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1. Introduction

Fractional calculus is a powerful tool concerned with investigating integrals and derivatives of
arbitrary order and their applications in physics, engineering, fluid mechanics, optics, signals
processing, biology, etc. (see [1–5]). Several remarkable mathematicians made significant
contributions to the field of fractional calculus. The first mention of the fractional calculus was
provoked by Lacroix [6] in 1819 by introducing the common n-th derivative of the power function
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y = xp using the Gamma function. In 1822, Fourier [7] introduced the derivative of arbitrary order via
the Fourier transform of a function. Two years later, Fourier presented the fractional derivative of a
function in terms of its Fourier transform. In 1832, Liouville [8] published two definitions of
fractional derivatives of a fairly restrictive class of functions. In 1847, Riemann [9] developed a
theory of fractional integration. Later in 1869, one of the first treatments of the Riemann-Liouville
definition of the fractional integral was considered by Ya Sonin [10]. It is worth mentioning the
fractional Riemann-Liouville version is one of the most frequently used in the literature. An
alternative definition of a fractional derivative was also initiated by Caputo. For more related details,
see [11–14].

The theory of fractional differential equations is a fruitful branch of mathematics by which various
real-life phenomena in several fields of engineering and science can be expressed. In this context,
enormous contributions to exploring useful applications have been attained in recent times. For
instance, boundary value problems of nonlinear fractional differential equations with various
boundary conditions have been investigated. Fractional differential equations represent an essential
point of research. Nonlinear boundary value problems (BVPs for short) arise in several fields of
physics, biology, chemistry, and applied mathematics. They are related to the theory of nonlinear
diffusion generated by nonlinear sources, in chemical or biological problems, in the theory of elastics
stability, and in thermal ignition of gases (for details, see [15–19]). Many phenomena in
viscoelasticity, electrochemistry, electromagnetism, control theory, etc., can be expressed as fractional
differential equations. Consequently, nonlinear BVPs are of great importance. The methods of
nonlinear analysis, such as the Leray-Schauder continuation theorem, the coincidence degree theory
of Mawhin, the fixed point theorems of Krasnoselskii and Schauder, fixed point theorems for mixed
monotone operators, and others, are frequently used to solve fractional boundary value problems. For
instance, see [20–23].

Only a few studies have used the degree theory arguments to prove the (EU) to boundary value
problems (BVPs) [24–30]. However, to the best our knowledge, no previous research has discussed
at the (EU) of solutions to tripled systems of (M-PBVPs) for (FODEs) using the topological degree
technique. By this technique, Wang et al. [27] investigated the (EU) of solutions to a class of nonlocal
Cauchy problems below: {

D`$(z) = Λ (z, $(z)) , z ∈ [0,T ],
$(0) + ϑ($) = $0,

where D` is the Caputo fractional derivative (CFD) of order ` ∈ (0, 1), $0 ∈ R, Λ : [0,T ]×R→ R is a
continuous function. Chen et al. [25] explored necessary criteria for existence results for the following
two-point boundary value problem (BVP) and extended the result above to the case of the (BVP): Du

0+ϕp

(
Dv

0+$(z)
)

= Λ
(
z, $(z),Dv

0+$(z)
)
,

Dv
0+$(0) = Dv

0+$(1) = 0,

where Du
0+ and Dv

0+ are (CFDs), 0 < u, v ≤ 1, and 1 < u + v ≤ 2. The following two-point (BVP)
for (FDEs) with various boundary conditions was investigated by Wang et al. [26]: Du

0+ϕp

(
Dv

0+$(z)
)

= Λ
(
z, $(z),Dv

0+$(z)
)
,

$(0) = 0, Dv
0+$(0) = Dv

0+$(1),

where Du
0+ , and Dv

0+ are (CFDs), 0 < u, v ≤ 1 and 1 < u + v ≤ 2.
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Motivated by the previous discussion, in this paper, we use a coincidence degree theory approach for
condensing maps to derive appropriate criteria for the (EU) of solutions to more broad tripled systems
of nonlinear (M-PBVPs). There are also nonlinear boundary conditions. The system’s structure can be
described as follows: 

D`$(z) = Λ1 (z, $(z), ρ (z) , % (z)) , z ∈ [0, 1],
Dγρ (z) = Λ2 (z, $(z), ρ (z) , % (z)) , z ∈ [0, 1],
Dκ% (z) = Λ3 (z, $(z), ρ (z) , % (z)) , z ∈ [0, 1],
$(0) = ϑ1($), $(1) = η1$(ξ1), ξ1 ∈ (0, 1),
ρ(0) = ϑ2(ρ), ρ(1) = η2ρ(ξ2), ξ2 ∈ (0, 1),
%(0) = ϑ3(%), %(1) = η3%(ξ3), ξ3 ∈ (0, 1),

(1.1)

where `, γ, κ ∈ (1, 2], D refers to the standard (CFD), η1, η2, η3 ∈ (0, 1) are parameters so that η1ξ
`
1 < 1,

η2ξ
γ
2 < 1, η3ξ

κ
3 < 1, ϑ1, ϑ2, ϑ3 ∈ C(I,R), and Λ1,Λ2,Λ3 : [0, 1] × R3 → R are boundary continuous

functions.

2. Basic concepts

This part provides some basic definitions and findings from fractional calculus and topological
degree theory. We suggest [31–35] for a more in-depth investigation.

Definition 2.1. For the function $ ∈ L1([a, b],R), the fractional integral of order ` is described as

I`0+$(z) =
1

Γ(`)

z∫
a

(z − r)`−1z(r)dr.

The CFD is given as

D`
0+$(z) =

1
Γ(m − `)

z∫
a

(z − r)m−`−1z(m)(r)dr,

where m = [`] + 1 and [`] refers to the integer part of `.

Lemma 2.1. For (FDEs), the following result holds:

I`D`$(z) = $(z) + a0 + a1z + a2z2 + · · · + amdm−1,

for arbitrary a j ∈ R, j = 1, 2, ...,m − 1.

Let E = C ([0, 1],R) , Ẽ = C ([0, 1],R) and Ê = C ([0, 1],R) be the space of all continuous functions
on [0, 1].Clearly, theses spaces are Banach spaces under the norms ‖$‖ = sup

z∈[0,1]
|$(z)| , ‖ρ‖ = sup

z∈[0,1]
|ρ(z)|

and ‖%‖ = sup
z∈[0,1]

|%(z)| , respectively. Moreover, the product E × Ẽ × Ê is a Banach space equipped with

the norm ‖($, ρ, %)‖ = ‖$‖ + ‖ρ‖ + ‖%‖ or |($, ρ, %)| = max{‖$‖ , ‖ρ‖ , ‖%‖}.
Assume that ∆ is the class of bounded sets of f(E × Ẽ × Ê), where E × Ẽ × Ê is a Banach space. In

what follows, we present basis notions and results which are very essential in the sequel (see [36]).
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Definition 2.2. The Kuratowski measure of non-compactness µ : ∆→ R+ is described as

µ (υ) = inf{a > 0 : υ admits a finite cover by sets of diameter ≤ a},

where υ ∈ ∆.

Proposition 2.1. The Kuratowski measure µ fulfills the hypotheses below:

(1) υ is relatively compact if and only if µ (υ) = 0,
(2) µ (βυ) = |β| µ (υ) , β ∈ R, and µ (υ1 + υ2) ≤ µ (υ1) + µ (υ2) , that is, υ is a seminorm,
(3) υ1 ⊂ υ2 implies µ (υ1) ≤ µ (υ2), and µ (υ1 ∪ υ2) = max {µ (υ1) , µ (υ2)} ,
(4) µ (conv υ) = µ (υ) ,
(5) µ (υ) = µ (υ) .

Definition 2.3. Assume that the mapping φ : ∇ → E is continuous and bounded, where ∇ ⊂ E. Then
φ is µ-Lipschitzian if there is U ≥ 0 so that for all υ ⊂ ∇ bounded, µ (φ(υ)) ≤ Uµ (υ) .

In addition, φ is called a strict υ-contraction if U < 1.

Definition 2.4. A function φ is called υ-condensing if µ (φ(υ)) < µ (υ) for all υ ⊂ ∇ bounded with
µ (υ) > 0. Or, equivalently, µ (φ(υ)) ≥ µ (υ) implies µ (υ) = 0.

For the bounded continuous mapping φ : ∇ → E, Dυ(∇) represents the class of all strict
υ-contractions, and D̃υ(∇) refers to the class of all υ-condensing maps.

Remark 2.1. Note that Dυ(∇) ⊂ D̃υ(∇), and every φ ∈ D̃υ(∇) is υ-Lipschitz with constant U = 1. In
addition, we recall that φ : ∇ → E is Lipschitz if there is U > 0 such that

for all $, ρ ∈ ∇, ‖φ($) − φ(ρ)‖ ≤ U ‖$ − ρ‖ .

Moreover, φ is called a strict contraction if U < 1.

Seeking clarification for the reader, we present the following results, quoted from [34], which we
rely on through this study.

Proposition 2.2. (i) If φ,a : ∇ → E are υ-Lipschitz with U and U∗, then φ + a : ∇ → E is
υ-Lipschitz with U + U∗.

(ii) If φ : ∇ → E is υ-Lipschitz with U, then φ is υ-Lipschitz with the same constant U.
(iii) If φ : ∇ → E is compact, then φ is υ-Lipschitz with constant U = 0.

The following result deduced by Isaia [34] is crucial to our main finding.

Theorem 2.1. Assume that Ξ : Λ→ Λ is µ-condensing, and

ϕ = {$ ∈ Λ : there is ς ∈ [0, 1] so that $ = ςΞ$} .

If the set ϕ is a bounded in Λ, there is s > 0 so that ϕ ⊂ Us(0), and the degree

Q(I − ςΞ,Us(0), 0) = 1, for all ς ∈ [0, 1].

As a result, Ξ owns at least one (FP), and the set of (FPs) is contained in Us(0).
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Now, we will state the hypotheses that will help us to achieve our objectives in this paper:

(H1) There are constants Aϑ1 , Aϑ2 , Aϑ3 so that, for $1, $2, ρ1, ρ2, %1, %2 ∈ R,

|ϑ1($2) − ϑ1($1)| ≤ Aϑ1 |$2 −$1| ,

|ϑ2(ρ2) − ϑ2(ρ1)| ≤ Aϑ2 |ρ2 − ρ1| ,

|ϑ3(%2) − ϑ3(%1)| ≤ Aϑ3 |%2 − %1| .

(H2) There are constants Dϑ1 ,Dϑ2 ,Dϑ3 ,Oϑ1 ,Oϑ2 ,Oϑ3 so that, for $, ρ, % ∈ R,

|ϑ1($)| ≤ Dϑ1 |$| + Oϑ1 , |ϑ2(ρ)| ≤ Dϑ2 |ρ| + Oϑ2 and |ϑ3(%)| ≤ Dϑ3 |%| + Oϑ3.

(H3) There are constants pi, qi, ti (i = 1, 2, 3) and OΛ1 ,OΛ2 ,OΛ3 so that, for $, ρ, % ∈ R,

|Λ1 (z, $, ρ, %)| ≤ p1 |$| + p2 |ρ| + p3 |%| + OΛ1 ,

|Λ2 (z, $, ρ, %)| ≤ q1 |$| + q2 |ρ| + q3 |%| + OΛ2 ,

|Λ3 (z, $, ρ, %)| ≤ t1 |$| + t2 |ρ| + t3 |%| + OΛ3 .

(H4) There are constants ~Λ1 , ~Λ2 , ~Λ3 so that, for $1, $2, ρ1, ρ2, %1, %2 ∈ R,

|Λ1 (z, $2, ρ2, %2) − Λ1 (z, $1, ρ1, %1)| ≤ ~Λ1

[
|$2 −$1| + |ρ2 − ρ1| + |%2 − %1|

]
,

|Λ2 (z, $2, ρ2, %2) − Λ2 (z, $1, ρ1, %1)| ≤ ~Λ2

[
|$2 −$1| + |ρ2 − ρ1| + |%2 − %1|

]
,

|Λ3 (z, $2, ρ2, %2) − Λ3 (z, $1, ρ1, %1)| ≤ ~Λ3

[
|$2 −$1| + |ρ2 − ρ1| + |%2 − %1|

]
.

3. Main results

In this section, the (EU) of solutions to the BVP (1.1) are discussed. We start stating and proving
the lemma below.

Lemma 3.1. The solutions of the BVP{
D`$(z) = Λ1(z), z ∈ [0, 1],

$(0) = ϑ1($), $(1) = η1$(ξ1), ξ1 ∈ (0, 1),
(3.1)

are equivalent to the solutions of the following Fredholm integral equation:

$(z) =

(
1 −

z(1 − η1)
1 − η1ξ1

)
ϑ1($) +

1∫
0

a`(z, r)Λ1 (r) dr, z ∈ [0, 1],

where Λ1 : I → R is an `1 times integrable function, and a`1(z, r) is defined by

a`(z, r) =
1

Γ(`)


(z − r)`−1 +

zη1(ξ1−r)`−1

1−η1ξ1
−

z(1−r)`−1

1−η1ξ1
, 0 ≤ r ≤ z ≤ ξ1 ≤ 1,

(z − r)`−1 −
z(1−r)`−1

1−η1ξ1
, 0 ≤ ξ1 ≤ r ≤ z ≤ 1,

zη1(ξ1−r)`−1

1−η1ξ1
−

z(1−r)`−1

1−η1ξ1
, 0 ≤ z ≤ r ≤ ξ1 ≤ 1,

−
z(1−r)`−1

1−η1ξ1
, 0 ≤ ξ1 ≤ z ≤ r ≤ 1.

(3.2)
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Proof. Reflecting I` on (3.1) and applying Lemma 2.1, we have

$(z) = I`Λ1(z) + a0 + a1z,

for some a0, a1 ∈ R. It follows from the conditions $(0) = ϑ1($) and $(1) = η1$(ξ1) that a0 = ϑ1($)
and

a1 =
η1

1 − ξ1η1
I`Λ1(ξ1) −

1 − η1

1 − ξ1η1
ϑ1($) −

1
1 − ξ1η1

I`Λ1(1).

Hence, we have

$(z) = I`Λ1(z) + ϑ1($) + z
[

η1

1 − ξ1η1
I`Λ1(ξ1) −

1 − η1

1 − ξ1η1
ϑ1($) −

1
1 − ξ1η1

I`Λ1(1)
]
.

After a simple rearrangement, one can write

$(z) =

(
1 −

z (1 − η1)
1 − ξ1η1

)
ϑ1($) +

1∫
0

a`(z, r)Λ(r)dr.

In the light of Lemma 3.1, solutions of (M-PBVPs) (1.1) are solutions of the Fredholm integral
equations below: 

$(z) =
(
1 − z(1−η1)

1−ξ1η1

)
ϑ1($) +

1∫
0
a`(z, r)Λ1 (r, $(r), ρ (r) , % (r)) dr,

ρ(z) =
(
1 − z(1−η2)

1−ξ2η2

)
ϑ2($) +

1∫
0
aγ(z, r)Λ2 (r, $(r), ρ (r) , % (r)) dr,

%(z) =
(
1 − z(1−η3)

1−ξ3η3

)
ϑ3($) +

1∫
0
aκ(z, r)Λ3 (r, $(r), ρ (r) , % (r)) dr,

(3.3)

where aγ(z, r) and aκ(z, r) are defined by

aγ(z, r) =
1

Γ(γ)


(z − r)γ−1 +

zη2(ξ2−r)γ−1

1−η2ξ2
−

z(1−r)γ−1

1−η2ξ2
, 0 ≤ r ≤ z ≤ ξ2 ≤ 1,

(z − r)γ−1 −
z(1−r)γ−1

1−η2ξ2
, 0 ≤ ξ2 ≤ r ≤ z ≤ 1,

zη2(ξ2−r)γ−1

1−η2ξ2
−

z(1−r)γ−1

1−η2ξ2
, 0 ≤ z ≤ r ≤ ξ2 ≤ 1,

−
z(1−r)γ−1

1−η2ξ2
, 0 ≤ ξ2 ≤ z ≤ r ≤ 1.

(3.4)

and

aκ(z, r) =
1

Γ(κ)


(z − r)κ−1 +

zη3(ξ3−r)κ−1

1−η3ξ3
−

z(1−r)κ−1

1−η3ξ3
, 0 ≤ r ≤ z ≤ ξ3 ≤ 1,

(z − r)κ−1 −
z(1−r)κ−1

1−η3ξ3
, 0 ≤ ξ3 ≤ r ≤ z ≤ 1,

z(1−r)κ−1

1−η3ξ3
−

z(1−r)κ−1

1−η3ξ3
, 0 ≤ z ≤ r ≤ ξ3 ≤ 1,

−
z(1−r)κ−1

1−η3ξ3
, 0 ≤ ξ3 ≤ z ≤ r ≤ 1.

(3.5)

It is clear that

max
z∈[0,1]

|a`(z, r)| =
(1 − r)`−1

(1 − η1ξ1) Γ(`)
, max

z∈[0,1]

∣∣∣aγ(z, r)
∣∣∣ =

(1 − r)γ−1

(1 − η2ξ2) Γ(γ)
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and max
z∈[0,1]

|aκ(z, r)| =
(1 − r)κ−1

(1 − η3ξ3) Γ(κ)
. (3.6)

Define the operators φ1 : E → E, φ2 : Ẽ → Ẽ, φ3 : Ê → Ê by

φ1($)(z) =

(
1 −

z (1 − η1)
1 − ξ1η1

)
ϑ1($), φ2(ρ)(z) =

(
1 −

z (1 − η2)
1 − ξ2η2

)
ϑ2(ρ),

and φ3(%)(z) =

(
1 −

z (1 − η3)
1 − ξ3η3

)
ϑ3(%),

and the operators a1,a2,a3 : E × Ẽ × Ê → E × Ẽ × Ê by

a1 ($, ρ, %) (z) =

1∫
0

a`(z, r)Λ1 (r, $(r), ρ (r) , % (r)) dr,

a2 ($, ρ, %) (z) =

1∫
0

aγ(z, r)Λ2 (r, $(r), ρ (r) , % (r)) dr,

a3 ($, ρ, %) (z) =

1∫
0

aκ(z, r)Λ3 (r, $(r), ρ (r) , % (r)) dr.

Now, consider φ = (φ1, φ2, φ3), a = (a1,a2,a3) and ψ = φ + a. Then, the suggested problem (3.3)
can be written as an operator equation as follows:

($, ρ, %) = ψ ($, ρ, %) = φ ($, ρ, %) + a ($, ρ, %) .

Hence, the solutions of the proposed problem (3.3) are FPs of ψ.

Lemma 3.2. Under the assumptions (H1) and (H2), the operator φ satisfies the Lipschitz condition and
the following condition is true:

for each ($, ρ, %) ∈ E × Ẽ × Ê, ‖φ ($, ρ, %)‖ ≤ D ‖($, ρ, %)‖ + O,

where D = max
{
Dϑ1 ,Dϑ2 ,Dϑ3

}
, O = max

{
Oϑ1 ,Oϑ2 ,Oϑ3

}
.

Proof. From Hypothesis (H1), one can write

|φ ($, ρ, %) (z) − φ ($∗, ρ∗, %∗) (z)|

=

∣∣∣∣∣∣
(
1 −

z (1 − η1)
1 − ξ1η1

) (
ϑ1($) − ϑ∗1($)

)
+

(
1 −

z (1 − η2)
1 − ξ2η2

) (
ϑ2(ρ) − ϑ∗2(ρ)

)
+

(
1 −

z (1 − η3)
1 − ξ3η3

) (
ϑ3(%) − ϑ∗3(%)

)∣∣∣∣∣∣
≤ Aϑ1

∣∣∣ϑ1($) − ϑ∗1($)
∣∣∣ + Aϑ2

∣∣∣ϑ2($) − ϑ∗2($)
∣∣∣ + Aϑ3

∣∣∣ϑ3($) − ϑ∗3($)
∣∣∣

≤ A |($, ρ, %) − ($∗, ρ∗, %∗)| , A = max
{
Aϑ1 , Aϑ2 , Aϑ3

}
. (3.7)
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Applying Proposition 2.2 (ii), we have φ is υ-Lipschitz with constant A.
Now, from (H2), we have

‖φ ($, ρ, %)‖ = ‖(φ1 ($) , φ2 (ρ) , φ3 (%))‖ ≤ D ‖($, ρ, %)‖ + O,

where D = max
{
Dϑ1 ,Dϑ2 ,Dϑ3

}
, O = max

{
Oϑ1 ,Oϑ2 ,Oϑ3

}
. This completes the proof.

Lemma 3.3. The operator a is continuous, and it satisfies the following growth condition under the
postulate (H3):

‖a ($, ρ, %)‖ ≤ Θ ‖($, ρ, %)‖ + Υ, (3.8)

where Θ = θ (p + q + t) , θ = max
{

1
(1−ξ1η1)Γ(`) ,

1
(1−ξ2η2)Γ(γ) ,

1
(1−ξ3η3)Γ(κ)

}
, p = max {p1, p2, p3} ,

q = max{q1, q2, q3}, t = max{t1, t2, t3}, and Υ = θ
(
OΛ1 + OΛ2 + OΛ3

)
.

Proof. Assume that {($k, ρk, %k)} is a sequence of the bounded set
Vs =

{
‖($, ρ, %)‖ ≤ s : ($, ρ, %) ∈ E × Ẽ × Ê

}
so that {($k, ρk, %k)} → ($, ρ, %) in Vs. We want to show

that ‖($k, ρk, %k) − ($, ρ, %)‖ → 0. Consider

|a1 ($k, ρk, %k) (z) − a1 ($, ρ, %) (z)|

≤
1

Γ(`)


z∫

0

(z − r)`−1 |Λ1 (r, $k(r), ρk (r) , %k (r)) − Λ1 (r, $(r), ρ (r) , % (r))| dr

+
η1

1 − η1ξ1

ξ1∫
0

(ξ1 − r)`−1 |Λ1 (r, $k(r), ρk (r) , %k (r)) − Λ1 (r, $(r), ρ (r) , % (r))| dr

−
1

1 − η1ξ1

1∫
0

(1 − r)`−1 |Λ1 (r, $k(r), ρk (r) , %k (r)) − Λ1 (r, $(r), ρ (r) , % (r))| dr

 .
The continuity of Λ1 leads to Λ1 (r, $k(r), ρk (r) , %k (r)) → Λ1 (r, $(r), ρ (r) , % (r)) as k → ∞. For all
z ∈ [0, 1], from (H3), we get

(z − r)`−1 |Λ1 (r, $k(r), ρk (r) , %k (r)) − Λ1 (r, $(r), ρ (r) , % (r))| ≤ 3(z − r)`−1 [
(p1 + p2 + p3) s + OΛ1

]
,

which leads to the integrability for z, r ∈ [0, 1]. Applying the Lebesgue dominated convergence
theorem, we have

z∫
0

(z − r)`−1 |Λ1 (r, $k(r), ρk (r) , %k (r)) − Λ1 (r, $(r), ρ (r) , % (r))| → 0 as k → ∞.

Analogously, the rest terms tend to 0 as k → ∞. This implies that

|a1 ($k, ρk, %k) − a1 ($, ρ, %)| → 0 as k → ∞.

Similarly, one can obtain that

|a2 ($k, ρk, %k) − a2 ($, ρ, %)| → 0 as k → ∞,
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and
|a3 ($k, ρk, %k) − a3 ($, ρ, %)| → 0 as k → ∞.

Now, for growth condition on a, using (H3) and (3.6), we have

|a1 ($, ρ, %)|

=

∣∣∣∣∣∣∣∣
1∫

0

a`(z, r)Λ1 (r, $(r), ρ (r) , % (r)) dr

∣∣∣∣∣∣∣∣ ≤ 1
(1 − η1ξ1) Γ(`)

(
p1 ‖$‖ + p2 ‖ρ‖ + p3 ‖%‖ + OΛ1

)
,

|a2 ($, ρ, %)|

=

∣∣∣∣∣∣∣∣
1∫

0

aγ(z, r)Λ2 (r, $(r), ρ (r) , % (r)) dr

∣∣∣∣∣∣∣∣ ≤ 1
(1 − η2ξ2) Γ(γ)

(
q1 ‖$‖ + q2 ‖ρ‖ + q3 ‖%‖ + OΛ2

)
,

and

|a3 ($, ρ, %)|

=

∣∣∣∣∣∣∣∣
1∫

0

aκ(z, r)Λ3 (r, $(r), ρ (r) , % (r)) dr

∣∣∣∣∣∣∣∣ ≤ 1
(1 − η3ξ3) Γ(κ)

(
t1 ‖$‖ + t2 ‖ρ‖ + t3 ‖%‖ + OΛ3

)
.

It follows that

‖a ($, ρ, %)‖ = ‖a1 ($, ρ, %)‖ + ‖a2 ($, ρ, %)‖ + ‖a3 ($, ρ, %)‖
≤ θ

(
p1 ‖$‖ + p2 ‖ρ‖ + p3 ‖%‖ + OΛ1

)
+ θ

(
q1 ‖$‖ + q2 ‖ρ‖ + q3 ‖%‖ + OΛ2

)
+θ

(
t1 ‖$‖ + t2 ‖ρ‖ + t3 ‖%‖ + OΛ3

)
≤ θ (p + q + t) (‖$‖ + ‖ρ‖ + ‖%‖) + θ

(
OΛ1 + OΛ2 + OΛ3

)
= Θ ‖($, ρ, %)‖ + Υ.

This finishes the desired result.

Lemma 3.4. The mapping a : E × Ẽ × Ê → E × Ẽ × Ê is compact. As a result, a is υ-Lipschitz with
constant zero.

Proof. Consider a bounded setf ⊂ Vs ⊆ E× Ẽ× Ê and a sequence {($k, ρk, %k)} inf. Then from (3.8),
we obtain that

‖a ($k, ρk, %k)‖ ≤ Θs + Υ, for every ($, ρ, %) ∈ E × Ẽ × Ê,

which implies that a(f) is bounded. Now, for equi-continuity and for given ε > 0, put

δ = min

δ1 =
1
3

(
εΓ (1 + `)

6
([

p1 + p2 + p3
]

s + OΛ1

)) 1
`

, δ2 =
1
3

(
εΓ (1 + γ)

6
([

q1 + q2 + q3
]

s + OΛ2

)) 1
γ

,

δ3 =
1
3

(
εΓ (1 + κ)

6
(
[t1 + t2 + t3] s + OΛ3

)) 1
κ

 .
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If z, λ ∈ [0, 1], and λ − z ∈ (0, δ1), then for each ($k, ρk, %k) ∈ f, we claim that

|a1 ($k, ρk, %k) (z) − a1 ($k, ρk, %k) (λ)| <
ε

3
.

Consider

|a1 ($k, ρk, %k) (z) − a1 ($k, ρk, %k) (λ)|

=

∣∣∣∣∣∣∣∣ 1
Γ(`)

z∫
0

[
(z − r)`−1 − (λ − r)`−1

]
Λ1 (r, $k(r), ρk (r) , %k (r)) dr

+
1

Γ(`)

λ∫
z

(λ − r)`−1Λ1 (r, $k(r), ρk (r) , %k (r)) dr

+
η1(z − λ)

(1 − η1ξ1) Γ(`)

ξ1∫
0

(ξ1 − r)`−1Λ1 (r, $k(r), ρk (r) , %k (r)) dr

∣∣∣∣∣∣∣∣∣
≤

(
p1 |$| + p2 |ρ| + p3 |%| + OΛ1

)
Γ(` + 1)

[(
z` − λ`

)
+ 3(λ − z)`

]
≤

(p1 + p2 + p3) s + OΛ1

Γ(` + 1)

[(
z` − λ`

)
+ 3(λ − z)`

]
.

Now, we realize the following cases:

(•) If δ1 ≤ z < λ < 1, we have

|a1 ($k, ρk, %k) (z) − a1 ($k, ρk, %k) (λ)| <
(p1 + p2 + p3) s + OΛ1

Γ(` + 1)
(3 + `) δ`−1

1 (λ − z)

<
(p1 + p2 + p3) s + OΛ1

Γ(` + 1)
(3 + `) δ`1 <

ε

3
.

(••) If 0 ≤ z < δ1, λ < 2δ1, we get

|a2 ($k, ρk, %k) (z) − a2 ($k, ρk, %k) (λ)| <
ε

3
,

and
|a3 ($k, ρk, %k) (z) − a3 ($k, ρk, %k) (λ)| <

ε

3
.

This proves that a(f) is equi-continuous. In light of the Arzelà-Ascoli theorem, a(f) is compact.
Based on Proposition 2.2 (iii), a is a υ-Lipschitz with a constant zero.

Theorem 3.1. The tripled system of nonlinear (M-PBVPs) (1.1) has at least one solution ($, ρ, %) ∈
E× Ẽ× Ê provided that the assumptions (H1)–(H3) hold and D+Θ < 1. In addition, the set of solutions
of problem (1.1) is bounded in E × Ẽ × Ê.
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Proof. Based on Lemmas 3.2 and 3.4, φ is υ-Lipschitz with constant A ∈ [0, 1), and a is υ-Lipschitz
with constant zero, respectively. From Proposition 2.2 (i), we have, ψ is a strict υ-contraction with
constant A. Define

G = {($, ρ, %) ∈ E × Ẽ × Ê : there is ς ∈ [0, 1] so that ($, ρ, %) = ςψ ($, ρ, %)}.

In order to prove that G is bounded, assume that ($, ρ, %) ∈ G. Then, in light of growth stipulations as
in Lemmas 3.2 and 3.3, we get

‖($, ρ, %)‖ = ‖ςψ ($, ρ, %)‖ = ς ‖ψ ($, ρ, %)‖ = ς
[
‖φ ($, ρ, %)‖ + ‖a ($, ρ, %)‖

]
≤ ς

[
D ‖($, ρ, %)‖ + O + Θ ‖($, ρ, %)‖ + Υ

]
= ς (D + Θ) ‖($, ρ, %)‖ + ς (O + Υ)

< ς ‖($, ρ, %)‖ + ς (O + Υ) ,

which implies that G is bounded in E × Ẽ × Ê. Hence, according to Theorem 2.1, we conclude that ψ
has at least one (FP), and the set of (FPs) is bounded in E × Ẽ × Ê.

Theorem 3.2. The tripled system of nonlinear (M-PBVPs) (1.1) has a unique solution ($, ρ, %) ∈
E × Ẽ × Ê provided that the assumptions (H1)–(H4) are true and A + θ

(
~Λ1 + ~Λ2 + ~Λ3

)
< 1.

Proof. For ($, ρ, %) , ($∗, ρ∗, %∗) ∈ R3, it follows from the Banach FP theorem and (3.7) that

‖φ ($, ρ, %) − φ ($∗, ρ∗, %∗)‖ ≤ A ‖($, ρ, %) − ($∗, ρ∗, %∗)‖ . (3.9)

From (H4) and (3.6), we have

|a1 ($, ρ, %) − a1 ($∗, ρ∗, %∗)| =

1∫
0

|a`(z, r)| |Λ1 (r, $(r), ρ (r) , % (r)) − Λ1 (r, $∗(r), ρ∗ (r) , %∗ (r))| dr

≤ θ~Λ1

[
|$ −$∗| + |ρ − ρ∗| + |% − %∗|

]
,

which yields that

‖a1 ($, ρ, %) − a1 ($∗, ρ∗, %∗)‖ ≤ θ~Λ1

[
‖$ −$∗‖ + ‖ρ − ρ∗‖ + ‖% − %∗‖

]
= θ~Λ1 ‖($ −$

∗, ρ − ρ∗, % − %∗)‖
= θ~Λ1 ‖($, ρ, %) − ($∗, ρ∗, %∗)‖ . (3.10)

Analogously, we can obtain

‖a2 ($, ρ, %) − a2 ($∗, ρ∗, %∗)‖ ≤ θ~Λ2 ‖($, ρ, %) − ($∗, ρ∗, %∗)‖ , (3.11)

and
‖a3 ($, ρ, %) − a3 ($∗, ρ∗, %∗)‖ ≤ θ~Λ3 ‖($, ρ, %) − ($∗, ρ∗, %∗)‖ . (3.12)

Combining (3.10)–(3.12), we get

‖a ($, ρ, %) − a ($∗, ρ∗, %∗)‖ = ‖a1 ($, ρ, %) − a1 ($∗, ρ∗, %∗)‖ + ‖a2 ($, ρ, %) − a2 ($∗, ρ∗, %∗)‖
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+ ‖a3 ($, ρ, %) − a3 ($∗, ρ∗, %∗)‖
≤ θ

(
~Λ1 + ~Λ2 + ~Λ3

)
‖($, ρ, %) − ($∗, ρ∗, %∗)‖ . (3.13)

Using (3.9) and (3.13), we have

‖ψ ($, ρ, %) − ψ ($∗, ρ∗, %∗)‖ = ‖φ ($, ρ, %) − φ ($∗, ρ∗, %∗)‖ + ‖a ($, ρ, %) − a ($∗, ρ∗, %∗)‖
≤

[
A + θ

(
~Λ1 + ~Λ2 + ~Λ3

)]
‖($, ρ, %) − ($∗, ρ∗, %∗)‖ .

This proves that ψ is a contraction mapping. From the Banach FP theorem, the suggested problem has
a unique solution.

4. Supportive example

Consider the tripled system of nonlinear (M-PBVPs) below

D
4
3$(z) = 1

75+z2 (1 + |$(z)| + |ρ (z)| + |% (z)|) , z ∈ [0, 1],
D

4
3ρ (z) =

1+|$(z)|+|ρ(z)|+|%(z)|
75+|cos$(z)|+|sin ρ(z)|+|cos %(z)| , z ∈ [0, 1],

D
4
3% (z) =

1+|$(z)|+|ρ(z)|+|%(z)|
75+|sin$(z)|+|cos ρ(z)|+|sin %(z)| , z ∈ [0, 1],

$(0) =
ϑ1($)

3 , $(1) = 1
3$( 1

3 ),
ρ(0) =

ϑ2(ρ)
3 , ρ(1) = 1

4ρ( 1
4 ),

%(0) =
ϑ3(%)

3 , %(1) = 1
5%( 1

5 ).

(4.1)

From the problem (4.1) we take ` = γ = κ = 4
3 ∈ (1, 2], η1 = ξ1 = 1

3 , η2 = ξ2 = 1
4 , η3 = ξ3 = 1

5 with

η1ξ
`
1 = 1

3

(
1
3

) 3
4

= 0.1462 < 1, η2ξ
γ
2 < 1, η3ξ

κ
3 < 1 and s = 3 > 0. The solution of the BVP (4.1) can be

written as 

$(z) =
ϑ1($)

3

(
1 − 3z

4

)
+

1∫
0
a`(z, r)Λ1 (r, $(r), ρ (r) , % (r)) dr,

ρ(z) =
ϑ2(ρ)

3

(
1 − 4z

5

)
+

1∫
0
aγ(z, r)Λ2 (r, $(r), ρ (r) , % (r)) dr,

%(z) =
ϑ3(%)

3

(
1 − 5z

6

)
+

1∫
0
aκ(z, r)Λ3 (r, $(r), ρ (r) , % (r)) dr.

where a`, aγ and aκ are the Green’s functions, and they may be simply obtained as shown in (3.2),
(3.4) and (3.5), respectively. Let us consider ς = 1

3 , and then according to Theorem 3.2, we have
~Λ1 = ~Λ2 = ~Λ3 = 1

75 = pi = qi = ti (i = 1, 2, 3), taking Aϑ1 = Aϑ2 = Aϑ3 = 1
3 . Then, the hypotheses

(H1)–(H4) are fulfilled. We get

φ1($)(z) =
ϑ1($)

3

(
1 −

3z
4

)
, a1 ($) (z) =

1∫
0

a`(z, r)Λ1 (r, $(r), ρ (r) , % (r)) dr,

φ2(ρ)(z) =
ϑ2(ρ)

3

(
1 −

4z
5

)
, a2 (ρ) (z) =

1∫
0

aγ(z, r)Λ2 (r, $(r), ρ (r) , % (r)) dr,
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φ3(%)(z) =
ϑ3(%)

3

(
1 −

5z
6

)
, a3 (%) (z) =

1∫
0

aκ(z, r)Λ3 (r, $(r), ρ (r) , % (r)) dr.

The continuity and boundedness of φ1, φ2, φ3,a1,a2 and a3 imply that φ = (φ1, φ2, φ3) and a =

(a1,a2,a3) are also. Hence, ψ = φ + a is continuous and bounded. Moreover,

‖a ($, ρ, %) − a ($∗, ρ∗, %∗)‖ ≤
1
3
‖($, ρ, %) − ($∗, ρ∗, %∗)‖ .

This illustrates that, if a is υ-Lipschitz with constant 1
3 and φ is υ-Lipschitz with constant 0, then ψ is

a strict υ-contraction with constant 1
3 . Furthermore, it is easy to see that θ = 1.259845459. Since

G = {($, ρ, %) ∈ C
(
[0, 1] × R3,R

)
, there is ς ∈ [0, 1] so that ($, ρ, %) =

1
3
ψ ($, ρ, %)},

the solution
‖($, ρ, %)‖ ≤

1
3
‖ψ ($, ρ, %)‖ ≤ 1,

implies that G is bounded. Using Theorem 3.1, the tripled system of nonlinear (M-PBVPs) (4.1) has a
solution ($, ρ, %) in C

(
[0, 1] × R3,R

)
. In addition, A + θ

(
~Λ1 + ~Λ2 + ~Λ3

)
= 0.38373 < 1. Therefore,

by Theorem 3.2, the suggested problem (4.1) has a unique solution.

5. Conclusions

The technique of a coincidence degree theory for condensing maps has been incorporated to obtain
suitable conditions for the (EU) of positive solutions to tripled systems of nonlinear (M-PBVPs) under
nonlinear boundary conditions. We provided an example to illustrate the obtained results. Our findings
can be applied to further arbitrary fractional order differential equations, linear and nonlinear fractional
integro-differential systems, Hadamard fractional derivatives, and other topics as future work.
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