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Abstract: In this paper, we address a new version of Darboux frame using a common tangent vector
field to a surface along a curve and call this frame the rotation minimizing Darboux frame (RMDF).
Then, we give the parametric equation due to the RMDF frame for a sweeping surface and show that the
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1. Introduction

Sweeping surface is the surface swept out by the movement of a plane curve (the profile curve
or generatrix) whilst the plane is moved through space in such away that the movement of the plane
is always in the direction of the normal to the plane. Sweeping is a very substantial, strongly, and
spread method in geometric modelling. The fundamental idea is to select various geometrical object
(generators), which is then swept over a spine curve (trajectory) in the space. The result of such
evolution, depend on movement through space and intrinsic shape deformation, is a sweep object. The
sweep object type is given by the choice of the generator and the trajectory. Additional specifics on the
sweeping surfaces can be found in [1–4]. In recent years, the ownerships of sweeping surfaces and their
offset surfaces have been examined in Euclidean and non-Euclidean spaces (see e.g., [5–9]). There are
several different names for the sweeping surface in previous written works, namely, tubular surface,
pipe surface, string, and canal surface [10, 11]. However, to the best of the authors knowledge, we can
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not find any literature on the study for regarding curves lying in surfaces as the original objects and
considering the singularities and convexity of sweeping surfaces generated by these curves. Serve such
a need and as the extension of the study [7], the current study focuses our attention on the geometrical
properties of sweeping surfaces whose center curves in surfaces in Euclidean 3-space E3.

In this work, in analogous with the well known Bishop and Frenet-Serret frames, we define a
new version of Darboux frame using a common tangent vector field to a surface along a curve and
call this frame the rotation minimizing Darboux frame (RMDF). By using this frame, we give the
parametric representation for a sweeping surface. We also show that the parametric curves on this
surface are curvature lines. Then, we study the local singularities and convexity of a sweeping surface.
Consequently, the necessary and sufficient condition for the sweeping surface to be a developable ruled
surface is derived. In addition, some examples of application are introduced and explained in detail.

2. Preliminaries

The ambient space is the Euclidean 3-space E3, and for our work we have used [10, 11] as general
references. Let

R(s, u) = (x1 (s, u) , x2 (s, u) , x3 (s, u)) , (s, u) ∈ D ⊆ R2,

represent a regular surface M. The R′s tangent vectors are

Rs(s, u) =
∂R
∂s

, Ru(s, u) =
∂R
∂u
.

The unit normal vector to the surface M is

u(s, u)=
Rs × Ru

‖Rs × Ru‖
,

where × denotes the cross product in E3. The metric (first fundamental form) I is defined by

I(s, u) = g11ds2 + 2g12dsdu + g22du2,

where g11 =< Rs,Rs >, g12 =< Rs,Ru >, g22 =< Ru,Ru >. We define the second fundamental form
II of M by

II(s, u) = h11ds2 + 2h12dsdu + h22du2,

where h11 =< Rss,u >, h12 =< Rsu,u >, h22 =< Ruu,u >. The Gaussian K(s, u) and mean H(s, u)
curvature are defined by

K(s, u) =
h11h22 − h2

12

g11g22 − g2
12

and H(s, u) =
g11h22 + g22h11 − 2g12h22

2
(
g11g22 − g2

12

) .

Let γ : I ⊆ R → M is a unit speed curve on M. Since γ(s) is a space curve, there exists the
Serret-Frenet frame {t(s), n(s), b(s)}. The derivative formulas for Serret-Frenet frame are given by

t′
n′
b′

 =


0 κ 0
−κ 0 τ

0 −τ 0




t
n
b

 ,
(
′ =

d
ds

)
,
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where κ(s) is the curvature and τ(s) is the torsion of γ(s). Due to γ(s) on the surface M, we have the
moving Darboux frame {γ(s); e1, e2, e3}; t = e1(s), e3 = e3(s) is the surface unit normal restricted
to γ, and e2= e3×e1 be the unit tangent to the surface M. The the relationships between these frames is
expressed as: 

e1

e2

e3

 =


1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ




t
n
b

 ; ϕ = ϕ(s). (2.1)

Then we have the following Frenet-Serret type formulae:
e′1
e′2
e′3

 =


0 κg κn

−κg 0 τg

−κn −τg 0




e1

e2

e3

 = ω̃(s) ×


e1

e2

e3

 , (2.2)

where ω̃(s)=τge1 − κne2 + κge3 is referred to as the Darboux vector. Here,
κn(s) = κ sinϕ =< γ

′′

, e3 >,

κg(s) = κ cosϕ = det
(
γ
′

, γ
′′

, e3

)
,

τg(s) = τ − ϕ
′

= det
(
γ
′

, e3, e
′

3

)
.

(2.3)

We call κg(s) a geodesic curvature, κn(s) a normal curvature, and τg(s) a geodesic torsion of γ(s),
respectively. In terms of these quantities, the geodesics, curvatures lines, and asymptotic lines on a
smooth surface may be characterized, as loci along which κg = 0, τg = 0, and κn = 0, respectively.

3. New rotation minimizing Darboux frame

Now, we introduce a new rotation minimizing frame using a common tangent vector field to a
surface along a curve and call this frame the rotation minimizing Darboux frame.

Definition 3.1. A moving orthogonal frame {ξ1, ξ3, ξ3}, along a space curve r(s), is called rotation
minimizing frame (RMF) with respect to a certain reference direction if its angular velocity ω has no
component along that direction.

Although the Darboux frame is not RMF with respect to ei(i = 1, 2,3), one can easily derive such a
RMF from it. New plane vectors (ξ1,ζ2) are specified through a rotation of (e2,e3) according to

ζ
ζ1

ζ2

 =


1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ




e1

e2

e3

 , (3.1)

with a certain angle ϑ(s). Here, we will call the set {ζ, ζ1, ζ2}} as rotation minimizing Darboux frame
(RMDF). Therefore, we have the alternative frame equations:

ζ
′

ζ
′

1

ζ
′

2

 =


0 κ1 κ2

−κ1 0 0
−κ2 0 0



ζ
ζ1

ζ2

 = ω ×


ζ
ζ1

ζ2

 , (3.2)
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where ω(s) = −κ2ζ1 + κ1ζ2 is the Darboux vector. One can show that:
κ1(s) = κg cosϑ + κn sinϑ,
κ2(s) = κg sinϑ − κn cosϑ,√
κ2

1 + κ2
2 =

√
κ2

g + κ2
n = κ(s),

ϑ(s) = −
∫ s

0
τgds + ϑ0, ϑ0 = ϑ(0).

(3.3)

From Eqs (2.2) and (3.2) we observe that the relative velocity is

ω̃(s) − ω(s)=τge1.

This shows that, the Darboux frame involves an additional rotation about the tangent, whose speed
equals the geodesic torsion τg(s). This examination explains the integral formula of Eq (3.3) for
computing the RMDF by rectifying the unwanted rotation of the Darboux frame. Hence, the Darboux
frame is conformable with the RMDF for curvature lines, that is, τg = 0. This is in analogous with
Klok’s result [1].

Proposition 3.1. Under the above notations we state the following:
(1) If γ(s) is a geodesic curve on M, then the curvatures κ1(s), and κ2(s) satisfy the following:

tan−1
(
κ1

κ2

)
= −ϑ(s), with ϑ(s) = −

∫ s

0
τgds + ϑ0, ϑ0 = ϑ(0).

(2) If γ(s) is an asymptotic curve on M, then the curvatures κ1(s), and κ2(s) satisfy the following:

cot−1
(
κ1

κ2

)
= ϑ(s), with ϑ(s) = −

∫ s

0
τgds + ϑ0, ϑ0 = ϑ(0).

3.1. Sweeping surfaces due to RMDF

In this subsection, we give the parametric representations of sweeping surface through the spine
curve γ(s) on the surface M in the following: The sweeping surface associated to γ(s), is the envelope
of the family of unit spheres, with the center on the curve γ(s) ∈ M.

Remark 3.1. Clearly, if γ(s) is a straight line, thus the sweeping surface is just a circular cylinder,
having γ(s) as symmetry axis. If, on the other hand, γ(s) is a circle, then the corresponding sweeping
surface is a torus.

Now, it is easy to see that the connect between the spheres from the family and the sweeping surface
is a great circle of the unit sphere, lying in the subspace S p{ζ1(s), ζ2(s)}, of the spine curve γ(s). Let
us indicate by q the position vector attaching the point from the curve γ(s) with the point from the
sweeping surface. Then, clearly, we have

Υ : q = γ(s) + r, (3.4)

where the unit vector r itself lies in the same subspace S p{ζ1(s), ζ2(s)}. Let us indicate by the angle u
between the vectors r and ζ1. Then, as one can see immediately, we have

r(u) = cos(u)ζ1(s) + sin(u)ζ2(s), (3.5)
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which is the characteristic circles of sweeping surface. Combining Eqs (3.4) and (3.5), we see that we
obtained a representation of the sweeping surface,

Υ : q(s, u) = γ(s) + cos uζ1(s) + sin uζ2(s), (3.6)

This representation of Υ excludes sweeping surfaces with stationary vector ζ, because its geometrical
properties that is not very important and very easy to be studied.

The q′s tangent vectors are {
qu(s, u) = − sin uζ1 + cos uζ2,

qs(s, u) = (1 − κ1 cos u − κ2 sin u)ζ.
(3.7)

Then,
u(s, u) =

qs × qu

‖qs × qu‖
= cos uζ1 + sin uζ2, (3.8)

which shows that surface normal is included in the subspace S p{ζ1(s), ζ2(s)}, since it is orthogonal
to ζ. The coefficients of the first fundamental form g11, g12 and g22 are{

g11=< qs,qs >=(1 − κ1 cos u − κ2 sin u)2,

g12 =< qs,qu >= 0, g22 =< qu,qu >= 1.
(3.9)

For the second fundamental form, we have
qss = −

(
κ
′

1 cos u + κ
′

2 sin u
)
ζ + (1 − κ1 cos u − κ2 sin u)(κ1ζ1 + κ2ζ2),

qsu = (κ1 sin u + κ2 cos u)ζ,
quu = − cos uζ1 − sin uζ2.

Hence, the elements of the second fundamental form h11, h12, and h22 are{
h11 =< qss,u >= −(1 − κ1 cos u − κ2 sin u)(κ1 sin u + κ2 cos u),
h12 =< qsu,u >= 0, h22 =< quu,u >= −1.

Then, the u-and s curves are curvature lines,that is, g12 and h12 vanish identically (g12 = h12 = 0).
Thus, the Gaussian and mean curvature are calculated as

K(s, u) = −
κ1 cos u + κ2 sin u

1 − (κ1 cos u + κ2 sin u)
,

and

H(s, u) =
1 − 2 (κ1 cos u + κ2 sin u)
2 − 2 (κ1 cos u + κ2 sin u)

.

Corollary 3.1. The sweeping surface defined by Eq (3.6) has a constant Gaussian curvature iff

κ1 cos u + κ2 sin u =
c

c − 1

for some real constant c.
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Corollary 3.2. The sweeping surface defined by Eq (3.6) has a constant mean curvature iff

κ1 cos u + κ2 sin u =
2c − 1
c − 1

for some real constant c.

Corollary 3.3. The sweeping surface defined by Eq (3.6) is a (K(s, u),H(s, u))-Weingarten surface.

Corollary 3.4. The sweeping surface defined by Eq (3.6) is a (K(s, u),H(s, u))-linear Weingarten
surface iff

κ1 cos u + κ2 sin u =
c + c1

2 (c1 + c2 − c)

where c, c1 and c2 are not all zero real numbers.

On the other hand, the isoparametric curve

π(u) : β(u) := q(u, s0) = γ(s0) + cos uζ1(s0) + sin uζ2(s0), (3.10)

is a planar unit speed curvature line. Equation (3.10) define a set of one-parameter set of planes in E3.
The unit tangent vector to β(u) is

tβ(u) = − sin uζ1(s0) + cos uζ2(s0),

and thus the unit principal normal vector of β(u) is given by

nβ = ζ(s0) × tβ(u) = cos uζ1 + sin uζ2 = u(s0, u).

Thus, the surface normal u(s0, u) is parallel to the principal normal nβ, that is, the curve β(u) is a
geodesic planar curvature line, and cannot be asymptotic curve.

Surfaces whose parametric curves are curvature lines have several implementations in geometric
design [1–4]. In the situation of sweeping surfaces, one has to figure the offset surfaces q f (s, u) =

q(s, u) + f u(s, u) of a given surface q(s, u) at a certain distance f . In consequence of this equation, the
offsetting process for sweeping surface can be reduced to the offsetting of planar profile curve, which
is considerably easier to deal with. Hence, we can state the following proposition:

Proposition 3.2. Consider a sweeping surface Υ defined by Eq (3.6). Let x f (u) be the planar offset
of the profile r(u) at constant distance f . Then the offset surface q f (s, u) is still a sweeping surface,
generated by the spine curve γ(s) and profile curve r f (u).

3.1.1. Singularity and convexity of sweeping surfaces

Singularities and convexity are useful for grasping the ownerships of sweeping surfaces and are
investigated in the following:

The sweeping surface Υ has singular points iff the first derivatives are linearly dependent, that is,

qu × qs= (1 − κ1 cos u − κ2 sin u)u = 0. (3.11)
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Since u is a nonzero unit vector, then 1 − κ1 cos u − κ2 sin u = 0, that is,

sin u =
−κ2 ± κ1

√∣∣∣κ2
2 + κ2

1 − 1
∣∣∣

κ2
2 + κ2

1

, (3.12)

and

cos u =
−κ1 ± κ2

√∣∣∣κ2
2 + κ2

1 − 1
∣∣∣

κ2
2 + κ2

1

. (3.13)

Hence, there are two singular points on every generating circle. Connecting these two sets of singular
points gives two curves that contain all the singular points of a sweeping surface. From Eqs (3.6)
and (3.12) it follows that the expression of the two curves is

Γ(s) = γ(s) +
−κ1 ± κ2

√∣∣∣κ2
2 + κ2

1 − 1
∣∣∣

κ2
2 + κ2

1

ζ1 +
−κ2 ± κ1

√∣∣∣κ2
2 + κ2

1 − 1
∣∣∣

κ2
2 + κ2

1

ζ2. (3.14)

From the above analysis it can easily be seen that:

Corollary 3.5. The sweeping surface Υ represented by Eq (3.6), has no singular points if the condition

1 − κ1


−κ1 ± κ2

√∣∣∣κ2
2 + κ2

1 − 1
∣∣∣

κ2
2 + κ2

1

 − κ2


−κ2 ± κ1

√∣∣∣κ2
2 + κ2

1 − 1
∣∣∣

κ2
2 + κ2

1

 , 0,

is satisfied.

In Computer Aided Geometric Design, conditions that guarantee the convexity of a surface
are required in various applications (such as manufacturing of sculptured surfaces, or layered
manufacturing). In the case of the sweeping surface Υ, however, the convexity can be controlled
with the help of the differential geometric properties. Therefore, we discuss the Gaussian curvature
K(s, u) = χ1χ2; χi(s, u) (i = 1, 2) are the principal curvatures, as follows:

Since g12 = h12 = 0, the value of one principal curvature is

χ1(s0, u) :=

∥∥∥∥∥∥dr
du
×

d2r
du2

∥∥∥∥∥∥
∥∥∥∥∥dr

du

∥∥∥∥∥−3

= 1. (3.15)

The other principal curvature is easy to get

χ2(s, u) =
K(s, u)
χ1(s0, u)

= −
κ1 cos u + κ2 sin u

1 − (κ1 cos u + κ2 sin u)
. (3.16)

On the other hand, the curvature for the s-curves (u-constant) can be obtained as:

χ(s, u0) =
‖qs × qss‖

‖qs‖
3 =

κ

1 − κ1 cos u − κ2 sin θ
. (3.17)

In view of Meusnier’s theorem, the expression of χ2(s, u) in Eq (3.16) is

χ2(s, u) = χ(s, u0) cosψ. (3.18)

AIMS Mathematics Volume 8, Issue 1, 447–462.



454

Here ψ = cos−1 < n,u >. Thus, the the Gaussian curvature K(s, u) can be obtained as:

K(s, u) = χ(s, u) cosψ. (3.19)

We now concentrate on the curves on Υ that are created by parabolic points, that is, points with
vanishing Gaussian curvature. These curves separate elliptic (K > 0, locally convex) and hyperbolic
(K < 0, hence non-convex) parts of the surface. From Eq (3.18), it follows that

K(s, u) = 0⇔ χ(s, u) cosψ = 0.

It can be seen that there are two main cases that cause parabolic points:

Case 3.1. When χ(s, u) = 0, that is κ = 0. Thus, a planar point of the spine curve γ generates a
parabolic curve u=const. on Υ. In other words, the spine curve γ is degenerate to a straight line.
Therefore, an inflection or flat point of the spine curve gives a parabolic curve u=const.

Case 3.2. When ψ = π
2 (< n,u >=0), that is, the osculating plane of γ at each point coincides with the

tangent plane to the surface Υ at that point. Then, the spine curve γ is not only a curvature line but
also an asymptotic curve on Υ.

In fact we have the following:

Corollary 3.6. Consider a sweeping surface represented by Eq (3.6) with spine and profile curves have
non-vanishing curvatures anywhere. If the spine curve γ is a curvature line and also asymptotic curve,
then Υ has parabolic points.

3.2. Developable surfaces

This part exmaine in what conditions the sweeping surfaces are developable surfaces. Therefore,
we analyze the case that the profile curve r(u) degenerates into a line. Then, we have the following
developable surface

S : P(s, u) = γ(s) + uζ2(s), u ∈ R. (3.20)

We also have that
S ⊥ : P⊥(s, u) = γ(s) + uζ1(s), u ∈ R (3.21)

It is easy to show P(s, 0) = α(s) (resp. P⊥(s, 0) = α(s)), 0 ≤ s ≤ L, that is, the surface S (resp. S ⊥)
interpolate the curve γ(s). Furthermore, since

Ps × Pu := − (1 − uκ2) ζ1(s), (3.22)

then S ⊥ is the normal developable surface of S along γ(s). Hence, the curve γ(s) is a curvature line on
S (resp. S ⊥).

Theorem 3.1. Let Υ be the sweeping surface expressed by Eq (3.6). Then we have the following:
(1) the developable surfaces S and S ⊥ intersect along γ(s) at a right angle,
(2) the curve γ(s) is a curvature line on S and S ⊥.

Theorem 3.2. (Existence and uniqueness). Under the above notations there exists a unique
developable surface represented by Eq (3.19).
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Proof. For the existence, we have the developable represented by Eq (3.19). Furthermore, since S is a
ruled surface, we may write that

S : P(s, u) = γ(s) + uζ(s), u ∈ R,
η(s) = η1(s)ζ1+η2(s)ζ2 + η3(s)ζ,∥∥∥η(s)

∥∥∥2
= η2

1 + η2
2 + η2

3 = 1, η
′

(s) , 0.
(3.23)

It can be immediately seen that S is developable iff

det(γ
′

, η, η
′

) = 0⇔ η1η
′

2 − η2η
′

1 + η3 (η1κ2 − η2κ1) = 0. (3.24)

On the other hand, in view of Eq (3.21), we have

(Ps × Pu) (s, u) = −ψ (s, u) ζ1, (3.25)

where θ = θ (s, u) is a differentiable function. Furthermore, the normal vector Ps ×Pv at the point (s, 0)
is

(Ps × Pu) (s, 0) = −η2ζ1 + η1ζ2. (3.26)

Thus, from Eqs (3.24), and (3.25), one finds that:

η1 = 0, and η2 = θ (s, 0) , (3.27)

which follows from Eq (3.23) that η2η3κ1 = 0, which leads to η2η3 = 0, with κ1 , 0. If (s, 0) is a regular
point (i.e., θ (s, 0) , 0), then η2(s) , 0, and η3 = 0. Therefore, we obtain η(s) = ζ2. This means that
uniqueness holds. �

As an application (such as flank milling or cylindrical milling), during the movement of the RMDF
along γ, let a cylindrical cutter be rigidly linked to this frame. Then the equation of a set of cylindrical
cutters, which is defined by the movement of cylindrical cutter along γ(s), can be gotten as follows:

S f : P(s, u) = P(s, u) + ρζ1(s), (3.28)

where ρ denotes cylindrical cutter radius. This surface is a developable surface offset of the surface
P(s, u). The equation of S f , can therefore be written as:

S f : P(s, u) = γ(s) + uζ2(s) + ρζ1(s). (3.29)

The normal vector of cylindrical cutter can be represented as

u f (s, 0) =
Ps × Pu∥∥∥Ps × Pu

∥∥∥ = ζ1(s). (3.30)

Also, from Eq (3.27), we have
S : P(s, u) = P(s, u) − ρζ1(s). (3.31)

The derivative of Eq (3.30) with respect to s can be derived as follows

Ps(s, u) = Ps(s, u) − (ρω) × ζ1. (3.32)

Equation (3.22) shows that the vector Ps(s, u) is orthogonal to the normal vector ζ1. And, the
vector ζ1 is orthogonal to the tool axis vector ζ(s). Subsequently, the envelope surface of the cylindrical
cutter and the developable surface P(s, u) have the common normal vector and the distance between
the two surfaces is cylindrical cutter radius ρ. Hence, we can draw a conclusion as follows:
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Proposition 3.3. Consider a developable surface S defined by Eq (3.19). Let S f be the envelope
surface of cylindrical cutter at distance ρ. Then the two surfaces S and S f are offset developable
surfaces.

As it is will known, there are three types of developable surfaces, the given curve can be distributed
into three kinds correspondingly [12–15]. In what follows, we will discuss the relationship between
the given curve γ(s) ∈ M and its isoparametric developable surface. The first case is when,

ζ2 × ζ
′

2 = 0⇔κ2ζ1 = 0. (3.33)

In this situation, S is referred to as a cylindrical surface. Since ζ1 is a nonzero unit vector, then Υ is a
cylindrical surface iff

κ2 = 0⇔ κg cosϑ − κn sinϑ = 0⇔ ϑ = tan−1
(
κg

κn

)
, κn , 0. (3.34)

Similarly, we can also have ζ2 × ζ
′

2 , 0. In this situation, S is referred to as a non-cylindrical
surface. Therefore, the first derivative of the directrix is

γ
′

(s) = c
′

(s) + σ(s)ζ
′

2(s) + σ
′

(s)ζ2(s), (3.35)

where c′ is the first derivative of the striction curve, σ(s) is a smooth function. By an immediate
calculation, we can show that

det(c
′

, ζ2, ζ
′

2) =< c
′

, ζ × ζ
′

2 >= 0. (3.36)

Then the next two situations hold:
The first situation is when the first derivative of the striction curve is c′ = 0. Geometrically this

position implies that the striction curve degenerates to a point, and S becomes a cone; the striction
point of a cone is generally referred to as the vertex. By using Eqs (3.2) and (3.34) we have that S is a
cone iff there exists a fixed point c and a function σ(s) such that σκ2 = −1, σ

′

= 0, which imply that

σ(s) = const. =
1
κ2
⇔ κg cosϑ − κn sinϑ = κg0 cosϑ0 − κn0 sinϑ0. (3.37)

The second situation is when c′ , 0, that is,

σ(s) = const. ,
1
κ2
⇔ κg cosϑ − κn sinϑ , κg0 cosϑ0 − κn0 sinϑ0. (3.38)

From Eq (3.35), we have < c′ , ζ2 × ζ
′

2 >= 0,that is, c′ ∈ S p{ζ2,ζ
′

2}. The condition for c to be striction
curve is therefore equivalent to c′ and ζ

′

2 are perpendicular to each other. Therefore, we may conclude
that the ruling is parallel to the first derivative of the striction curve, which is also the tangent of the
striction curve. This ruled surface is referred too as a tangent ruled surface. So, the surface S is a
tangent surface iff there exists a curve c(s) so that σ(s) = const. , 1

κ2
.

AIMS Mathematics Volume 8, Issue 1, 447–462.



457

3.3. Application

In this subsection, as an application of our main results, we give the following examples.
Example 1. Let M be a hyperboloid of one sheet defined by

M : R(s, u) =

(
cos s −

u
√

2
cos s, sin s +

u
√

2
sin s,

u
√

2

)
.

It is easy to see that γ(s) = (cos s, sin s, 0) lies on M. Then, we have the Darboux frame as follows:

e1(s) = (− sin s, cos s, 0) , e2(s) = (0, 0, 1) , e3(s) = (cos s, sin s, 0) .

The normal curvature, the geodesic curvature, and the geodesic torsion of γ(s) on M, respectively, are

κn = −1, and κg = τg = 0.

Then ϑ(s) = ϑ0 is a constant, moreover,

ζ1(s) = (sinϑ0 cos s, sinϑ0 sin s, cosϑ0) ,
ζ2(s) = (cosϑ0 cos s, cosϑ0 sin s,− sinϑ0) ,
κ1(s) = − sinϑ0, and κ2(s) = cosϑ0.

1) If we take ϑ0 = π
2 (κ2(s) = 0), then we immediately obtain a sweeping surface given by

Υ : q(s, u) = ((1 + cos u) cos s, (1 + cos u) sin s,− sin u) .

The graphs of the surfaces M, Υ, and M∪Υ are shown in Figure 1; 0 ≤ u, s ≤ 2π. Obviously, κ2(s) = 0
satisfies Eq (3.33), and the developable surface

S : P(s, u) = (cos s, sin s,−u) + u (0, 0,−1)

= (cos s, sin s,−u)

is a cylinder with γ(s) as a curvature line; 0 ≤ s ≤ 2π, and −1 ≤ u ≤ 1 (Figure 2).

Figure 1. Illustrations of M,Υ and M ∪ Υ.
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Figure 2. Illustrations of the sweeping surface and the cylinder.

2) In the case of ϑ0 = π
4 (κ2(s) = const.), we obtain a sweeping surface given by

Υ : q(s, u) = ((1 + sin u + cos u) cos s, (1 + sin u + cos u) sin s, (cos u − sin u)) .

The graphs of the surfaces M, Υ, and M ∪ Υ are shown in Figure 3; 0 ≤ u, s ≤ 2π. Also, the
developable surface

S : P(s, u) = (cos s, sin s,−u) + u (0, 0,−1)

= (cos s, sin s,−u)

is a cone with γ(s) as a curvature line; 0 ≤ s ≤ 2π, and −5 ≤ u ≤ 2 (Figure 4).

Figure 3. Illustrations ofM, Υ and M ∪ Υ.
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Figure 4. Illustrations of the sweeping surface and the cone.

Example 2. Consider the tubular surface parameterized by

M : R(s, u) =

(
cos

s
√

2
+
√

2 sin u, sin
s
√

2
+
√

2 cos u,
s
√

2

)
,

where 0 ≤ u, s ≤ 2
√

2π. It is clear that γ(s) =
(
cos s

√
2
, sin s

√
2
, s
√

2

)
lies on M. By a similar procedure

as in Example 1, we have

e1(s) =
1
√

2

(
− sin

s
√

2
, cos

s
√

2
,

1
√

2

)
,

e2(s) =
1
√

2

(
− cos

s
√

2
+

1
√

2
sin

s
√

2
,− sin

s
√

2
−

1
√

2
cos

s
√

2
,

1
√

2

)
,

e3(s) =
1
√

2

(
cos

s
√

2
+

1
√

2
sin

s
√

2
, sin

s
√

2
−

1
√

2
cos

s
√

2
,

1
√

2

)
,

κn = κg =
1
√

2
, and τg =

1
2
.

Then ϑ(s) = − s
2 + ϑ0. If we choose ϑ0 = 0, for example, we have

ζ1(s) =



1
√

2

[
cos( s

√
2
− s

2 ) + sin( s
√

2
− s

2 )
]

(
cos( s

2 ) − sin( s
2 )

)
sin( s

√
2
) − 1

√
2

(
cos( s

2 ) + sin( s
2 )

)
cos( s

√
2
)

1
√

2

(
cos( s

2 ) + sin( s
2 )

)


,

ζ2(s) =



1
√

2

[
cos( s

√
2
− s

2 ) − sin( s
√

2
− s

2 )
]

(
cos( s

2 ) + sin( s
2 )

)
sin( s

√
2
) − 1

√
2

(
cos( s

2 ) − sin( s
2 )

)
cos( s

√
2
)

− 1
√

2

(
cos( s

2 ) − sin( s
2 )

)


,
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κ1(s) =
1

2
√

2

(
sin

s
2

+ cos
s
2

)
, and κ2(s) =

1

2
√

2

(
sin

s
2
− cos

s
2

)
.

Therefore, the sweeping surface is

Υ : q(s, u) =



cos s
√

2
+ 1
√

2

[
cos( s

√
2
− s

2 + u) + sin( s
√

2
− s

2 + u)
]

sin s
√

2
+


(
cos( s

2 − u) − sin( s
2 + u)

)
sin( s

√
2
)

− 1
√

2

(
cos( s

2 − u) + sin( s
2 + u)

)
cos( s

√
2
)


s
√

2
− 1
√

2

(
cos( s

2 − u) + sin( s
2 − u)

)


.

The graphs of the surfaces M, Υ, and M ∪ Υ are shown in Figure 5; 0 ≤ u, s ≤ 2
√

2π. In view of
κ2(s) , κ2(s0) and Eq (3.37), the developable surface

S : P(s, u) =



cos s
√

2
+ u
√

2

[
cos( s

√
2
− s

2 ) + sin( s
2 −

s
√

2
)
]

sin s
√

2
+ u


(
cos s

2 + sin s
2

)
sin s

√
2

− 1
√

2

(
cos s

2 − sin s
2

)
cos s

√
2


s
√

2
− u
√

2

(
cos s

2 − sin s
2

)


is a tangent surface with γ(s) as a curvature line; 0 ≤ s ≤ 2

√
2π, and −1 ≤ u ≤ 1 (Figure 6).

Figure 5. Illustrations of M, Υ and M ∪ Υ.
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Figure 6. Illustrations of the sweeping surface and the tangent plane.

4. Conclusions

This paper introduce and study sweeping surface with a new RMDF associated with a curve on the
surface. The paper further investigated the problem of requiring the sweeping surface is a developable
surface. There are several opportunities for further work. An analogue of the problem addressed in this
paper may be consider for surfaces in Minkowski 3-space. We will study this problem in the future.
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