as finance, biology, image graphics
and processing, and social sciences has risen. As a result, when certain independent variables interact
with one another in each of the above-mentioned fields, appropriate functions in these variables may be
established, allowing for the modelling of a variety of processes via the use of equations for the related
functions [14–16]. The study of PDEs has various elements. The traditional method, which dominated
the nineteenth century, was to develop procedures for identifying explicit answers [17–19]. Theoretical
PDE analysis offers a wide range of applications. It’s worth noting that there are certain really difficult
equations that even supercomputers can’t solve. All one can do in these situations is attempt to get
qualitative data. Moreover, the formulation of the equation, as well as its associated side conditions, is
significant. A model of a physical or technical issue is frequently used to generate the equation. It is
not immediately clear that the model is continuous in the view that it results to a solved PDE [20–22].
Furthermore, in most circumstances, it is preferable that the answer be one of a kind and stable under
minor data disruptions. Theoretical comprehension of the equation aids in determining whether or
not these requirements are satisfied. Several methods for solving classical PDEs have already been
suggested, and several solutions have been discovered [23–29].

The propagation of shallow water is represented by numerous well-known integral models, such as
the Boussinesq equation, KdV equation, Whitham-Broer-Kaup equation, and others. Whitham, Broer,
and Kaup [30–34] created non-linear Whitham-Broer-Kaup equations employing the Boussinesq
approximation {

ψτ + ψψυ + φυ + qψυυ = 0
φτ + φψυ + ψφυ − qφυυ + pψυυυ = 0,

(1.1)

where ψ = ψ(υ, τ), φ = φ(υ, τ) represents the velocity of horizontal and fluid height, which fluctuates
substantially from equilibriums, and q, p are constants made up of many diffusion power. Wang and
Zheng [32] implemented riccati sub-equation method to obtain the result of fractional order Whitham-
Broer-Kaup equations. The analytical and numerical methods have been applied to find the solutions of
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Whitham-Broer-Kaup equations, such as reduced differential transform method, residual power series
method (1.1), finite element method [35], power-series method [36], the finite difference approach [37],
the exponential-function technique [38], the variation iteration technique, the homotopy perturbation
technique, the homotopy analysis technique and others [39–41].

Adomian introduced the Adomian decomposition approach in 1980, which is an effective approach
for locating numeric and explicit solutions to a wide variety of differential equations that describe
physical conditions. This method is applicable to initial value problems, boundary value problems,
partial and ordinary differential equations, including linear and nonlinear equations, and stochastic
systems. The Natural transform decomposition method is constructed by combining the Adomian
decomposition method with the Natural transform method (NTDM). NTDM has also been used to
analyze fractional-order non-linear partial differential equations numerically in a number of
articles [42–44].

In this research, we use NTDM in combination with two different derivatives to investigate the
general as well as numerical solution of the coupled system of Whitham-Broer-Kaup equations of
fractional order, as inspired by the above papers. NTDM is a simple and effective technique that
does not require any perturbation. We compare our suggested method’s results to those of other well-
known approaches like the variational iteration method, Adomain decomposition method, and Optimal
homoptoy analysis method. We can observe that the proposed method is superior to the previously
discussed methods for finding nonlinear fractional order partial differential equation solutions. We
use Maple to perform the calculations. The suggested techniques’ convergence is also ensured by
extending the concept mentioned in [45, 46].

2. Basic definitions

Fractional derivatives and integrals have a great number of properties and definitions. We propose
changes to some basic fractional calculus definitions and preliminaries used in this study.

Definition 2.1. The Riemann-Liouville integral of order fraction for a function j ∈ C℘, ℘ ≥ −1, is
given as [47–49]

Iϱ j(η) =
1
Γ(ϱ)

∫ η

0
(η − ℘)ϱ−1 j(℘)d℘, ϱ > 0, η > 0.

and I0 j(η) = j(η).
(2.1)

Definition 2.2. The derivative with order fraction for j(η) in Caputo manner is stated as [47–49]

Dϱ
η j(η) = Im−ϱDm j(η) =

1
m − ϱ

∫ η

0
(η − ℘)m−ϱ−1 j(m)(℘)d℘, (2.2)

for m − 1 < ϱ ≤ m, m ∈ N, η > 0, j ∈ Cm
℘ , ℘ ≥ −1.

Definition 2.3. The derivative with order fraction for j(η) in CF sense is stated as [47]

Dϱ
η j(η) =

F(ϱ)
1 − ϱ

∫ η

0
exp

(
−ϱ(η − ℘)

1 − ϱ

)
D( j(℘))d℘, (2.3)

having 0 < ϱ < 1 and F(ϱ) is a normalization function having F(0) = F(1) = 1.
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Definition 2.4. The derivative with order fraction for j(η) in ABC sense is stated as [47]

Dϱ
η j(η) =

B(ϱ)
1 − ϱ

∫ η

0
Eϱ

(
−ϱ(η − ℘)

1 − ϱ

)
D( j(℘))d℘, (2.4)

having 0 < ϱ < 1, B(ϱ) is normalization function and Eϱ(z) =
∑∞

m=0
zm

Γ(mϱ+1) is the Mittag-Leffler
function.

Definition 2.5. For a function ψ(τ), the natural transform (NT) is stated as

N(ψ(τ)) = U(κ, ℓ) =
∫ ∞

−∞

e−κτψ(ℓτ)dτ, κ, ℓ ∈ (−∞,∞), (2.5)

and for τ ∈ (0,∞), the NT of ψ(τ) is stated as

N(ψ(τ)H(τ)) = N+ = U+(κ, ℓ) =
∫ ∞

0
e−κτψ(ℓτ)dτ, κ, ℓ ∈ (0,∞), (2.6)

where H(τ) is the Heaviside function.

Definition 2.6. For the function ψ(κ, ℓ), the inverse NT is stated as

N−1[U(κ, ℓ)] = ψ(τ), ∀τ ≥ 0. (2.7)

Lemma 2.7. If the NT of ψ1(τ) and ψ2(τ) areU1(κ, ℓ) andU2(κ, ℓ) respectively, so

N[c1ψ1(τ) + c2ψ2(τ)] = c1N[ψ1(τ)] + c2N[ψ2(τ)] = c1U1(κ, ℓ) + c2U2(κ, ℓ), (2.8)

having c1 and c2 constants.

Lemma 2.8. If ψ1(τ) and ψ2(τ) are the inverse NT of ψ1(κ, ℓ) and ψ2(κ, ℓ) respectively, so

{N}−1[c1U1(κ, ℓ) + c2U2(κ, ℓ)] = c1N−1[U1(κ, ℓ)] + c2N−1[U2(κ, ℓ)] = c1ψ1(τ) + c2ψ2(τ), (2.9)

having c1 and c2 constants.

Definition 2.9. The NT of Dϱ
τψ(τ) in Caputo sense is stated as [47]

N[Dϱ
τψ(τ)] =

(
κ

ℓ

)ϱ (
N[ψ(τ)] −

(
1
κ

)
ψ(0)

)
. (2.10)

Definition 2.10. The NT of Dϱ
τψ(τ) in CF sense is stated as [47]

N[Dϱ
τψ(τ)] =

1
1 − ϱ + ϱ( ℓ

κ
)

(
N[ψ(τ)] −

(
1
κ

)
ψ(0)

)
. (2.11)

Definition 2.11. The NT of Dϱ
τψ(τ) in ABC sense is stated as [47]

N[Dϱ
τψ(τ)] =

M[ϱ]
1 − ϱ + ϱ( ℓ

κ
)ϱ

(
N[ψ(τ)] −

(
1
κ

)
ψ(0)

)
, (2.12)

with M[ϱ] denoting a normalization function.
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3. General implementation of method

Consider the fractional partial differential equation

Dϱ
τψ(υ, τ) = L(ψ(υ, τ)) + N(ψ(υ, τ)) + h(υ, τ) = M(υ, τ), (3.1)

with the initial condition

ψ(υ, 0) = ϕ(υ), (3.2)

which L is linear, N non-linear functions and sources function h(υ, τ).

3.1. Case I (NT DMCF)

The fractional CF derivative and natural transformation, Eq (3.1) can be stated as,

1
p(ϱ, ℓ, κ)

(
N[ψ(υ, τ)] −

ϕ(υ)
κ

)
= N[M(υ, τ)], (3.3)

with

p(ϱ, ℓ, κ) = 1 − ϱ + ϱ(
ℓ

κ
). (3.4)

On employing natural inverse transformation, we get

ψ(υ, τ) = N−1
(
ϕ(υ)
κ
+ p(ϱ, ℓ, κ)N[M(υ, τ)]

)
. (3.5)

Thus, for ψ(υ, τ), the series type solution is given as

ψ(υ, τ) =
∞∑

i=0

ψi(υ, τ), (3.6)

and N(ψ(υ, τ)) can be decomposed as

N(ψ(υ, τ)) =
∞∑

i=0

Ai(ψ0, ..., ψi), (3.7)

the Adomian polynomials Ai is given as

An =
1
n!

dn

dεn N(t,Σn
k=0ε

kψk)|ε=0.

Putting Eqs (3.7) and (3.6) into (3.5), we obtain

∞∑
i=0

ψi(υ, τ) =N−1
(
ϕ(υ)
κ
+ p(ϱ, ℓ, κ)N[h(υ, τ)]

)
+ N−1

p(ϱ, ℓ, κ)N
 ∞∑

i=0

L(ψi(υ, τ)) + Aτ

 . (3.8)
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From (3.8), we get,

ψCF
0 (υ, τ) =N−1

(
ϕ(υ)
κ
+ p(ϱ, ℓ, κ)N[h(υ, τ)]

)
,

ψCF
1 (υ, τ) =N−1 (

p(ϱ, ℓ, κ)N
[
L(ψ0(υ, τ)) + A0

])
,

...

ψCF
l+1(υ, τ) =N−1 (

p(ϱ, ℓ, κ)N
[
L(ψl(υ, τ)) + Al

])
, l = 1, 2, 3, · · · .

(3.9)

Thus, we obtain the result of (3.1) by putting (3.9) into (3.6) applying NT DMCF ,

ψCF(υ, τ) = ψCF
0 (υ, τ) + ψCF

1 (υ, τ) + ψCF
2 (υ, τ) + · · · . (3.10)

3.2. Case II (NT DMABC)

The fractional ABC derivative and natural transformation, Eq (3.1) is given as,

1
q(ϱ, ℓ, κ)

(
N[ψ(υ, τ)] −

ϕ(υ)
κ

)
= N[M(υ, τ)], (3.11)

with

q(ϱ, ℓ, κ) =
1 − ϱ + ϱ( ℓ

κ
)ϱ

B(ϱ)
. (3.12)

On employing natural inverse transformation, we get

ψ(υ, τ) = N−1
(
ϕ(υ)
κ
+ q(ϱ, ℓ, κ)N[M(υ, τ)]

)
. (3.13)

The Adomain decomposition, we obtain as

∞∑
i=0

ψi(υ, τ) =N−1
(
ϕ(υ)
κ
+ q(ϱ, ℓ, κ)N[h(υ, τ)]

)
+ N−1

q(ϱ, ℓ, κ)N
 ∞∑

i=0

L(ψi(υ, τ)) + Aτ

 . (3.14)

From (3.8), we get,

ψABC
0 (υ, τ) =N−1

(
ϕ(υ)
κ
+ q(ϱ, ℓ, κ)N[h(υ, τ)]

)
,

ψABC
1 (υ, τ) =N−1 (

q(ϱ, ℓ, κ)N
[
L(ψ0(υ, τ)) + A0

])
,

...

ψABC
l+1 (υ, τ) =N−1 (

q(ϱ, ℓ, κ)N
[
L(ψl(υ, τ)) + Al

])
, l = 1, 2, 3, · · · .

(3.15)

Thus, we obtain the result of (3.1), by applying NT DMABC

ψABC(υ, τ) = ψABC
0 (υ, τ) + ψABC

1 (υ, τ) + ψABC
2 (υ, τ) + · · · . (3.16)
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4. Convergence analysis

In this part, we give the uniqueness and convergence of the NT DMABC and NT DMCF .

Theorem 4.1. Let |L(ψ)−L(ψ∗)| < γ1|ψ−ψ
∗| and |N(ψ)−N(ψ∗)| < γ2|ψ−ψ

∗|, where ψ := ψ(℘, τ) and
ψ∗ := ψ∗(℘, τ) are values of two different functions and γ1,γ2 are Lipschitz constants.
L and N are the operators stated in (3.1). Then for NT DMCF the solution of (3.1) is unique when

0 < (γ1 + γ2)(1 − ϱ + ϱτ) < 1 for all τ.

Proof. Let H = (C[J], ||.||) having norm ||ϕ(τ)|| = maxτ∈J |ϕ(τ)| is the Banach space, ∀ continuous
function over the interval J = [0,T ]. Let I : H → H a non-linear mapping, with

ψC
l+1 = ψ

C
0 + N−1[p(ϱ, ℓ, κ)N[L(ψl(℘, τ)) + N(ψl(℘, τ))]], l ≥ 0.

||I(ψ) − I(ψ∗)|| ≤ maxτ∈J |N−1
[
p(ϱ, ℓ, κ)N[L(ψ) − L(ψ∗)]

+ p(ϱ, ℓ, κ)N[N(ψ) − N(ψ∗)]|
]

≤ maxτ∈J

[
γ1N−1[p(ϱ, ℓ, κ)N[|ψ − ψ∗|]]

+ γ2N−1[p(ϱ, ℓ, κ)N[|ψ − ψ∗|]]
]

≤ maxτ∈J(γ1 + γ2)
[
N−1[p(ϱ, ℓ, κ)N|ψ − ψ∗|]

]
≤ (γ1 + γ2)

[
N−1[p(ϱ, ℓ, κ)N||ψ − ψ∗||]

]
= (γ1 + γ2)(1 − ϱ + ϱτ)||ψ − ψ∗||.

(4.1)

So, I is contraction as 0 < (γ1 + γ2)(1 − ϱ + ϱτ) < 1. The solution of (3.1) is unique as according to
Banach fixed point theorem. □

Theorem 4.2. As according to the above theorem, the solution of (3.1) is unique for NT DMABC when
0 < (γ1 + γ2)(1 − ϱ + ϱ τϱ

Γ(ϱ+1) ) < 1 for all τ.

Proof. As from above theorem let H = (C[J], ||.||) be the Banach space, ∀ continuous function over the
interval J. Let I : H → H is non-linear mapping, with

ψC
l+1 = ψ

C
0 + N−1[p(ϱ, ℓ, κ)N[L(ψl(℘, τ)) + N(ψl(℘, τ))]], l ≥ 0.

||I(ψ) − I(ψ∗)|| ≤ maxτ∈J |N−1
[
q(ϱ, ℓ, κ)N[L(ψ) − L(ψ∗)]

+ q(ϱ, ℓ, κ)N[N(ψ) − N(ψ∗)]|
]

≤ maxτ∈J

[
γ1N−1[q(ϱ, ℓ, κ)N[|ψ − ψ∗|]]

+ γ2N−1[q(ϱ, ℓ, κ)N[|ψ − ψ∗|]]
]

≤ maxτ∈J(γ1 + γ2)
[
N−1[q(ϱ, ℓ, κ)N|ψ − ψ∗|]

]
≤ (γ1 + γ2)

[
N−1[q(ϱ, ℓ, κ)N||ψ − ψ∗||]

]
= (γ1 + γ2)(1 − ϱ + ϱ

τϱ

Γ(ϱ + 1)
)||ψ − ψ∗||.

(4.2)

So, I is contraction as 0 < (γ1 + γ2)(1 − ϱ + ϱ τϱ

Γ(ϱ+1) ) < 1. The solution of (3.1) is unique as according
to Banach fixed point theorem. □
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Theorem 4.3. Let L and N are a Lipschitz functions as stated in the above theorems, then the
NT DMCF solution of (3.1) is convergent.

Proof. Suppose H be the Banach space determined above and let ψm =
∑m

r=0 ψr(℘, τ). To prove that ψm

is a Cauchy sequence in H. Let,

||ψm − ψn|| = maxτ∈J |

m∑
r=n+1

ψr|, n = 1, 2, 3, · · ·

≤ maxτ∈J

∣∣∣∣∣∣∣N−1

p(ϱ, ℓ, κ)N
 m∑

r=n+1

(L(ψr−1) + N(ψr−1))


∣∣∣∣∣∣∣

= maxτ∈J

∣∣∣∣∣∣∣N−1

p(ϱ, ℓ, κ)N
 m−1∑

r=n+1

(L(ψr) + N(ψr))


∣∣∣∣∣∣∣

≤ maxτ∈J |N−1[p(ϱ, ℓ, κ)N[(L(ψm−1) − L(ψn−1) + N(ψm−1) − N(ψn−1))]]|
≤ γ1maxτ∈J |N−1[p(ϱ, ℓ, κ)N[(L(ψm−1) − L(ψn−1))]]|
+ γ2maxτ∈J |N−1[p(ϱ, ℓ, κ)N[(N(ψm−1) − N(ψn−1))]]|
= (γ1 + γ2)(1 − ϱ + ϱτ)||ψm−1 − ψn−1||.

(4.3)

Let m = n + 1, then

||ψn+1 − ψn|| ≤ γ||ψn − ψn−1|| ≤ γ
2||ψn−1ψn−2|| ≤ · · · ≤ γ

n||ψ1 − ψ0||, (4.4)

where γ = (γ1 + γ2)(1 − ϱ + ϱτ). Thus, we get

||ψm − ψn|| ≤ ||ψn+1 − ψn|| + ||ψn+2ψn+1|| + · · · + ||ψm − ψm−1||,

(γn + γn+1 + · · · + γm−1)||ψ1 − ψ0||

≤ γn

(
1 − γm−n

1 − γ

)
||ψ1||.

(4.5)

As 0 < γ < 1, we have 1 − γm−n < 1. Thus,

||ψm − ψn|| ≤
γn

1 − γ
maxτ∈J ||ψ1||. (4.6)

Since ||ψ1|| < ∞, ||ψm − ψn|| → 0 when n→ ∞. As a result, ψm is a Cauchy sequence in H, stated that
the series ψm is convergent. □

Theorem 4.4. Let L and N are a Lipschitz functions as stated in the above theorems, then the
NT DMABC solution of (3.1) is convergent.

Proof. Suppose ψm =
∑m

r=0 ψr(℘, τ). To prove that ψm is a Cauchy sequence in H. Let,
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||ψm − ψn|| = maxτ∈J |

m∑
r=n+1

ψr|, n = 1, 2, 3, · · ·

≤ maxτ∈J

∣∣∣∣∣∣∣N−1

q(ϱ, ℓ, κ)N
 m∑

r=n+1

(L(ψr−1) + N(ψr−1))


∣∣∣∣∣∣∣

= maxτ∈J

∣∣∣∣∣∣∣N−1

q(ϱ, ℓ, κ)N
 m−1∑

r=n+1

(L(ψr) + N(ur))


∣∣∣∣∣∣∣

≤ maxτ∈J |N−1[q(ϱ, ℓ, κ)N[(L(ψm−1) − L(ψn−1) + N(ψm−1) − N(ψn−1))]]|
≤ γ1maxτ∈J |N−1[q(ϱ, ℓ, κ)N[(L(ψm−1) − L(ψn−1))]]|
+ γ2maxτ∈J |N−1[p(ϱ, ℓ, κ)N[(N(ψm−1) − N(ψn−1))]]|

= (γ1 + γ2)(1 − ϱ + ϱ
τϱ

Γ(ϱ + 1)
)||ψm−1 − ψn−1||.

Suppose m = n + 1, thus

||ψn+1 − ψn|| ≤ γ||ψn − ψn−1|| ≤ γ
2||ψn−1 − ψn−2|| ≤ · · · ≤ γ

n||ψ1 − ψ0||, (4.7)

with γ = (γ1 + γ2)(1 − ϱ + ϱ τϱ

Γ(ϱ+1) ). Thus, we get

||ψm − ψn|| ≤ ||ψn+1 − ψn|| + ||ψn+2 − ψn+1|| + · · · + ||ψm − ψm−1||,

≤ (γn + γn+1 + · · · + γm−1)||ψ1 − ψ0||

≤ γn

(
1 − γm−n

1 − γ

)
||ψ1||.

(4.8)

As 0 < γ < 1, we have 1 − γm−n < 1. Thus,

||ψm − ψn|| ≤
γn

1 − γ
maxτ∈J ||ψ1||. (4.9)

Since ||ψ1|| < ∞, ||ψm − ψn|| → 0 when n→ ∞. As a result, ψm is a Cauchy sequence in H, stated that
the series ψm is convergent. □

5. Applications

Example 1. Consider the fractional-order system of Whitham-Broer-Kaup equations is given as

Dϱ
τψ(υ, τ) + ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

= 0, 0 < ϱ ≤ 1, −1 < τ ≤ 1, −10 ≤ υ ≤ 10,

Dϱ
τφ(υ, τ) + ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

+ 3
∂3ψ(υ, τ)
∂υ3 −

∂2φ(υ, τ)
∂υ2 = 0,

(5.1)

the initial condition

ψ(υ, 0) =
1
2
− 8 tanh(−2υ),

φ(υ, 0) = 16 − 16 tanh2(−2υ).
(5.2)
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On employing natural transform, we have

N[Dϱ
τψ(υ, τ)] = −N

[
ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

]
,

N[Dϱ
τφ(υ, τ)] = −N

[
ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

+ 3
∂3ψ(υ, τ)
∂υ3 −

∂2φ(υ, τ)
∂υ2

]
,

(5.3)

Thus, we have

1
κϱ

N[ψ(υ, τ)] − κ2−ϱψ(υ, 0) = −N
[
ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

]
,

1
κϱ

N[φ(υ, τ)] − κ2−ϱψ(υ, 0) = −N
[
ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

+ 3
∂3ψ(υ, τ)
∂υ3 −

∂2φ(υ, τ)
∂υ2

]
.

(5.4)

On simplification we have

N[ψ(υ, τ)] = κ2
[
1
2
− 8 tanh(−2υ)

]
−
ϱ(κ − ϱ(κ − ϱ))

κ2 N
[
ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

]
,

N[φ(υ, τ)] = κ2
[
16 − 16 tanh2(−2υ)

]
−
ϱ(κ − ϱ(κ − ϱ))

κ2 N
[
ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

+ 3
∂3ψ(υ, τ)
∂υ3 −

∂2φ(υ, τ)
∂υ2

]
.

(5.5)

Using the inverse natural transform, we get

ψ(υ, τ) =
[
1
2
− 8 tanh(−2υ)

]
− N−1

[
ϱ(κ − ϱ(κ − ϱ))

κ2 N
{
ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

}]
,

φ(υ, τ) =
[
16 − 16 tanh2(−2υ)

]
− N−1

[
ϱ(κ − ϱ(κ − ϱ))

κ2 N
{
ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

+ 3
∂3ψ(υ, τ)
∂υ3 −

∂2φ(υ, τ)
∂υ2

}]
.

(5.6)
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5.1. NT DMCF solution

The series form solution for the unknown term ψ(υ, τ) and φ(υ, τ) is given as

ψ(υ, τ) =
∞∑

l=0

ψl(υ, τ) and φ(υ, τ) =
∞∑

l=0

ψl(υ, τ). (5.7)

The non-linear functions define by Adomian polynomials are given as ψψυ =
∑∞

m=0Am,
ψφυ =

∑∞
m=0Bm and φψυ =

∑∞
m=0 Cm, thus by means of these functions Eq (5.6) can be calculated as

∞∑
l=0

ψl+1(υ, τ) =
1
2
− 8 tanh(−2υ)

− N−1
[
ϱ(κ − ϱ(κ − ϱ))

κ2 N
{ ∞∑

l=0

Al

+
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

}]
,

∞∑
l=0

φl+1(υ, τ) = 16 − 16 tanh2(−2υ)

− N−1
[
ϱ(κ − ϱ(κ − ϱ))

κ2 N
{ ∞∑

l=0

Bl +

∞∑
l=0

Cl

+ 3
∂3ψ(υ, τ)
∂υ3 −

∂2φ(υ, τ)
∂υ2

}]
.

(5.8)

Both side comparison of Eq (5.8), we achieve

ψ0(υ, τ) =
1
2
− 8 tanh(−2υ),

φ0(υ, τ) = 16 − 16 tanh2(−2υ),

ψ1(υ, τ) = −8 sec h2(−2υ) (ϱ(τ − 1) + 1) ,
φ1(υ, τ) = −32 sech2(−2υ) tanh(−2υ) (ϱ(τ − 1) + 1) ,

(5.9)

ψ2(υ, τ) = −16 sech2(−2υ)
(
4 sech2(−2υ)

− 8 tanh2(−2υ) + 3 tanh(−2υ)
)(

(1 − ϱ)2

+ 2ϱ(1 − ϱ)τ +
ϱ2τ2

2

)
,

φ2(υ, τ) = −32 sec h2(−2υ){40 sec h2(−2υ) tanh(−2υ)
+ 96 tanh(−2υ) − 2 tanh2(−2υ) − 32 tanh3(−2υ)

− 25 sec h2(−2υ)}
(
(1 − ϱ)2 + 2ϱ(1 − ϱ)τ +

ϱ2τ2

2

)
.

(5.10)
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Thus, for ψl and φl with (l ≥ 3) the remaining terms are simply calculate. So, the result in series
type is as

ψ(υ, τ) =
∞∑

l=0

ψl(υ, τ) = ψ0(υ, τ) + ψ1(υ, τ) + ψ2(υ, τ) + · · · ,

ψ(υ, τ) =
1
2
− 8 tanh(−2υ) − 8 sech2(−2υ) (ϱ(τ − 1) + 1)

− 16 sec h2(−2υ)
(
4 sec h2(−2υ) − 8 tanh2(−2υ)

+ 3 tanh(−2υ)
)(

(1 − ϱ)2 + 2ϱ(1 − ϱ)τ +
ϱ2τ2

2

)
+ · · · .

φ(υ, τ) =
∞∑

l=0

φl(υ, τ) = φ0(υ, τ) + φ1(υ, τ) + φ2(υ, τ) + · · · ,

φ(υ, τ) = 16 − 16 tanh2(−2υ) − 32 sech2(−2υ) tanh(−2υ) (ϱ(τ − 1) + 1)

− 32 sec h2(−2υ){40 sec h2(−2υ) tanh(−2υ)
+ 96 tanh(−2υ) − 2 tanh2(−2υ) − 32 tanh3(−2υ)

− 25 sech2(−2υ)}
(
(1 − ϱ)2 + 2ϱ(1 − ϱ)τ +

ϱ2τ2

2

)
+ · · · .

(5.11)

5.2. NDMABC solution

The series form solution for the unknown term ψ(υ, τ) and φ(υ, τ) is given as

ψ(υ, τ) =
∞∑

l=0

ψl(υ, τ),

φ(υ, τ) =
∞∑

l=0

ψl(υ, τ).

(5.12)

The non-linear functions by mean of Adomian polynomials is given as ψψυ =
∑∞

l=0Al and ψ2ψυ =∑∞
l=0Bl, thus by mean of these functions Eq (5.6) can be calculated as

∞∑
l=0

ψl+1(υ, τ) =
1
2
− 8 tanh(−2υ)

− N−1
[
ℓϱ(κϱ + ϱ(ℓϱ − κϱ))

κ2ϱ N
{ ∞∑

l=0

Al +
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

}]
,

∞∑
l=0

φl+1(υ, τ) = 16 − 16 tanh2(−2υ)

− N−1
[
ℓϱ(κϱ + ϱ(ℓϱ − κϱ))

κ2ϱ N
{ ∞∑

l=0

Bl +

∞∑
l=0

Cl + 3
∂3ψ(υ, τ)
∂υ3 −

∂2φ(υ, τ)
∂υ2

}]
.

(5.13)
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Both side comparison of Eq (5.13), we get

ψ0(υ, τ) =
1
2
− 8 tanh(−2υ),

φ0(υ, τ) = 16 − 16 tanh2(−2υ),

ψ1(υ, τ) = −8 sech2(−2υ)
(
1 − ϱ +

ϱτϱ

Γ(ϱ + 1)

)
,

φ1(υ, τ) = −32 sech2(−2υ) tanh(−2υ)
(
1 − ϱ +

ϱτϱ

Γ(ϱ + 1)

)
,

(5.14)

ψ2(υ, τ) = −16 sec h2(−2υ)
(
4 sec h2(−2υ) − 8 tanh2(−2υ) + 3 tanh(−2υ)

) [ ϱ2τ2ϱ

Γ(2ϱ + 1)

+ 2ϱ(1 − ϱ)
τϱ

Γ(ϱ + 1)
+ (1 − ϱ)2

]
,

φ2(υ, τ) = −32 sec h2(−2υ){40 sec h2(−2υ) tanh(−2υ) + 96 tanh(−2υ) − 2 tanh2(−2υ)

− 32 tanh3(−2υ) − 25 sec h2(−2υ)}
[

ϱ2τ2ϱ

Γ(2ϱ + 1)
+ 2ϱ(1 − ϱ)

τϱ

Γ(ϱ + 1)
+ (1 − ϱ)2

]
.

(5.15)

Thus, for ψl with (l ≥ 3) the remaining component are simply calculated. So, the series form solution
is given as

ψ(υ, τ) =
∞∑

l=0

ψl(υ, τ) = ψ0(υ, τ) + ψ1(υ, τ) + ψ2(υ, τ) + · · · ,

ψ(υ, τ) =
1
2
− 8 tanh(−2υ) − 8 sech2(−2υ)

(
1 − ϱ +

ϱτϱ

Γ(ϱ + 1)

)
− 16 sec h2(−2υ)

(
4 sec h2(−2υ) − 8 tanh2(−2υ)

+ 3 tanh(−2υ)
) [

ϱ2τ2ϱ

Γ(2ϱ + 1)
+ 2ϱ(1 − ϱ)

τϱ

Γ(ϱ + 1)
+ (1 − ϱ)2

]
+ · · · .

φ(υ, τ) =
∞∑

l=0

φl(υ, τ) = φ0(υ, τ) + φ1(υ, τ) + φ2(υ, τ) + · · · ,

φ(υ, τ) = 16 − 16 tanh2(−2υ) − 32 sech2(−2υ) tanh(−2υ)
(
1 − ϱ +

ϱτϱ

Γ(ϱ + 1)

)
− 32 sec h2(−2υ){40 sec h2(−2υ) tanh(−2υ) + 96 tanh(−2υ) − 2 tanh2(−2υ)

− 32 tanh3(−2υ) − 25 sec h2(−2υ)}
[

ϱ2τ2ϱ

Γ(2ϱ + 1)
+ 2ϱ(1 − ϱ)

τϱ

Γ(ϱ + 1)
+ (1 − ϱ)2

]
+ · · · .

(5.16)

The exact result is

ψ(υ, τ) =
1
2
− 8 tanh

{
−2

(
υ −

τ

2

)}
,

φ(υ, τ) = 16 − 16 tanh2
{
−2

(
υ −

τ

2

)}
.

(5.17)
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Example 2. Consider the fractional-order system of Whitham-Broer-Kaup equations is given as

Dϱ
τψ(υ, τ) + ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
1
2
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

= 0,

Dϱ
τφ(υ, τ) + ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

−
1
2
∂2φ(υ, τ)
∂υ2 = 0,

0 < ϱ ≤ 1, −1 < τ ≤ 1, −10 ≤ υ ≤ 10,

(5.18)

with the initial condition

ψ(υ, 0) = λ − κ coth[κ(υ + θ)],
φ(υ, 0) = −κ2csch2[κ(υ + θ)].

(5.19)

On employing natural transform, we have

N[Dϱ
τψ(υ, τ)] = −N

[
ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
1
2
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

]
,

N[Dϱ
τφ(υ, τ)] = −N

[
ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

−
1
2
∂2φ(υ, τ)
∂υ2

]
.

(5.20)

Thus, we have

1
κϱ

N[ψ(υ, τ)] − κ2−ϱψ(υ, 0) = −N
[
ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
1
2
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

]
,

1
κϱ

N[φ(υ, τ)] − κ2−ϱψ(υ, 0) = −N
[
ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

−
1
2
∂2φ(υ, τ)
∂υ2

]
.

(5.21)

On simplification we have

N[ψ(υ, τ)] = κ2
[
λ − κ coth[κ(υ + θ)]

]
−
ϱ(κ − ϱ(κ − ϱ))

κ2 N
[
ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
1
2
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

]
,

N[φ(υ, τ)] = κ2
[
− κ2csch2[κ(υ + θ)]

]
−
ϱ(κ − ϱ(κ − ϱ))

κ2 N
[
ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

−
1
2
∂2φ(υ, τ)
∂υ2

]
.

(5.22)

Using the inverse natural transform, we have

ψ(υ, τ) =
[
λ − κ coth[κ(υ + θ)]

]
− N−1

[
ϱ(κ − ϱ(κ − ϱ))

κ2 N
{
ψ(υ, τ)

∂ψ(υ, τ)
∂υ

+
1
2
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

}]
,

φ(υ, τ) =
[
− κ2csch2[κ(υ + θ)]

]
− N−1

[
ϱ(κ − ϱ(κ − ϱ))

κ2 N
{
ψ(υ, τ)

∂φ(υ, τ)
∂υ

+ φ(υ, τ)
∂ψ(υ, τ)
∂υ

−
1
2
∂2φ(υ, τ)
∂υ2

}]
.

(5.23)
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5.3. NDMCF solution

The series form solution for the unknown term ψ(υ, τ) and φ(υ, τ) is given as

ψ(υ, τ) =
∞∑

l=0

ψl(υ, τ) and φ(υ, τ) =
∞∑

l=0

ψl(υ, τ). (5.24)

The non-linear functions by Adomian polynomials is given as ψψυ =
∑∞

m=0Am, ψφυ =
∑∞

m=0Bm and
φψυ =

∑∞
m=0 Cm, thus by mean of these functions Eq (5.23) can be calculated as

∞∑
l=0

ψl+1(υ, τ) = λ − κ coth[κ(υ + θ)]

− N−1
[
ϱ(κ − ϱ(κ − ϱ))

κ2 N
{ ∞∑

l=0

Al +
1
2
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

}]
,

∞∑
l=0

φl+1(υ, τ) = −κ2csch2[κ(υ + θ)]

− N−1
[
ϱ(κ − ϱ(κ − ϱ))

κ2 N
{ ∞∑

l=0

Bl +

∞∑
l=0

Cl −
1
2
∂2φ(υ, τ)
∂υ2

}]
.

(5.25)

Both sides comparisons of Eq (5.25), we achieve

ψ0(υ, τ) = λ − κ coth[κ(υ + θ)],
φ0(υ, τ) = −κ2csch2[κ(υ + θ)],

ψ1(υ, τ) = −λκ2csch2[κ(υ + θ)] (ϱ(τ − 1) + 1) ,
φ1(υ, τ) = −λκ2csch2[κ(υ + θ)] coth[κ(υ + θ)] (ϱ(τ − 1) + 1) ,

(5.26)

ψ2(υ, τ) = λκ4csch2[κ(υ + θ)]
{
2λκ

{
(1 − ϱ)23ϱτ + (1 − ϱ)3 +

3ϱ2(1 − ϱ)τ2

2
+
ϱ3τ3

3!

}
− (3 coth2([κ(υ + θ)] − 1))

(
(1 − ϱ)2 + 2ϱ(1 − ϱ)τ +

ϱ2τ2

2

)}
,

φ2(υ, τ) = [2λκ5csch2[κ(υ + θ)]]
[
λκcsch2(3 coth2([κ(υ + θ)] − 1))

{
(1 − ϱ)23ϱτ+

+(1 − ϱ)3 3ϱ2(1 − ϱ)τ2

2
+
ϱ3τ3

3!

}
+

2λκcsch2 coth2([κ(υ + θ)])τ3ϱ

Γ(ϱ + 1)Γ(3ϱ + 1)

−2λ coth(3csch2([κ(υ + θ)] − 1))
(
(1 − ϱ)2 + 2ϱ(1 − ϱ)τ +

ϱ2τ2

2

)]
.

(5.27)
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Thus, for ψl and φl with (l ≥ 3) the remaining terms are simply calculate. So, the series form
solution is as

ψ(υ, τ) =
∞∑

l=0

ψl(υ, τ) = ψ0(υ, τ) + ψ1(υ, τ) + ψ2(υ, τ) + · · · ,

ψ(υ, τ) = λ − κ coth[κ(υ + θ)] − λκ2csch2[κ(υ + θ)] (ϱ(τ − 1) + 1)

+ λκ4csch2[κ(υ + θ)]
{
2λκ

{
(1 − ϱ)23ϱτ + (1 − ϱ)3 +

3ϱ2(1 − ϱ)τ2

2
+
ϱ3τ3

3!

}
− (3 coth2([κ(υ + θ)] − 1))

(
(1 − ϱ)2 + 2ϱ(1 − ϱ)τ +

ϱ2τ2

2

)}
+ · · · .

φ(υ, τ) =
∞∑

l=0

φl(υ, τ) = φ0(υ, τ) + φ1(υ, τ) + φ2(υ, τ) + · · · ,

φ(υ, τ) = −κ2csch2[κ(υ + θ)] − λκ2csch2[κ(υ + θ)] coth[κ(υ + θ)] (ϱ(τ − 1) + 1)

+ [2λκ5csch2[κ(υ + θ)]]
[
λκcsch2(3 coth2([κ(υ + θ)] − 1))

{
(1 − ϱ)23ϱτ

+ (1 − ϱ)3 +
3ϱ2(1 − ϱ)τ2

2
+
ϱ3τ3

3!

}
+

2λκcsch2 coth2([κ(υ + θ)])τ3ϱ

Γ(ϱ + 1)Γ(3ϱ + 1)

− 2λ coth(3csch2([κ(υ + θ)] − 1))
(
(1 − ϱ)2 + 2ϱ(1 − ϱ)τ +

ϱ2τ2

2

)]
+ · · · .

(5.28)

5.4. NDMABC solution

The series form solution for the unknown term ψ(υ, τ) and φ(υ, τ) is given as

ψ(υ, τ) =
∞∑

l=0

ψl(υ, τ),

φ(υ, τ) =
∞∑

l=0

ψl(υ, τ).

(5.29)

The non-linear function by mean of Adomian polynomials are define as ψψυ =
∑∞

l=0Al and ψ2ψυ =∑∞
l=0Bl, thus by mean of these function Eq (5.23) can be calculated as

∞∑
l=0

ψl+1(υ, τ) = λ − κ coth[κ(υ + θ)]

+ N−1
[
ℓϱ(κϱ + ϱ(ℓϱ − κϱ))

κ2ϱ N
{ ∞∑

l=0

Al +
1
2
∂ψ(υ, τ)
∂υ

+
∂φ(υ, τ)
∂υ

}]
,

∞∑
l=0

φl+1(υ, τ) = −κ2csch2[κ(υ + θ)]

+ N−1
[
ℓϱ(κϱ + ϱ(ℓϱ − κϱ))

κ2ϱ N
{ ∞∑

l=0

Bl +

∞∑
l=0

Cl −
1
2
∂2φ(υ, τ)
∂υ2

}]
.

(5.30)
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Both side comparison of Eq (5.30), we achieve

ψ0(υ, τ) = λ − κ coth[κ(υ + θ)],
φ0(υ, τ) = −κ2csch2[κ(υ + θ)],

ψ1(υ, τ) = −λκ2csch2[κ(υ + θ)]
(
1 − ϱ +

ϱτϱ

Γ(ϱ + 1)

)
,

φ1(υ, τ) = −λκ2csch2[κ(υ + θ)] coth[κ(υ + θ)]
(
1 − ϱ +

ϱτϱ

Γ(ϱ + 1)

)
,

(5.31)

ψ2(υ, τ) = λκ4csch2[κ(υ + θ)]
{
2λκ

{
(1 − ϱ)23ϱτ + (1 − ϱ)3 +

3ϱ2(1 − ϱ)τ2

2
+
ϱ3τ3

3!

}
− (3 coth2([κ(υ + θ)] − 1))

[
ϱ2τ2ϱ

Γ(2ϱ + 1)
+ 2ϱ(1 − ϱ)

τϱ

Γ(ϱ + 1)
+ (1 − ϱ)2

] }
,

φ2(υ, τ) = [2λκ5csch2[κ(υ + θ)]]
[
λκcsch2(3 coth2([κ(υ + θ)] − 1))

{
(1 − ϱ)23ϱτ + (1 − ϱ)3

+
3ϱ2(1 − ϱ)τ2

2
+
ϱ3τ3

3!

}
+

2λκcsch2 coth2([κ(υ + θ)])τ3ϱ

Γ(ϱ + 1)Γ(3ϱ + 1)

− 2λ coth(3csch2([κ(υ + θ)] − 1))
[

ϱ2τ2ϱ

Γ(2ϱ + 1)
+ 2ϱ(1 − ϱ)

τϱ

Γ(ϱ + 1)
+ (1 − ϱ)2

]]
.

(5.32)

Thus, for ψl and φl with (l ≥ 3), the remaining terms are simply calculated. So, the series form
solution is as

ψ(υ, τ) =
∞∑

l=0

ψl(υ, τ) = ψ0(υ, τ) + ψ1(υ, τ) + ψ2(υ, τ) + · · · ,

ψ(υ, τ) = λ − κ coth[κ(υ + θ)] − λκ2csch2[κ(υ + θ)]
(
1 − ϱ +

ϱτϱ

Γ(ϱ + 1)

)
+ λκ4csch2[κ(υ + θ)]

{
2λκ

{
(1 − ϱ)23ϱτ + (1 − ϱ)3 +

3ϱ2(1 − ϱ)τ2

2
+
ϱ3τ3

3!

}
− (3 coth2([κ(υ + θ)] − 1))

[
ϱ2τ2ϱ

Γ(2ϱ + 1)
+ 2ϱ(1 − ϱ)

τϱ

Γ(ϱ + 1)
+ (1 − ϱ)2

]}
+ · · · .

φ(υ, τ) =
∞∑

l=0

φl(υ, τ) = φ0(υ, τ) + φ1(υ, τ) + φ2(υ, τ) + · · · ,

φ(υ, τ) = −κ2csch2[κ(υ + θ)] − λκ2csch2[κ(υ + θ)] coth[κ(υ + θ)]
(
1 − ϱ +

ϱτϱ

Γ(ϱ + 1)

)
+ [2λκ5csch2[κ(υ + θ)]]

[
λκcsch2(3 coth2([κ(υ + θ)] − 1))

{
(1 − ϱ)23ϱτ + (1 − ϱ)3

+
3ϱ2(1 − ϱ)τ2

2
+
ϱ3τ3

3!

}
+

2λκcsch2 coth2([κ(υ + θ)])τ3ϱ

Γ(ϱ + 1)Γ(3ϱ + 1)

− 2λ coth(3csch2([κ(υ + θ)] − 1))
[

ϱ2τ2ϱ

Γ(2ϱ + 1)
+ 2ϱ(1 − ϱ)

τϱ

Γ(ϱ + 1)
+ (1 − ϱ)2

]]
+ · · · .

(5.33)
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We achieve the series type result at integer-order ϱ = 1, κ = 0.1, λ = 0.005 , θ = 10, as

ψ(υ, τ) =0.005 − 0.1 coth(0.1υ + 10) − 0.0005csch2(0.1υ + 10)τ
+ 5 × 10−7csch2(0.1υ + 10)0.003τ3

−0.5
(
3 coth2(0.1υ + 10) − 1.

))
τ2,

φ(υ, τ) = − 0.01csch2(0.1υ + 10) − 0.000010csch2(0.1υ + 10)
× coth(0.1υ + 10)τ + 1.0 × 10−7csch2(0.1υ + 10)

×
[
8.3 × 10−5τ3csch2(0.1υ + 10)(3 coth(0.1υ + 10) − 1)

−τ2 coth(0.1υ + 10)
(
3csch2(0.1υ + 10) − 1

)
+1.6 × 10−4τ3cosech2(0.1υ + 10) coth(0.1υ + 10)

]
.

The exact result of Eq (5.18) at ϱ = 1, and taking κ = 0.1, λ = 0.005 , θ = 10,

ψ(υ, τ) == λ − κ coth[κ(υ + θ − λτ)],
φ(υ, τ) = −κ2csch2[κ(υ + θ − λτ)].

(5.34)

6. Numerical results and discussion

In this study, we investigated the numerical solution of coupled fractional Whitham-Broer-Kaup
equation systems using two novel approaches. For any order and different values of the space and
time variables, numerical data for the coupled fractional Whitham-Broer-Kaup equations can be found
using Maple. We create numerical simulations for system 1 at various υ and τ values in Tables 1 and 2.
The Adomian decomposition approach, variational iteration method, optimal homotopy asymptotic
method, and natural decomposition method are numerically compared in Tables 3 and 4 in terms of
absolute error. Tables 5 and 6 display the results of calculations performed for the coupled system
taken into account in Problem 2. We can conclude that the Natural decomposition approach yields
more accurate results based on the data in the tables above. For ψ(υ, τ) of Problem 1, Figure 1 shows
the behavior of the exact and Natural decomposition approach result, while Figure 2 shows the behavior
of the analytical result at various fractional-orders of ϱ. Figure 3 shows the solution to the equation
ψ(υ, τ) in various fractional orders, whereas Figure 4 shows the absolute error. The behavior of the
exact and analytical solutions for φ(υ, τ) is shown in Figure 5, while the behavior of the analytical
result at various fractional orders of ϱ is shown in Figures 6 and 7. The behavior of the exact and
analytical solution for ψ(υ, τ) is depicted in Figure 8, while the absolute error for Problem 2 is shown
in Figure 9. Similarly, the behavior of the exact and analytical solution for φ(υ, τ) is depicted in
Figure 10, while the absolute error is shown in Figure 11 for Problem 2.

AIMS Mathematics Volume 8, Issue 1, 2308–2336.



2326

Table 1. The suggested techniques result for ψ(υ, τ) at various fractional-orders of
Example 1.

(υ, τ) ψ(υ, τ) at ϱ = 0.6 ψ(υ, τ) at ϱ = 0.8 (NT DMABC) at ϱ = 1 (NT DMCF) at ϱ = 1 Exact solution

(0.2,0.01) 3.538802 3.538856 3.538907 3.538907 3.538907

(0.4,0.02) 5.811722 5.811755 5.811846 5.811846 5.811846

(0.6,0.03) 7.168821 7.168876 7.168992 7.168992 7.168992

(0.2,0.01) 3.525702 3.525764 3.525891 3.525891 3.525891

(0.4,0.02) 5.803176 5.803245 5.803337 5.803337 5.803337

(0.6,0.03) 7.164207 7.164278 7.164348 7.164348 7.164348

(0.2,0.01) 3.537413 3.537498 3.537537 3.537537 3.537537

(0.4,0.02) 5.810812 5.810856 5.810952 5.810952 5.810952

(0.6,0.03) 7.168423 7.168479 7.168504 7.168504 7.168504

(0.2,0.01) 3.536701 3.536746 3.536853 3.536853 3.536853

(0.4,0.02) 5.810411 5.810466 5.810504 5.810504 5.810504

(0.6,0.03) 7.168112 7.168160 7.168260 7.168260 7.168260

(0.2,0.01) 3.536076 3.536134 3.536168 3.536168 3.536168

(0.4,0.02) 5.810002 5.810010 5.810057 5.810057 5.810057

(0.6,0.03) 7.168000 7.168002 7.168016 7.168016 7.168016

Table 2. The suggested techniques solution for φ(υ, τ) at various fractional-orders of
Example 1.

(υ, τ) φ(υ, τ) at ϱ =0.6 φ(υ, τ) at ϱ =0.8 (NT DMABC) at ϱ = 1 (NT DMCF) at ϱ = 1 Exact solution

(0.2,0.01) 13.691122 13.691178 13.691260 13.691260 13.691260

(0.4,0.02) 8.946002 8.946023 8.946070 8.946070 8.946070

(0.6,0.03) 4.881079 4.881103 4.881133 4.881133 4.881133

(0.2,0.01) 13.710837 13.710898 13.710995 13.710995 13.710995

(0.4,0.02) 8.968516 8.968579 8.968653 8.968653 8.968653

(0.6,0.03) 4.896526 4.896588 4.896615 4.896615 4.896615

(0.2,0.01) 13.693268 13.693302 13.693340 13.693340 13.693340

(0.4,0.02) 8.948378 8.948412 8.948446 8.948446 8.948446

(0.6,0.03) 4.882679 4.882705 4.882761 4.882761 4.882761

(0.2,0.01) 13.694302 13.694323 13.694380 13.694380 13.694380

(0.4,0.02) 8.949587 8.949612 8.949634 8.949634 8.949634

(0.6,0.03) 4.883501 4.883525 4.883575 4.883575 4.883575

(0.2,0.01) 13.695389 13.695402 13.695420 13.695420 13.695420

(0.4,0.02) 8.950736 8.950778 8.950823 8.950823 8.950823

(0.6,0.03) 4.884288 4.884326 4.884389 4.884389 4.884389
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Table 3. Absolute Error (AE) comparison for ψ(υ, τ) at ϱ = 1 obtained by different
techniques.

(υ, τ) AE Of ADM [50] AE Of VIM [51] AE Of OHAM [52] AE of (NT DMABC) AE of (NT DMCF)

(0.1,0.2) 1.05983×10−5 1.34144×10−6 1.18169×10−7 1.45621×10−10 1.45621×10−10

(0.1,0.4) 9.75585×10−6 3.78688×10−6 3.15656×10−7 2.95673×10−09 2.95673×10−09

(0.1,0.6) 8.77423×10−6 6.27984×10−6 4.92412×10−7 1.10432×10−8 1.10432×10−8

(0.2,0.2) 4.37319×10−5 1.38978×10−6 1.12395×10−7 1.44301×10−10 1.44301×10−10

(0.2,0.4) 3.82189×10−5 3.51189×10−6 2.86457×10−6 2.35213×10−09 2.35213×10−09

(0.2,0.6) 3.51272×10−5 6.10117×10−5 4.51245×10−6 1.02145×10−08 1.02145×10−08

(0.3,0.2) 9.62833×10−5 1.25698×10−5 1.13664×10−6 2.27511×10−10 2.27511×10−10

(0.3,0.4) 8.84418×10−5 3.61977×10−5 2.62353×10−6 2.02314×10−09 2.02314×10−09

(0.3,0.6) 8.33563×10−5 5.96721×10−5 4.46642×10−6 1.03541×10−08 1.03541×10−08

(0.4,0.2) 1.86687×10−4 1.24938×10−5 9.24537×10−5 1.32601×10−10 1.32601×10−10

(0.4,0.4) 1.72542×10−4 3.52859×10−5 2.63564×10−5 1.11427×10−09 1.11427×10−09

(0.4,0.6) 1.58687×10−4 5.81821×10−5 4.65446×10−5 1.87965×10−08 1.87965×10−08

(0.5,0.2) 2.88628×10−4 1.21847×10−5 9.72736×10−5 1.78145×10−10 1.78145×10−10

(0.5,0.4) 2.47825×10−4 3.44373×10−5 2.33457×10−5 1.43901×10−09 1.43901×10−09

(0.5,0.6) 2.47295×10−4 5.47346×10−5 4.38895×10−5 1.43421×10−08 1.43421×10−08

Table 4. Absolute Error (AE) comparison for φ(υ, τ) at ϱ = 1 obtained by different
techniques.

(υ, τ) AE Of ADM [50] AE Of VIM [51] AE Of OHAM [52] AE of (NT DMABC) AE of (NT DMCF)

(0.1,0.2) 6.52318×10−4 1.23581×10−5 5.72451×10−6 1.73281×10−10 1.73281×10−10

(0.1,0.4) 5.87694×10−4 3.53456×10−5 3.24632×10−6 2.00931×10−09 2.00931×10−09

(0.1,0.6) 5.72618×10−4 5.63261×10−5 3.38923×10−6 1.08631×10−08 1.08631×10−08

(0.2,0.2) 1.44292×10−3 1.18127×10−5 5.45771×10−6 1.11621×10−10 1.11621×10−10

(0.2,0.4) 1.33452×10−3 3.34512×10−5 2.86341×10−5 2.07941×10−09 2.07941×10−09

(0.2,0.6) 1.25527×10−3 5.47838×10−5 2.82545×10−5 1.03361×10−08 1.03361×10−08

(0.3,0.2) 2.14563×10−3 1.14848×10−5 5.36746×10−5 1.16031×10−10 1.16031×10−10

(0.3,0.4) 1.84963×10−3 3.22828×10−5 2.74231×10−5 2.006841×10−09 2.006841×10−09

(0.3,0.6) 1.72318×10−3 5.32558×10−4 2.66463×10−5 2.86931×10−08 2.86931×10−08

(0.4,0.2) 2.98211×10−3 1.11468×10−4 5.23838×10−5 4.09741×10−10 4.09741×10−10

(0.4,0.4) 2.59845×10−3 3.13456×10−4 2.72338×10−3 3.16439×10−09 3.16439×10−09

(0.4,0.6) 2.61896×10−3 5.15382×10−3 2.54328×10−3 1.00693×10−09 1.00693×10−09

(0.5,0.2) 3.84384×10−3 9.86396×10−3 4.83832×10−3 1.00631×10−10 1.00631×10−10

(0.5,0.4) 3.58728×10−3 2.84228×10−3 2.84563×10−3 2.12692×10−09 2.12692×10−09

(0.5,0.6) 3.35348×10−3 4.72446×10−3 2.52741×10−3 1.00471×10−09 1.00471×10−09
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Table 5. The suggested techniques result for ψ(υ, τ) at various fractional-orders of
Example 2.

(υ, τ) ψ(υ, τ) at ϱ =0.5 ψ(υ, τ) at ϱ =0.75 (NT DMABC) at ϱ = 1 (NT DMCF) at ϱ = 1 Exact result

(0.2,0.01) -0.124902 -0.124896 -0.124892 -0.124892 -0.124892

(0.4,0.01) -0.123585 -0.123568 -0.123553 -0.123553 -0.123553

(0.6,0.01) -0.122297 -0.122292 -0.122280 -0.122280 -0.122280

(0.2,0.02) -0.124908 -0.124898 -0.124892 -0.124892 -0.124892

(0.4,0.02) -0.123597 -0.123578 -0.123553 -0.123553 -0.123553

(0.6,0.02) -0.122299 -0.122293 -0.122280 -0.122280 -0.122280

(0.2,0.03) -0.124909 -0.124899 -0.124892 -0.124892 -0.124892

(0.4,0.03) -0.123586 -0.123568 -0.123553 -0.123553 -0.123553

(0.6,0.03) -0.122299 -0.122289 -0.122280 -0.122280 -0.122280

(0.2,0.04) -0.124908 -0.124896 -0.124892 -0.124892 -0.124892

(0.4,0.04) -0.123589 -0.123576 -0.123553 -0.123553 -0.123553

(0.6,0.04) -0.122296 -0.122288 -0.122280 -0.122280 -0.122280

(0.2,0.05) -0.124905 -0.124897 -0.124892 -0.124892 -0.124892

(0.4,0.05) -0.123578 -0.123564 -0.123553 -0.123553 -0.123553

(0.6,0.05) -0.122298 -0.122290 -0.122280 -0.122280 -0.122280

Table 6. The suggested techniques result for φ(υ, τ) at various fractional-orders of
Example 2.

(υ, τ) φ(υ, τ) at ϱ =0.5 φ(υ, τ) at ϱ =0.75 (NT DMABC) at ϱ = 1 (NT DMCF) at ϱ = 1 Exact result

(0.2,0.01) -0.006894 -0.006886 -0.006872 -0.006872 -0.006872

(0.4,0.01) -0.006546 -0.006537 -0.006525 -0.006525 -0.006525

(0.6,0.01) -0.006219 -0.006213 -0.006200 -0.006200 -0.006200

(0.2,0.02) -0.006894 -0.006885 -0.006872 -0.006872 -0.006872

(0.4,0.02) -0.006542 -0.006534 -0.006525 -0.006525 -0.006525

(0.6,0.02) -0.006219 -0.006213 -0.006200 -0.006200 -0.006200

(0.2,0.03) -0.006889 -0.006882 -0.006872 -0.006872 -0.006872

(0.4,0.03) -0.006543 -0.006536 -0.006525 -0.006525 -0.006525

(0.6,0.03) -0.006216 -0.006208 -0.006200 -0.006200 -0.006200

(0.2,0.04) -0.006889 -0.006881 -0.006872 -0.006872 -0.006872

(0.4,0.04) -0.006541 -0.006532 -0.006525 -0.006525 -0.006525

(0.6,0.04) -0.006218 -0.006207 -0.006200 -0.006200 -0.006200

(0.2,0.05) -0.006889 -0.006883 -0.006872 -0.006872 -0.006872

(0.4,0.05) -0.006546 -0.006538 -0.006525 -0.006525 -0.006525

(0.6,0.05) -0.006223 -0.006213 -0.006200 -0.006200 -0.006200
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Figure 1. The actual and analytic solutions for ψ(υ, τ) at ϱ = 1 of Example 1.

Figure 2. The analytic result for ψ(υ, τ) at ϱ = 0.8, 0.6 of Example 1.

Figure 3. The analytic solution graph at different value of ϱ for ψ(υ, τ) of Example 1.
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Figure 4. The absolute error for ψ(υ, τ) of Example 1.

Figure 5. The actual and analytic result for φ(υ, τ) at ϱ = 1 of Example 1.

Figure 6. The analytic result graph for φ(υ, τ) at ϱ = 0.8, 0.6 of Example 1.
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Figure 7. The analytic result graph at different value of ϱ for φ(υ, τ) of Example 1.

Figure 8. The exact and analytic solutions graph for ψ(υ, τ) at ϱ = 1 of Example 2.

Figure 9. The absolute error for ψ(υ, τ) of Example 2.

AIMS Mathematics Volume 8, Issue 1, 2308–2336.



2332

Figure 10. The exact and analytic solutions for φ(υ, τ) at ϱ = 1 of Example 2.

Figure 11. The absolute error for φ(υ, τ) of Example 2.

7. Conclusions

The Atangana-Baleanu and Caputo-Fabrizio operators are used in this work to attempt a
semi-analytic solution of fractional Whitham-Broer-Kaup equations. To show and confirm the
efficiency of the recommended technique, two examples are solved. The numerical results show that
the proposed method for solving time-fractional Whitham-Broer-Kaup equations is quite effective and
accurate. According to numerical data, the method is very effective and reliable for getting close
solutions for nonlinear fractional partial differential equations. Compared to other analytical methods,
the proposed method is a quick and easy way to look into the numerical solution of nonlinear coupled
systems of fractional partial differential equations. The proposed method gives solutions in the form
of a series that is more accurate and take less time to figure out. The calculated results have been
displayed graphically and in tables. For both considerably coupled systems, computations were done
to determine the absolute error. Several computational solutions are contrasted with well-known
analytical methods and the precise results at ϱ = 1. Fewer calculations and more precision are two
advantages of the present approaches. Lastly, we can say that the proposed approaches are very
effective and useful and that they can be used to study any nonlinear problems that come up in
complex phenomena.
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