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1. Introduction

As well known, the neural network model has been widely studied over the past few decades. Neural
networks are extensively applied in many fields, such as pattern recognition, signal processing, image
recognition, and so on (see [1–8]). Compared with integer order calculus, fractional calculus was
incorporated into neural networks, it is called fractional-order neural networks (FONNs). Recently,
under the research of many scholars, many achievements have been made in the dynamic behaviors of
FONNs, especially stability. For example, many authors have explored stability and finite-time stability
(see [9–17]). In the real world, many evolutionary processes, which are usually subject to short-time
perturbations, exhibit impulsive effects. In the exploration of the neural network, the phenomenon of
impulse is often considered, and many scholars have got many good results of FONNs with impulsive
effects (see [18–20]).

Octonion-valued neural network, as a generalization of real-valued, complex-valued, and
quaternion-valued neural network, was first introduced by Popa (see [21]). Octonion-valued neural
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network is not a special case of Clifford-value neural network, because octonion algebra is
non-commutative, but also nonassociative. In the application of octonion-valued neural networks,
some interesting results were presented (see [22–27]). Some authors have discussed fractional-order
octonion-valued neural networks (FOOVNNs) (see [28]).

In the dynamical behaviors of FONNs, synchronization, as a hot and interesting topic in FONNs,
plays a key role and has attracted the attention of many scholars. So far, many researchers have
explored delayed FORNNs and produced interesting results on synchronization. For instance, many
good results on synchronization for FONNs have been reported (see [29–38]).

With inspiration from the previous researches, to fill the gap in the research field of synchronization
of FOOVHNNs with impulsive effects, the work of this article comes from three main motivations. (1)
Recently, in [28], some scholars have explored FOOVNNs via the decomposition method. However,
there are few results of FOOVNNs. (2) In [32–34], some authors have discussed the synchronization
of fractional-order quaternion-valued neural networks via the decomposition method. But there has
been no paper on the synchronization of FOOVNNs with impulsive effects. (3) Synchronization is a
significant dynamical property for differential equations, thus it is worth exploring the synchronization.
Therefore, it is worthwhile to investigate the synchronization of FOOVNNs with impulsive effects via
the non-decomposition method and the Lyapunov function method.

Compared with the previous literatures, the main contributions of this article are listed as
follows. (1) Firstly, this is the first time to explore the synchronization of FOOVNNs with impulsive
effects. (2) Secondly, the multiplication of octonion numbers does not satisfy the commutativity and
associativity, we don’t need to separate the octonion-valued system into four complex-valued systems
or eight real-valued systems. (3) Thirdly, unlike [28, 32–34], in this paper, we explore the
synchronization of FOOVNNs via the non-decomposition method. (4) Fourthly, our method in this
paper can be used to explore the stability and synchronization of other types of FOOVNNs.

This paper is organized as follows: In Section 2, we introduce some definitions and Lemmas. In
Section 3, we establish some sufficient conditions for global asymptotical synchronization for
System (2.1) and System (2.2). In Section 4, one numerical example is provided to verify the
effectiveness of the theoretical results. Finally, we draw a conclusion in Section 5.

Notations: R denotes the set of real numbers, C denotes the set of complex numbers, O denotes

the set of octonion numbers, On denotes the n dimensional octonion numbers. For x =
7∑

p=0
[x]p ∈ O, its

norm as ∥x∥O = |x|. For x = (x1, x2, · · · , xn) ∈ On, its norm as ∥x∥On =
n∑

i=1
∥xi∥O.

2. Preliminaries

In this section, we shall first recall some fundamental definitions and lemmas.
The algebra of octonion is defined as

O =
{
x =

7∑
p=0

[x]pep

∣∣∣∣∣[x]0, [x]1, · · · , [x]7 ∈ R
}
,

where ep are the octonion units, 0 ≤ p ≤ 7, and when p = 0, we have e0 = 1. The octonion units obey
the octonion multiplication rules: epeq = −eqep , eqep,∀0 < p , q ≤ 7, from which we deduce that
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O is not commutative, and that (epeq)ek = −ep(eqek) , ep(eqek), for k, p, q distinct, 0 < k, p, q ≤ 7, or
epeq , ±ek, thus O is also not associative.

Octonion addition is defined by x + y =
7∑

p=0
([x]p + [y]p)ep, scalar multiplication is given by αx =

7∑
p=0

(α[x]p)ep, and octonion multiplication is given by the multiplication of the octonion units:

× e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

The conjugate of an octonion x is defined as x̄ = [x]0e0 −
7∑

p=1
[x]pep, its norm as |x| =

√
xx̄ =√∑7

p=0[x]2
p, and its inverse as x−1 = x̄

|x|2 . We can now see that O is a normed division algebra, and it
can be proved that the only three division algebras that can be defined over the reals are the complex,
quaternion, and octonion algebras.

Definition 2.1. [39] The Caputo fractional derivative of order α for a function f (t) is given as follows:

Dα f (t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds,

where t ≥ 0, n is a positive integer, n − 1 < α < n.

Particularly, when 0 < α < 1,

Dα f (t) =
1

Γ(1 − α)

∫ t

0
(t − s)−α f ′(s)ds.

In this paper, we will consider the FOOVNNs as following model:
Dαxi(t) = −cixi(t) +

n∑
j=1

ai j f j
(
x j(t)
)
+ Ui, t ≥ 0, t , tk,

∆xi(tk) = Iik(tk, xi(tk)),
(2.1)

where 0 < α < 1, i = 1, 2, · · · , n, xi(t) ∈ O is the state vector of the ith unit at time t, ci > 0 represents
the rate with which the ith unit will reset its potential to the resting state in isolation when
disconnected from the network and external inputs, respectively. ai j ∈ O denote the strength of
connectivity, respectively. The activation functions f j ∈ O show how the jth neuron reacts to input,
Ui ∈ O denotes the ith component of an external input source introduced from outside the network to
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the unit i at time t. The fixed moments of the impulse times {tk : k ∈ N} satisfy
0 ≤ t0 < t1 < · · · < tk < · · · , with tk → ∞ as k → ∞. At the points of discontinuity tk of the solution
t 7→ xi(t), we assume that xi(t) ≡ xi(t−k ). It is clear that, in general, the derivatives Dαxi(tk) do not exist.
On the other hand, the right limits and the left limits of xi(tk) exist, but they are unequal, and the
difference ∆xi(tk) = xi(t+k ) − xi(t−k ).

Next, consider System (2.1) as drive system, then the response system is given by
Dαyi(t) = −ciyi(t) +

n∑
j=1

ai j f j
(
y j(t)
)
+ Ui + ϵi(t), t ≥ 0, t , tk,

∆yi(tk) = Iik(tk, yi(tk)),
(2.2)

where i = 1, 2, · · · , n, ϵi ∈ O is a state-feedback controller, other notations are the same as those in
System (2.1).

For i = 1, 2, . . . , n, let zi = yi − xi, then from (2.1) and (2.2), the error system is given by
Dαzi(t) = −cizi(t) +

n∑
j=1

ai j

(
f j
(
y j(t)
)
− f j
(
x j(t)
))
+ ϵi(t), t ≥ 0, t , tk,

∆zi(tk) = Iik(tk, yi(tk)) − Iik(tk, xi(tk)).
(2.3)

The controller ϵi is designed as

ϵi(t) = −dizi(t) +
n∑

j=1

bi jg j(z j(t)), (2.4)

where i = 1, 2, · · · , n, di > 0, bi j, g j ∈ O.
In this paper, we need to introduce the following assumptions:

(H1) For i = 1, 2, · · · , n, k ∈ N, the impulsive operators

Iik
(
tk, xi(tk)

)
= −γikxi(tk), 0 ≤ γik ≤ 2;

(H2) For j = 1, 2, · · · , n, there exist positive constants L f , Lg such that

| f j(u) − f j(v)| ≤ L f |u − v|,

|g j(u) − g j(v)| ≤ Lg|u − v|;

(H3) There exists positive constant µ such that

µ := 2c−i + 2d−i −
n∑

j=1

|ai j|
2 − nL2

f −

n∑
j=1

|bi j|
2 − nL2

g > 0,

where
c−i = min

1≤i≤n
{ci}, d−i = min

1≤i≤n
{di}.

Lemma 2.1. Set x(t) ∈ O be a differentiable function. Then, we have:

Dα
(
x(t)x(t)

)
≤ x(t)

(
Dαx(t)

)
+ x(t)

(
Dαx(t)

)
, t ≥ 0

where 0 < α < 1.
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Proof. Let x(t) =
7∑

p=0
[x(t)]pep, where [x(t)]0, [x(t)]1, · · · , [x(t)]7 ∈ R, the conjugate of an octonion x(t)

is defined as x(t) = [x(t)]0e0 −
7∑

p=1
[x(t)]pep, then we have

Dα
(
x(t)x(t)

)
= Dα

( 7∑
p=0

[x(t)]2
p

)
=

7∑
p=0

Dα[x(t)]2
p

≤

7∑
p=0

2[x(t)]pDα[x(t)]p,

x(t)
(
Dαx(t)

)
+ x(t)

(
Dαx(t)

)
=
(
[x(t)]0e0 +

7∑
p=1

[x(t)]pep

)(
Dα[x(t)]0e0 −

7∑
p=1

Dα[x(t)]pep

)
+
(
[x(t)]0e0 −

7∑
p=1

[x(t)]pep

)(
Dα[x(t)]0e0 +

7∑
p=1

Dα[x(t)]pep

)
=

7∑
p=0

2[x(t)]pDα[x(t)]p.

Hence, we have
Dα
(
x(t)x(t)

)
≤ x(t)

(
Dαx(t)

)
+ x(t)

(
Dαx(t)

)
, t ≥ 0.

The proof is completed. □

Lemma 2.2. For all u, v ∈ O, and any real constant η > 0, the following inequality holds:

uv̄ + ūv ≤ ηuū + η−1vv̄.

Proof. Set θ ∈ R, and θ , 0, we consider

(θu − θ−1v)(θu − θ−1v) = θ2uū − uv̄ − vū + θ−2vv̄ ≥ 0,

that is, we have that
uv̄ + vū ≤ θ2uū + θ−2vv̄.

Letting η = θ2,
uv̄ + ūv ≤ ηuū + η−1vv̄.

The proof is completed. □

Lemma 2.3. [40] Let V(t) ∈ R be a continuously differentiable and nonnegative function, satisfying

DαV(t) ≤ −µV(t),

where 0 < α < 1. If µ > 0, then lim
t→+∞

V(t) = 0, t ≥ 0.
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3. Main results

In this section, we will study the synchronization for System (2.1) and System (2.2), based on
Lyapunov function method.

Theorem 3.1. Assume that assumption (H2) holds. If the following condition is satisfied:

0 <
n∑

j=1

|ai j|L f

c−i
< 1.

Then System (2.1) exists a unique equilibrium point.

Proof. To prove that there exists a unique equilibrium point of System (2.1), we consider the a mapping
Φ : On → On, namely,

Φ(u) = (Φ1(u),Φ2(u), · · · ,Φn(u))T ,

where Φ1(u) ∈ O, u = (u1, u2, · · · , un)T ∈ On, and

Φ1(u) =
n∑

j=1

ai j f j

(u j

c j

)
+ Ui, i = 1, 2, · · · , n.

Set u = (u1, u2, · · · , un)T ∈ On and v = (v1, v2, · · · , vn)T ∈ On, we have

∥Φ(u) − Φ(v)∥On =

n∑
i=1

∥Φi(u) − Φi(v)∥O

=

n∑
i=1

∥∥∥∥∥ n∑
j=1

ai j f j

(u j

c j

)
−

n∑
j=1

ai j f j

(v j

c j

)∥∥∥∥∥
O

≤

n∑
i=1

n∑
j=1

|ai j|

∥∥∥∥∥ f j

(u j

c j

)
− f j

(v j

c j

)∥∥∥∥∥
O

≤

n∑
i=1

n∑
j=1

|ai j|L f

c−i
∥u j − v j∥O

≤

n∑
j=1

|ai j|L f

c−i
∥u − v∥On .

Hence, Φ is a contraction mapping on On, which means that Φ exists a unique fixed point u∗, such that
Φ(u∗) = u∗, that is

n∑
j=1

ai j f j

(u∗j
c j

)
+ Ui = u∗i , i = 1, 2, · · · , n.

Consider cix∗i = u∗i , we have

−cix∗i +
n∑

j=1

ai j f j(x∗j) + Ui = 0, i = 1, 2, · · · , n.

Therefore, System (2.1) exists a unique equilibrium point x∗i . □
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Theorem 3.2. Assume that assumptions (H1)–(H3) hold. If the following condition is satisfied:

g j(0) = 0, j = 1, 2, · · · , n.

Then System (2.1) and System (2.2) are asymptotically synchronized.

Proof. We construct a Lyapunov function as follow:

V(t) =
n∑

i=1

zi(t)zi(t). (3.1)

For i = 1, 2, · · · , n, from assumption (H1), we have

zi(t+k ) = ∆zi(tk) + zi(t−k )
= Iik

(
tk, yi(tk)

)
− Iik
(
tk, xi(tk)

)
+ yi(t−k ) − xi(t−k )

= −γikyi(tk) + yi(tk) −
(
− γikxi(tk) + xi(tk)

)
= (1 − γik)zi(tk). (3.2)

Hence,

V(t+k ) =
n∑

i=1

zi(t+k )zi(t+k )

=

n∑
i=1

|zi(t+k )|2

=

n∑
i=1

|(1 − γik)|2|zi(tk)|2

≤

n∑
i=1

|zi(tk)|2

=

n∑
i=1

zi(tk)zi(tk)

= V(tk).

According to Lemma 2.1, Lemma 2.2, assumption (H2), and assumption (H3), for i = 1, 2, · · · , n,
when t ≥ 0, we have

DαV(t) =
n∑

i=1

Dα
(
zi(t)zi(t)

)
≤

n∑
i=1

{
zi(t)Dα

(
zi(t)
)
+ zi(t)Dα

(
zi(t)
)}

=

n∑
i=1

{
zi(t)
[
− cizi(t) +

n∑
j=1

ai j

(
f j
(
y j(t)
)
− f j
(
x j(t)
))
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−dizi(t) +
n∑

j=1

bi jg j(z j(t))
]
+ zi(t)

[
− cizi(t)

+

n∑
j=1

ai j

(
f j
(
y j(t)
)
− f j
(
x j(t)
))
− dizi(t)

+

n∑
j=1

bi jg j(z j(t))
]}

=

n∑
i=1

{
− ci

(
zi(t)zi(t) + zi(t)zi(t)

)
− di

(
zi(t)zi(t)

+zi(t)zi(t)
)
+

n∑
j=1

[
zi(t)ai j

(
f j
(
y j(t)
)
− f j
(
x j(t)
))

+zi(t)ai j

(
f j
(
y j(t)
)
− f j
(
x j(t)
))]

+

n∑
j=1

[
zi(t)bi jg j(z j(t)) + zi(t)bi jg j(z j(t))

]}
≤

n∑
i=1

{
− 2c−i zi(t)zi(t) − 2d−i zi(t)zi(t) +

n∑
j=1

(
zi(t)ai j

)
×
(
zi(t)ai j

)
+

n∑
j=1

(
f j
(
y j(t)
)
− f j
(
x j(t)
))

×
(

f j
(
y j(t)
)
− f j
(
x j(t)
))
+

n∑
j=1

(
zi(t)bi j

)
×
(
zi(t)bi j

)
+

n∑
j=1

g j(z j(t))g j(z j(t))
}

≤

n∑
i=1

{
− 2c−i zi(t)zi(t) − 2d−i zi(t)zi(t) +

n∑
j=1

|ai j|
2

×zi(t)zi(t) +
n∑

j=1

L2
f z j(t)z j(t) +

n∑
j=1

|bi j|
2

×zi(t)zi(t) +
n∑

j=1

L2
gz j(t)z j(t)

}
≤

n∑
i=1

{
− 2c−i − 2d−i +

n∑
j=1

|ai j|
2 + nL2

f

+

n∑
j=1

|bi j|
2 + nL2

g

}
· zi(t)zi(t)

≤ −µV(t), (3.3)
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where

µ := 2c−i + 2d−i −
n∑

j=1

|ai j|
2 − nL2

f −

n∑
j=1

|bi j|
2 − nL2

g > 0.

Therefore, according to Lemma 2.3, we can get lim
t→+∞

V(t) = 0. This implies that the drive
System (2.1) and the response System (2.2) can achieve asymptotic synchronization. The proof is
completed. □

4. Illustrative examples

In this section, we give two examples to illustrate the feasibility and effectiveness of main results.

Example 4.1. Consider the following FOOVNNs with two neurons as the drive system:
Dαxi(t) = −cixi(t) +

2∑
j=1

ai j f j
(
x j(t)
)
+ Ui, t ≥ 0, t , tk,

x1(t+k ) = 0.45x1(tk),
x2(t+k ) = 0.55x2(tk),

(4.1)

the response system is given by
Dαyi(t) = −ciyi(t) +

2∑
j=1

ai j f j
(
y j(t)
)
+ Ui + ϵi(t), t ≥ 0, t , tk,

y1(t+k ) = 0.45y1(tk),
y2(t+k ) = 0.55y2(tk),

(4.2)

and the controller ϵp is designed as

ϵi(t) = −dizi(t) +
2∑

j=1

bi jg j(z j(t)), (4.3)

where i = 1, 2, α = 0.85, c1 = 23, c2 = 25, d1 = 13, d2 = 20, and

a11 = (1, 2, 2, 1, 1,−1, 2, 2)T , a12 = (2, 2, 1, 1,−1, 1,−2, 2)T ,

a21 = (1, 1,−1,−1, 2, 2, 1, 1)T , a22 = (2, 1, 1, 2, 2,−2, 1,−1)T ,

b11 = (2, 2,−1,−1, 2, 2, 1, 1)T , b12 = (−1, 2, 2,−2, 1, 2, 1, 1)T ,

b21 = (1, 2, 2,−2,−1, 1, 2, 2)T , b22 = (2, 2,−2,−2, 1, 1, 2, 2)T ,

U1 = (2, 3,−4,−5, 6, 8, 9, 10)T , U1 = (4, 2, 3, 5, 9,−10, 8, 7)T ,

f j =

7∑
p=0

1
2

sin([x j]p)ep, g j =

7∑
p=0

1
3

cos([z j]p)ep
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and the impulsive moments constrained by 0 < t1 < t2 < t3 < · · · , tk+1 − tk = 0.75, lim
k→+∞

tk = +∞. Let

t1 =
1
2 +

π
5 , and by calculating, we have

L f =
1
2
, Lg =

1
3
,

and

µ := 2c−i + 2d−i −
n∑

j=1

|ai j|
2 − nL2

f

−

n∑
j=1

|bi j|
2 − nL2

g > 4.7222 > 0.

It is not difficult to verify that all conditions (H1)–(H3) are satisfied. Therefore, by Theorem 3.2, the
Systems (4.1) and (4.2) are globally asymptotically synchronized, which is shown in Figures 1–6.
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i (t), i = 1, 2, p = 0,1,2,3.
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Figure 2. The states of x[p]
i (t), i = 1, 2, p = 4,5,6,7.
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Figure 3. The states of y[p]
i (t), i = 1, 2, p = 0,1,2,3.
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Figure 4. The states of y[p]
i (t), i = 1, 2, p = 4,5,6,7.
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Figure 5. Synchronization errors z[p]
i (t), i = 1, 2, p = 0,1,2,3.
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Figure 6. Synchronization errors z[p]
i (t), i = 1, 2, p = 4,5,6,7.

Example 4.2. Consider the same FOOVNNs with two neurons in (4.1)–(4.3):

α = 0.85, c1 = 1.4, c2 = 1.7, d1 = 1.1, d2 = 1.5,

and
a11 = (−0.3, 0.2, 0.25, 0.15, 0.4,−0.3, 0.17, 0.4)T ,

a12 = (0.22, 0.3, 0.6, 0.18,−0.6, 0.19,−0.2, 0.4)T ,

a21 = (0.4, 0.4,−0.6,−0.3, 0.25, 0.2, 0.18, 0.5)T ,

a22 = (0.2, 0.5, 0.4, 0.2, 0.2,−0.5, 0.17,−0.5)T ,

b11 = (0.22, 0.2,−0.15,−0.17, 0.3, 0.5, 0.5, 0.4)T ,

b12 = (−0.18, 0.2, 0.22,−0.3, 0.1, 0.2, 0.3, 0.4)T ,

b21 = (0.3, 0.2, 0.4,−0.5,−0.6, 0.7, 0.4, 0.4)T ,

b22 = (0.2, 0.9,−0.8,−0.2, 0.4, 0.5, 0.6, 0.7)T ,

U1 = (0.2, 0.3,−0.4,−0.5, 0.6, 0.8, 0.9, 0.1)T ,

U1 = (0.4, 0.2, 0.3, 0.5, 0.9,−0.1, 0.8, 0.7)T ,

f j =

7∑
p=0

1
2

cos([x j]p)ep, g j =

7∑
p=0

1
3

sin([z j]p)ep
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and the impulsive moments constrained by 0 < t1 < t2 < t3 < · · · , tk+1 − tk = 0.75, lim
k→+∞

tk = +∞. Let

t1 =
1
2 +

π
5 , and by calculating, we have

L f =
1
2
, Lg =

1
3
,

and

µ := 2c−i + 2d−i −
n∑

j=1

|ai j|
2 − nL2

f −

n∑
j=1

|bi j|
2 − nL2

g > 0.3056 > 0.

It is not difficult to verify that all conditions (H1)–(H3) are satisfied. Therefore, by Theorem 3.2, the
Systems (4.1) and (4.2) are globally asymptotically synchronized, which is shown in Figures 7–12.
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Figure 7. The states of x[p]
i (t), i = 1, 2, p = 0,1,2,3.
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Figure 8. The states of x[p]
i (t), i = 1, 2, p = 4,5,6,7.
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Figure 9. The states of y[p]
i (t), i = 1, 2, p = 0,1,2,3.
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Figure 10. The states of y[p]
i (t), i = 1, 2, p = 4,5,6,7.
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Figure 11. Synchronization errors z[p]
i (t), i = 1, 2, p = 0,1,2,3.
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Figure 12. Synchronization errors z[p]
i (t), i = 1, 2, p = 4,5,6,7.

5. Conclusions

In this paper, we deal with a class of FOOVNNs with impulsive effects. Unlike complex and
quaternion numbers, the multiplication of octonion numbers is non-commutative, but also
nonassociative. Therefore, it is very difficult to study octonion-valued neural networks. Considering
this fact, without separating the octonion-valued system into four complex-valued or eight real-valued
systems. We can obtain the global asymptotical synchronization of FOOVNNs by constructing the
appropriate Lyapunov function and using the non-decomposition method. We give two illustrative
examples to illustrate the feasibility of the proposed method, and our method can be extended to
explore other types of FOOVNNs.
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