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Abstract: In this paper, we consider the two dimensional incompressible anisotropic magneto-
micropolar fluid equations with partial mixed velocity dissipations, magnetic diffusion and horizontal
vortex viscosity, and analyze the stability near a background magnetic field. At present, major works
on the equations of magneto-micropolar fluid mainly focus on the global regularity of the solutions.
While the stability of the solutions remains an open problem. This paper concentrates on establishing
the stability for the linear and nonlinear system respectively. Two goals have been achieved. The
first is to obtain the explicit decay rates for the solution of the linear system in H*(R?) Sobolev
space. The second assesses the nonlinear stability by establishing the a priori estimate and employing
bootstrapping arguments. Our results reveal that any perturbations near a background magnetic field is
globally stable in Sobolev space H*(R?).
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1. Introduction

The incompressible magneto-micropolar fluid equations describes the motion of an incompressible
conducting micropolar fluid in an arbitrary magnetic field. In this paper, we consider the 2D
incompressible anisotropic magneto-micropolar fluid equations,

Ay +u-Vuy + P = (u+x)u + B-VB —2xdym, xe€R* >0

Oitr +u-Vu, + 0,P = (,u+)()8%u2+B-VBz+2)(01m,

8,B+u-VB=v3B+B Vu, (1.1)
A + u - Vm + dym = kdtm + 2V X u,

V-u=0, V.-B=0,
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where u = (uy,u), b = (b1, b3), Vtm = (=0,m,dym). Also m and P are the scalars. The nonnegative
parameters 4 > 0, v > 0 and y > 0 denote the kinematic viscosity, magnetic diffusion coeflicient and
the dynamic micro-rotation viscosity. Besides, y and « are the angular viscosities. The operators 01, 0,
represent the horizontal and vertical direction respectively.

Our goal is to investigate the stability problem on the perturbation (u, b, m) near the steady solution
(u°, B, m®) with b = B — B°. Here

u’ =(0,0),B° = (0,1),m° = 0.

1

Without loss of generality, set u = y = 5

and v = « = 1. It is easy to verify that (u, b, m) satisfies

8,111 +u-Vu, + 81P = 6%141 +b-Vb, — 62m + azbl,
6,u2 +u- Vl/t2 + 82P = 6%1/{2 +b- Vbz + éhm + (921’)2,

(9,b+u-Vb:(9%b+b-Vu+82u, (1.2)
Om+u-Vm+2m=0tm+V Xu,
V-u=V-b=0.

The standard magneto-micropolar fluid equations with full velocity field dissipation, magnetic
diffusion and angular viscosities can be written as

ou+w-Vu+VP =W+ x)Au+ (B-V)B+ 2yV X m,
0B+ (u-V)B=vAB+ (B-V)u,

om + (u-Vym+ 4ym = yAm + 2xV X m + «Vdivm,
V-u=V-B=0.

(1.3)

Because of the mathematically significant, the magneto-micropolar fluid equations and closely related
equations have attracted considerable attentions for mathematical scholars and many important results
have been achieved. Major works mainly concentrated on the global well-posedness and global
regularity of the solution. Let’s recall some of these results.

For the 2D incompressible magneto-micropolar equations, Yuan and Qiao [1] established the global
smooth solution for the equations with zero angular viscosity and zero magnetic diffusion or with only
angular viscosity and magnetic diffusion. In a two dimensional bounded domain with Navier type
boundary condition for the velocity, Fan and Zhou [2] proved the existence and uniqueness of global
strong solutions to the incompressible magneto-micropolar system. Ma in [3] obtained the global
existence and regularity of classical solutions to the equations with mixed partial dissipation, magnetic
diffusion and angular viscosity. In addition, some conditional regularity of strong solutions also be
obtained. Guo and Shang in [4] showed the global regularity of solutions to the 2D incompressible
magneto-micropolar equations with partial dissipation. For 2% dimensional system, the results of the
global well-posedness for the incompressible magneto-micropolar fluid equations with mixed partial
dissipation have been obtained (see e.g., [5,6]). Besides, for 3D case, the global existence results for
the Cauchy problem in R? are obtained by Tan and Wu in [7]. The global well-posedness and global
regularity of the incompressible magneto-micropolar system have been studied in [8,9]. For more
results, we refer to [7, 10—14] and references therein.

However, there are few results to our knowledge on the large-time behavior of the magneto-
micropolar fluids. Shang and Gu [15] obtained the L*-decay estimates of solutions for the two-
dimensional incompressible magneto-micropolar fluid equations, which is |[u(?)||;2 + [[w(®)||2 < C(1 +
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t)‘% and ||b||;2 < C(1+ t)‘%. Moreover, by proving the optimal decay for ||b(?)||.~, the authors optimized
the decay rates to |[u(?)||,2 + [[w(®)|l;2 < Ct2 in [15]. In this paper, we will show decay rates for the
linear system (1.2) in the next section.

If the magnetic field B = 0, the equations (1.3) become the micropolar fluid equations. For the
2D incompressible micropolar equations, Liu in [16] studied the global well-posedness to the Cauchy
problem of 2D micropolar equations with large initial data and vacuum, and showed that the problem
admits a unique global strong solution. Ye [17] studied the global regularity for the system of the
2D incompressible micropolar equations with vertical dissipation in the horizontal velocity equation,
horizontal dissipation in the vertical velocity equation. Dong and Li [18] studied the global regularity
in time and large time behavior of solutions to the 2D micropolar equations with only angular viscosity
dissipation. The more results of the well-posedness, regularity and large time decay problems on the
micropolar fluid equations can be shown in [19-22]. On the other hand, if y = 0 and m = 0, the
equations in (1.3) reduce to the magneto-hydrodynamic equations (MHD). The case of full dissipation
and magnetic diffusion, the classical solution is global (see e.g., [23]). There are numerous works on
the global regularity and the stability. One of the significant works on the global regularity for the 2D
MHD equations with mixed partial dissipation and magnetic diffusion is completed by Wu and Cao
in [24]. One can also refer to [25-29] and so on.

Motivated by the results of the magneto-micropolar fluid equations and closely related equations,
this paper investigates the stability of the solution of the system (1.2). We attempt to achieve two main
goals. The first is to give the linear asymptotic stability, which is equivalent to assessing the small data
global well-posedness. We need to consider the corresponding linear system of (1.2) to illustrate it,

(9[141 = 8%141 — 62m + (92191,

ﬁ,uz = 6%u2 + 81m + azbz,

b = &b + dou, (1.4)
8,m+2m:8%m+V><u,

V-u=V-b=0.

With some assumptions on the initial data, we establish explicit decay rates of the solutions for
the linear system (1.4). To give decay rates, we define the fractional operator A*f via the Fourier
transform,

AF(E) = 8 F(&).

Our first result is as follows.

Theorem 1.1. For any s > 0, let the initial data (uo, by, my) € H*(R?) with V -uy = V - by = 0. Suppose
that (u, b, m) is the solution of the linear system (1.4).

1. Assume that (Vuy, Vby, Ving) € H(R?). Then the decay rates holds
_1
||Vu”H°'(R2) + ”Vb”Hx(RZ) + ”Vm”Hs(RZ) S C(l + t) 2, (15)

2. Suppose (A7 ug, AT7bo, AT7my), (A7 ug, A57 by, A37my) € H*(R?), where o > 0 is a real number:
Then (u, b, m) satisfies

(Ol g2y + 1D @2y + M| 3@y < C(1 + f)_%- (1.6)
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The second goal is to prove the stability of the nonlinear system in (1.2).

Theorem 1.2. Suppose that (uy, by, mg) € H*(R?) with V - ug = V - by = 0. Let (u, b, m) be the solution
of the nonlinear system (1.2). Then there exists 6 > 0, such that if

(20, bo, mo)l|2r2) < 6,

then (1.2) possesses a unique global solution (u, b, m) € C(0, co; H*(R?)) satisfying

!
G2 (2, ua(8), (), M)l 0 + f(”aﬂll”iyz + 11012l + 10117,
0
+ 101mll7, + 2llmll)dT < C6?, (1.7)

for all t > 0, where C is a pure constant.

By the technology of bootstrapping argument (see [30, p.21]) and the energy method, we are able
to obtain the nonlinear stability. To prove Theorem 1.1, we first introduce the energy E(¢) as follows

!
E(1) = sup [Iu(7), (), m(D)) |l o) + 2 f (102001 (Dl g2y + 10112 (D2 2,
0

0<7<t

HOBON Rz, + 101mO| P, + 2lm(DIR gz )T,
for any ¢ > 0. Our efforts concentrate on establishing the a priori estimate of E(¢) in Section 3,
E(r) < E(0) + C E(1)3. (1.8)
Then the bootstrapping argument implies the global bound and also the stability.

This paper is organized as follows. In section 2, we give the proof of decay rates in Theorem 1.1.
In section 3, by employing the energy method and using the bootstrapping argument, we establish the
H?-estimate and then complete the proof of Theorem 1.2.

2. Proof of Theorem 1.1

In this section, we will show the decay rates in H* for the solutions based on the linearized system
(1.2). Under the different assumptions on the initial data, we establish the asymptotic stability for the
linear system. Before stating our results in (1.5), we first give a tool which will be used in the proof of
(1.5).

Lemma 2.1. Let f = f(t) be a nonnegative continuous function satisfying, for two constants ay > 0

and a; > 0, N
f(@) <apf(s) and f f(m)dr<a; <o forany0<s<t. 2.1
0
Then, for any t > 0, for a, = max{2a f(0), 2a,ap},
f)<ad+n7" (2.2)

The tool of Lemma 2.1 (see [25]) will be used to establish the decay rate (1.5). It indicates that
generalized monotone nonnegative integrable functions have a precise decay rate.
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2.1. Proofof(1.5)

Proof of (1.5). We show the proof of s = 0, then by the iterate, we can derive the case of s > 0.
First of all, we consider the first condition of monotonous. Taking the L?-inner product of (1.4) with
(Au, Ab, Am) ,we have

d
a(IIVu(t)Iliz + VB, + V@7, + 210, Vur (D)7, + 101 Vi (0117,

+110:VE@)II7, + 2Vm(@)lI7, + 16, Vm(@)I7, = 0. -
where we used the fact that
fAu~VLmdx+fV><u~Amdx:0.
We denote the f(¢) as
FO = IVu@)lI7, + IVbOI7, + IVm@)II7.. 2.4)
Thus (2.3) implies that
J@0) < f(s), (2.5)

for any s < 1.
As a result, we prove the first condition. Next we verify the second condition that is fooo f(dt < C.
First, we have the H'-estimates,

!
(e, b, m)II7,, + 2f(||<92u1||§,1 +101uall7, + 11016117, + 2llmll7, + 101mll7, dr
0

(2.6)
=lluoll7 + 11bollz + llmoll7,:.
By integration by parts and Holder’s inequality, we infer
||31M1||iz == f(?zuz 01w dx = —faluz - Opurdx
(2.7)
1 2 2
< 2(|I51uzlle + 102u]172),
thus, it implies
IVull7, 20101127, + 102u4]17.)- (2.8)
Combining (2.6), we can deduce
f IVu()|I7,dt < C. (2.9)
0
Besides, from (2.6), we can infer
f‘w¢m@msc and f|wmm@msc (2.10)
0 0
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Now it suffices to prove the integrability for ||(')2b||i2 on the time. Dotting 9,b to the velocity equation
of (1.4), integrating over R, then replacing d,b by the other terms of the magnetic equation, we obtain

1826112, = f Au - 0rb dx — f d5uy - rbydx — f duy - 0rbrdx — f Vim - 0,b dx
d
:d—tfu‘azbdx—fu‘ﬁzatbdx—fagul-62b1dx
- f dtuy - 0rbrdx — f Vim - 9,b dx (2.11)
_4 d>b d Oyu - O7b dx + ||0ull}, — | d5uy - B2byd
=4 u-0r0dx + hu - 07b dx + || 2M||Lz QU1 - 0201dX

- f dluy - 0rbrdx — f Vm - 9:b dx.

The four integral terms above can be estimated as
f Ayu - 7b dx — f Ouy - Orbydx — f Ouy - Oybydx — f Vim - 8,b dx
! (2.12)
< E(Ilazulliz +131bII7, + 105117, + 10251117, + 103uall7, +1182ball7, + 1V mll7, + 11025117,).

where we used the Holder’s inequality and Young’s inequality. Inserting (2.12) into (2.11) and
integrating it on [0, ¢], we have

t
f [1026(D)I[7.d7 < (lu@)II7, + 1102617, + luoll7. + 11025017

. (2.13)
+ f(3||t92ulliz + 107117, + 103ull52 + 103wl + IV mll7, + (162bI17.)d.
0
Then, adding 4 X (2.13) into (2.6), where A4 > 0 is a small number, we have
t
I, b, m)I7, + 2f0(||52u1||ﬁ,1 + 101uall7, + VB, + 2lmll3, + 1101ml,)dT 2.14)
<C(lluollZs + 1Boll71 + llmaoll7,.).
From (2.14), we infer
!
f IVbl[7,dr < C. (2.15)
0

Collecting (2.9), (2.10) and (2.15), it suffices to verify f(¢) satisfying the second condition which is
nonnegative integrable. As a consequence, by Lemma 2.1 we conclude,

fn<c+n, (2.16)

where C is a constant and (2.16) gives the desired result (2.2). Thus, we conclude the proof of (1.5). O
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2.2. Proofof (1.6)

Proof of (1.6). Using the consideration of the itera again, we only prove the case of s = 0 similarly to
the (1.5). We have the H'-estimate as follows,

2dt

where

and

1d
5 =l g, b, m)ll3, + 1011l + 10201113, + 1016117, + 10 1mll7,, + 2llmll;

F(0) = iy Ol + lua @) + @I, + lm @)l

G(1) = 2101uallfyy + 1022017, + 10161, + 101mll3, + 2limll.).

Hl_

Applying AT7 and A5 to the linear system (1.4) respectively, and dotting the correspending equations
with (A77uy, A7%uy, AT7b, AT7m) and (A57uy, A;7up, AS7b, A57m) then integrating over R2, we have

and,

d - - - -0 -
A, AT, A7 b, Ay m)II7> + 20AT7 D 17,

+201AT70ual7, + 20AT7ODIT, + 20IAT70mll7, + 4IATTmll,
=0.

d -0 -0 -0 -0 -0
1A 11, Ay i, AT D, A m)(D)II7, + 211570 17,

+201A57 0 uall7, + 20AS70bIIT, + 21IA70imll7, + 4IA mll]
=0.

12

Combining (2.17) and (2.18), then integrating by parts, it infers that

which indicates that

(AT (w1, w2, by m), A5 (uy, uz, b, m))”z
< I(AT7 (1.0, w0, b, m), A5 (uy 0, 20, b, m))ll

12°

H(t) < H(0).

(2.17)

(2.18)

(2.19)

Then the estimate of ||u;||;> follows from the Plancherel’s identity and Holder’s inequality, which can

be written as

Similarly,

AIMS Mathematics
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llur DIl

fm@m%f

f@fm@ﬁﬁﬁwwﬁm@m%%@

||(92u1(t)||"“ IIA_”ul(t)ll”” :

IA

lua (DI}, < ||<91u2(t)||””||1\ uz(t)ll‘L’z”,

(2.20)

(2.21)
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20 2
Ib@II7, < 101611 IIAT7 DN (2.22)
and
20 2
Im@)l7, < 101ml| 7 IAT m@)ll 75 (2.23)

Collecting (2.20), (2.22), (2.23) and (2.19), we have
F(t) < CG()™+ H(1)™ < CG(t)™ H(0)™.
Then we infer that
G(t) > CF(t)"*+ H() 7. (2.24)
Which immediately leads to
F(1) < (C1(0 uto, b, mo)lz2) + Caler, AT (utos bo, o), A3 (1o, bo, mo)lz=)e) -

Thus, we finish the proof of Theorem 1.1. m]
3. Proof of Theorem 1.2

This section proves the stability of the nonlinear system (1.2). By exploiting the methods of
bootstrapping and energy method, we establish the H*-estimate. Before our proof, we give two useful
tools. The first provides an anisotropic inequality for the integral of triple product and the proof can be
found in [24]. The second shows a basic fact.

Lemma 3.1. Suppose that f, g, 6,8, h and 6,h are all in L*(R?). Then, for some constant C > 0,

fflfghldx < ClIf N2 llgll 1102811 AL, 104 Al (3.1)
Lemma 3.2. Due to V - u = 0, we have the fact that
IV2ull2, < 3310, Vil2, + 1101 Vaoll7,). (3.2)

The key step in the proof is to deal with the nonlinear and coupled terms. Therefore, we will take
full use of the Lemma 3.1. Combining Sobolev inequality, Holder’s inequality and Young’s inequality,
the closed priori estimate of the energy E(f) can be established.

Proof. This section aims to obtain the H>-estimate. Since the equivalent norms,

2
|| (M],MZ, b7 m) ||?{2~|| (’/ll,uz, b’ m) ||i2 + Z || (a?ulaaizu27ai2b’ alzm) ||2 (3’3)

L2 i
i=1
it suffices to make the estimate on || (i1, u2, b, m) |17, and || (87u,, 87uz, 87b, 87 m) |I7, respectively.
First of all, by taking L*-inner product of (1.2) with (u, b, m) and using integration by parts, it easily

infers
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1d

2 2 2 2 2 2
3 | (ur, w2, b,m) |l + 1 Qauy NI, + Nl Dvuaa I, + 11 WD I, + 1l dvm I +2 (| m I,

=0.

(3.4)

Next, it suffices to estimate [|(u, ua, b, m)|7,. Applying 87 and 43 to every equation in (1.2) respectively,
then taking the L-inner product with (8%u;, 87uy, 3?b, #?m), and integrating them on [0, ], we have

2
d 2 2 2 2 2 2 2 2
3 21 G W + 1197 15 + 11075 15 + 11 9Fm I2)
i=1

| =

2 (3.5)
+ Z(H 870xuy P + 11 0701ua |7, + 1 8701b 112, +2 11 O7m |17, + || 8701m |13,)
P

:Il+12"'+17.

They can be written as follows respectively,

2
I =- Zf(?iz(u . Vul)a?uldx,
i=1

2
L=) f @b - Vb)) u; — b - 82Vb, - 82uy)dx,
i=1
2
L =- Z f@?(u . Vuz)(')fuzdx,
i=1
2
Li=) f (O2(b - Vb)O2ur — b - 02Vb, - 02ur)dx, (3.6)
i=1
2
Ii=-Y f (02(u - Vb)O2bdx,
i=1

2
I = Z f (b - Vu)d?b — b - 8Vu - 82b)dx,
i=1

2
I =— Z faf(u -Vm) - (fmdx,
i=1

where we have used the facts that

2
Z f (020,b - O7u + 070,u - 7b)dx = 0, (3.7)
i=1
2
> f (b- Vb 0u+b-8Vu-82b)dx =0, (3.8)
i=1

2
> f 8%u - 9°VPdx, (3.9)
i=1
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and

2
> f @V m - 02u + 0°V X u - O2m)dx = 0. (3.10)
i=1

Then we estimate Iy + I, --- + I; one by one. In the following calculations, the Holder’s inequality,
Young’s inequality and Sobolev embedding inequality will be applied frequently. By using the Lemma
(3.2), I, and I5 can be estimated together,

2
L+L=- Z f(?iz(u -Vu) - al-zudx
i=1

=- f(?f(u - Vu) - 8{udx - f@%(u - Vu) - Hudx

2 2
=- Z Ch f@lfu 07 Vu - djudx - Z Ch fﬁéu -85 *Vu - d5udx
k=1 k=1 (3.11)

:—2falu-alw-a%udx—fa%u-w-a%udx

-2 fﬁzu - 0,Vu - dsudx — fﬁ%u - Vu - yudx

2 112
<6 Vull 2Vl s
2 2
<Cllull2(l01u2llyy + 1102011170).-

The term I, can be transformed into four terms,
L= faf(b - Vb,) - Ojuydx + fag(b - Vby) - O5u;dx

2 2
= Z Cs f b - 07*Vb, - 01udx + Z ch f d5b - 357°Vb, - 3uidx
k=1 k=1

(3.12)
:2falb-01w;1~a§u1dx+fa%b-wyl - Puydx
+2fazb~azvz;1 -8§u1dx+f(9§b~Vb1 - G5uydx
::]21 + 122 + ]23 + 124.
For I>; and I5,, we have
Ly + 1, =2 f o\b - 0,Vb, - 0ruidx — f &b - Vb, - 01pupdx
(3.13)

<2007 112001611101 Vb ll s + VBl 210761 4101212
<C(llulle ]l + 11612101 b + 1014all7).
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When we estimate I3 and 1,4, the incompressible condition V - b = 0 will be used,
Dy + Dy =2 f Oa2by - O1aby - Fouydx + 2 f Oaby - B5by - Fouydx
+ f by - 0,by - Huydx + f 93b, - O1by - Fauydx
=2 f Oaby - O1pby - Bsurdx — 2 f 01by - 03b; - Frudx (3.14)

+ fﬁ%bl . 81b1 . ﬁguldx - falzbl . 82171 . aguldx

<C(10:b:11 21101251 [l 1050 s + 105D 1121181 byl lB5u 1 2)
<Clbll2 (131 b, + 102141117,2)-

Collecting the bounds for I,, we have
L <Clulle + 115 llg2)Ul 811z (172 + 11 Bouy 12, + 1| 016 112). (3.15)

For I4,due to V- u = V- b =0, it can be estimated as follows,

14_2 f 8%(b - Vby) - Bzuzdx+z f 82(b - Vby) - Brurdx
2
:Zc f &b -0V, - 02u2dx+ZCk f 05b - 027%Vb, - Brurdx

=1 k=1

= falb-alvzoz-a§u2dx+fa%b-Vbz-a%uzdx+2fagb.alvz;1 - 0,0 udx (3.16)

- f@%b] . 01b2 . 62811/!2(1)(,' + f(’)%bz . 61b1 . ﬁzﬁluldx

<ClI ol (101 bl 41101 Vol 2 + 133bl| 41V bl 2) + CllOBI 4110281 a4 1105D4 12
+ Cll320 11+ (10, VD1l al|B2bll > + 1101511411035 12)
<ClIbll (1101232 + 102wl + 1101 Bll7,0)-

Now we think about /5, which can be rewritten as following four parts,

—faf(u-Vb)-afb dx—fag(u.vzo)-agb dx

2 2
=- Z Ch f d\u-87*Vb - 81b dx - Z Cs f Asu - 357°Vb - 33b dx
k=1 k=1

(3.17)
:—2falu-alwa-a%bdx—fa%u~Vb-a%bdx—zfazuﬁzvza-agbdx

—fagu-w;-agbdx

2151 + 152 + 153 + 154.
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Is; and Is; can be estimated easily. By Sobolev embedding inequality, we have

151+152:—2falu-alw;-a%bdx—fa$ul-alb-a%bdx—fa%uz-aZb-a%bdx

<C(1101ull 2110, V|41 bll 4 + 1101l 167Dl 2110 ]2 (3.18)
+ 1107 bl 4118 sl 41102b 11 2)
<Cllull 21101 bl

To deal with Is3 and Is4, writing them into four terms,

153+154=—2f62u1-alzb-agbdx—zfazuz-agb-agbdx

—fagul-alb-agb dx—faguz-azb-agb dx (3.19)

=51+ L+ 03+ Js
Using the Holder’s inequality and Young’s inequality, J; and J; can be estimated as follows,

Ty + J3 <C(102ul| 411012614103 2 + 105011141101 Bl141105b| )

5 5 (3.20)
<Cl|bllz2(|02u1llyy + 1101D1l).
Integrating by parts and using Lemma 3.1, we obtain
o+ Jy= —2f81u1 . 6§b 6%[9 dx + f@zalul 6219 agb dx
=—4 ful -0,03b - 93b dx — fazul -0,0,b - 03b dx + fazul - Oab - 0,05b dx
1 1 1 1
<C(llll} 1820011110511, 1101 33112, 1101956 2 (3.21)
1 1 1 1
182011 2,18:85001 12, 118:51 2, 182, b1, 18,212
+ 1101011141101 92Dl 4133 .2)
<C(llullg> + 1Bll2) 102201172 + 1015117,2)-
Inserting (3.20) and (3.21) into (3.19),
Isy + Is < C(llull> + 1Bll2) (102201132 + 1015117,2)- (3.22)
Collecting (3.18) and (3.22), we infer
Is < CQl e + 1 b )1 o1ty 1 + 1 915 10)- (323)
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Similarly to Is, Is can be written as

Is = f 87(b - Vu) - 07b dx + f 83(b - Vu) - 95b dx

2 2
=> ¢ f b3 Vu- dib dx+ ) Ch f &b - 82V - 83b dx

k=1 k=1

(3.24)
:2falb-alw-a§bdx+fa%b-Vu-a%bdx+2fazb-azw-a§bdx
+fa§b-vu-a§bdx
:I61 + 162 + 163 + 164-
For I and I4;, by the Sobolev embedding inequality, we obtain
I + I =2fa]b -0,Vu - 07b dx + fafb -Vu - d7b dx
3.25
<Cl03bl| (101 bl| 41101 Vudll > + [V utll 211075 +) (3:25)
<Cllull 2116, bI[3,..
I¢; and I, can be divided into six terms,
I + lsg =2 f Ob - 0;Vu - 95b dx + f &b - Vu - 95b dx
=2 f 02y - Opau - 03b dx + 2 f Oaby - Buy - 03y dx +2 f Oaby - Bauy - H3by dx (3.26)
+ f@%bl . alu . 0§b dx + fa%bz . (92141 . éibldx + f@%bz . 82u2 . 6%b2d)€
=K, + K, + K5+ K4 + K5 + K.
Estimating K5, K3, K5 and K¢ together,
K, + Ky + Ks + Kg = — falbl - Ouy - Obydx + 2[01191 - 03Uy - 020,bydx
- f@zﬁlbl . 62u1 . (?%bldx + f@zﬁlbl . 82u2 . agalbldx
(3.27)

<CN01bl(105uil| 4 105b1 12 + 11020161 1211052l 2)
+ C||31(3)2l71||L4(||52M1||L4||5§bl||L2 + 10102611l 4 + 102us2)
<C(llullgz + 1Bll2) 101611, + 10211 17,2).
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Considering K, integrating it by parts,

K] :2f82b] . 6121/! é%bdx
=2 f 02by - Opauy - A3bydx + 2 f Oaby - Oty - Hbydx

= —2f012b1 - Oty -6§b1dx—2f62b1 - Oyt ~016§b1dx—2f(92b1 - Opolty - O12b dx
<CN1012b1|14 (1021111 4110361 |2 + 10251l 21101212l 14) + ClIO2b1 |2 1100241 1| 4110105112
<Cllullg> + 1Bllz2)1016112, + 1011217 + 1102u1]2)-

Similarly to K;, and using the Lemma 3.1 again,

K, = f 93by - Oyuy - Hbydx + f 95by - Oyuy - Hbydx

:—Zflxl] (9](9%1’)1 8§b1dx—f(9§b1 '611/[2'(92(911’)1(1)(?

1

<Clur |12, 18,01 112,163 11,1101 8201 112,116, 3 12
1015l 181 1ol 41162D4 .2
<Clllull + 1Bl )NB21 1, + 1101 BIE,0).

Hence,
Iss + Iss < C(lullzz + 1Bl UI0112117,2 + 1021112 + 101D117,).

Consequently, combining (3.25) and (3.30), we have
I < C(lullge + 11 b ) (101ually o+ 11 Doty 12 + 11 16 112).

Now we concerning the last term /7, which can be rewritten as follows,
I = - f@%(u - Vm) - 03mdx — f@%(u - Vm) - 03mdx

= - f@%(ul -0ym+ uy - Om) - éﬁmdx - f@%(ul -0ym+ uy - Oym) - agmdx
= 171 + 172.
First, by combining the Holder’s inequality and Young’s inequality, /7; becomes
2 2
I =— Z Clz‘ falful . af—"alm . 8%mdx - Z C’zC f(?'l‘uz . ai_kﬁzm . B%mdx
k=1 k=1

:—2falu1-a$m-a%mdx—fa%ul-alm-aﬁmdx

- 2f81u2 -0ppm - 6fmdx - f@%uz - 0m - 8fmdx

<C || 8im lls (I Qvaay llpall &t llps + 1| 7w N2l ym |ls
+ 1l Bty Nlpall o Nz + 11 3 uaa Hlpsll Gom |lz2)

<C I 0im |l (Iwy g2l v Mgz + |l Ovuz Nl m |lpg2)

<C(ll ullg> + 1l m )l rm |l + 11 Byuaa II7p).

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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We can infer /5,

2 2
I, = — Z ch f@éul - 05 %01m - d5mdx — Z Cs f@guz - 87 8,m - 3mdx
k=1

k=1

=-2 f Oty - 20m - O3mdx — f duy - 0ym - O3mdx

3.34
3 f@lul  r0om - Bmdx (3-34)
<C || &m 2 (| Bouy llsll 0201m Nlps + || B3uy Nlgall Oy |Ips
+ [ Oauy || 4|l 201m || 14)
<Cllm e (I auy I3 + N 01 |I7,2).
Therefore, I is estimated as
L<Clullge + 1l m )l 011z 12 + 11 oty I3 + 1| Bim |12). (3.35)
Collecting all the estimate I; + I, - - - + I7 and inserting them into (3.5), we deduce
2
LS N0 R 1B+ 1) s I + 152 s + 1| 2 )
2dt P 1 L 1 L 1 L 1 L
2 (3.36)

+ Z(II 0;0quy P + 1| 070vua |17, + 11 8701b |17, +2 1 07m |17, + 1| 9701m |7,)
i=1
< C(l, b, m)Dll2) | D1ty 3o + 1| Doy |32 + 11016 I3 + 11 Dvm [0 +2 1| m 1170)-

Then we finished the estimate of || (87u;,87us,07b,87m) |I2,. Combining (3.4) and (3.36), then
integrating the resulted equation on [0, 7], we conclude

(G, b, )OI, + 2 [ 02012 + 1010212, + 11BIE, + 10vmI, + 2limI,)dT

< 1o, bos mo)DIe + C [ Ul + Wbl + 1l m [72) (3.37)
(1 Ovttz 12 + 1l oty 1B, + 1| 16 |2 + 1 um 2)d, (3.38)

which indicates the desired estimate
E@) < EQ) + CE(I)%. (3.39)

Thus this completes the proof of (1.8).

Proof of Theorem 1.2. We have the energy inequality, namely
E(1) < E0) + CE()?, (3.40)
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where C is a pure constant. Due to the assumption that ||(ug, by, mo)||p2r2) < 0 is sufficiently small,
such that

M
2 .
EW0) <o := Yok (3.41)

To initiate the bootstrapping argument to the energy inequality, we make the ansatz

1
E(t) S — =M. 3.42
") < 77 (3.42)
It then implies that
1
CE®? < 3. (3.43)

Substituting (3.43) into (3.40) and combining with (3.41), we obtain
, M
E(t) <2E(0) < C6* := > (3.44)
Then we have obtained that E(#) actually admits an smaller upper bound, which is
2 M
E(t) <2E0) < Cé” < 5 (3.45)
By the bootstrapping argument, this completes the proof of Theorem 1.2. m|
4. Conclusions
In this paper, the stability of the 2D incompressible anisotropic magneto-micropolar fluid equations
near a background magnetic field with partial mixed velocity dissipations, magnetic diffusion and
horizontal vortex viscosity is considered. We obtained the explicit decay rates for the solution of the
linear system in H*(R?) Sobolev space and the stability of nonlinear system. And the results reveal that
the background magnetic field can stabilize the electrically conducting fluids.
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